Endangered and Threatened Wildlife and Plants; Endangered Status for Five Species From American Samoa; Final Rule
DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service

50 CFR Part 17
RIN 1018–AZ97

Endangered and Threatened Wildlife and Plants; Endangered Status for Five Species From American Samoa

AGENCY: Fish and Wildlife Service, Interior.

ACTION: Final rule.

SUMMARY: We, the U.S. Fish and Wildlife Service (Service), determine endangered status under the Endangered Species Act of 1973, as amended, for five endemic American Samoa land snails (Eua zebrina (no common name) and Ostodes strigatus (no common name), the American Samoa distinct population segment of the friendly ground-dove (Gallicolumba stauri), and the Pacific sheath-tailed bat (South Pacific subspecies) (Emballonura semicaudata semicaudata; “bat” or “Pacific sheath-tailed bat” hereafter) and the mao (Gymnomyza samoensis) as endangered species.

The basis for our action. Under the Act, we can determine that a species is an endangered or threatened species based on any of five factors: (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) Overutilization for commercial, recreational, scientific, or educational purposes; (C) Disease or predation; (D) The inadequacy of existing regulatory mechanisms; or (E) Other natural or manmade factors affecting a species continued existence. One or more of the five American Samoa species are experiencing population-level impacts as a result of the following current and ongoing threats:

- Habitat loss and fragmentation or degradation due to agriculture and urban development, nonnative ungulates, and nonnative plants.
- Collection for commercial purposes (snails only).
- Predation by nonnative snails and nonnative flatworms (snails only).
- Predation by feral cats and rats.
- Small numbers of individuals and populations.

Existing regulatory mechanisms do not adequately address these threats. Environmental effects from climate change are likely to exacerbate many of these threats, and may become a direct threat to all five species in the future.

Peer review and public comment. We sought comments on our proposal from 16 independent specialists to ensure that our determination is based on scientifically sound data, assumptions, and analyses. We also considered all comments and information received during the public comment periods and public hearing.

Previous Federal Action

Please refer to the proposed listing rule, published in the Federal Register on October 13, 2015 (80 FR 61568), for previous Federal actions for these species prior to that date. The publication of the proposed listing rule opened a 60-day public comment period that closed on December 14, 2015. We published a public notice of the proposed rule on October 21, 2015, in the local Samoa News newspaper, at the beginning of the comment period. On January 5, 2016 (81 FR 214), we published a notice reopening the comment period for an additional 30 days in order to allow interested parties more time to comment on the proposed rule. In that same document, we announced the date and time of the public hearing and informational meeting held on January 21, 2016, Tutuila Island, American Samoa. The second comment period closed on February 4, 2016. In total, we accepted public comments on the proposed rule for 90 days.

Summary of Comments and Recommendations

We solicited comments during the 60-day public comment period (80 FR 61568, October 13, 2015), in a reopened comment period between January 5 and February 4, 2016 (81 FR 214, January 5, 2016), and during a public hearing held in American Samoa on January 21, 2016. We also contacted appropriate Federal and Territorial agencies, scientific experts and organizations, and other interested parties and invited them to comment on the proposal. In
addition, for the Pacific sheath-tailed bat and the mao, we contacted the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) management and scientific authorities competent to issue comparable documentation in the countries of Samoa, Fiji, Tonga, and Vanuatu seeking comment on the proposed rule. All substantive information provided during the comment periods has either been incorporated directly into this final determination or is addressed below. During the comment periods, we received a total of 16 comment letters on the proposed listing of the 5 species from American Samoa. We received helpful information from the National Park of American Samoa about their surveys, monitoring, and mapping of natural resources in the park, and we have incorporated this information where relevant. In this final rule, we only address those comments directly relevant to the proposed listing of the five species. We received several comments that were not germane to the proposed listing of the five species (for example, information on other American Samoa species not included in the proposed rule); such comments are not addressed in this final rule.

One comment letter each was from the American Samoa Government Office of the Governor, the American Samoa Government Office of Samoan Affairs, and a Federal agency; and six comment letters were from individuals. Seven letters were responses requested from peer reviewers. The American Samoa Government Office of the Governor requested a public hearing and informational meetings regarding the proposed rule, which we provided, as described above. During the public hearing, four individuals made oral comments on the proposed rule.

Peer Review

In accordance with our peer review policy published on July 1, 1994 (59 FR 34270), we solicited expert opinions from 16 individuals with scientific expertise on American Samoa and bats, birds, and snails of South Pacific islands and their habitats, biological needs, and threats, including familiarity with the five species, the geographic region in which these species occur, and principles of conservation biology. We received responses from seven of these individuals.

We reviewed all comments received from the peer reviewers for substantive issues and new information regarding the listing of the five species. All seven peer reviewers generally supported our methods and conclusions and provided additional information, clarifications, and suggestions to improve the final rule. Two peer reviewers agreed particularly with our evaluation of scientific data informing our assessment of the conservation status of the Pacific sheath-tailed bat. Similarly, three peer reviewers agreed particularly with our assessment of the conservation status of the two snails, *Eua zebra* and *Ostodes strigatus*, and one peer reviewer agreed particularly with our status assessment of the mao and friendly ground-dove. Peer reviewer comments are addressed in the following summary and incorporated into the final rule as appropriate (see also Summary of Changes from Proposed Rule).

General Peer Reviewer Comments

(1) Comment: One peer reviewer disagreed with the conclusion that climate change is a projected threat and not a current threat to the species. The reviewer asked whether the Service’s conclusion is that (a) climate change is not yet occurring and consequently is not a current threat; or (b) climate change is already occurring, but it is not yet affecting these species. The reviewer cited various recent local, regional, and world-wide evidence that climate change is occurring (National Oceanic and Atmospheric Administration (NOAA)–National Climatic Data Center 1960–2013; Australian Bureau of Meteorology (BOM) & Commonwealth Scientific and Industrial Research Organization (CSIRO) 2011, Volumes 1 & 2; 2014; Pirhalla et al. 2011; Monahan and Fischelli 2014) and that it is already having major impacts to species and ecosystems (Keen et al. 2012; Intergovernmental Panel on Climate Change (IPCC) 2014).

Our Response: We agree with the reviewer that observed increases in air and sea temperatures, carbon dioxide concentrations, and sea levels exist in American Samoa and the region, and that these are current conditions. We further agree that the trajectory of observed changes in climate is unlikely to change in the coming decades. However, neither of the choices provided by the reviewer accurately reflect our conclusion with regard to whether we consider climate change to be a current threat to these species. Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to these species, such as habitat loss and degradation.

Peer Review Comments on the Pacific Sheath-Tailed Bat

(2) Comment: Two peer reviewers provided additional references and personal observations regarding the foraging behavior and habitat of the species *E. semicaudata* and other bats in the family Emballonuridae (Kaliko 1993, pp. 262–265; Gorresen et al. 2009, p. 336; Valdez et al. 2011, pp. 306–307; Marques et al. 2015, pp. 6–EV–9–EV).

Our Response: We have incorporated all new relevant information regarding the bat’s foraging behavior and foraging habitat in this final rule.

(3) Comment: One peer reviewer reported the discovery of previously unknown caves with appropriate habitat for the Pacific sheath-tailed bat on Tau Island. The commenter also reported anecdotal sightings of the Pacific sheath-tailed bat on Tutuila and Tau Islands.

Our Response: We appreciate this new information. We hope that future surveys will yield confirmed observations of bats using the caves on Tau. Given the anecdotal nature of the sightings on Tutuila and Tau and the similarity in flight behavior between small bats and the white-rumped swiftlet (*Aerodramus spodiopygius*; common in American Samoa), the possibility exists that these anecdotal observations were of birds, not bats. We hope to learn of confirmed sightings that would indicate that the Pacific sheath-tailed bat may still occur on Tutuila and Tau.

(4) Comment: Two peer reviewers provided additional information regarding the impacts of goats on the habitat of the Pacific sheath-tailed bat. One of the reviewers pointed out that overgrazing of the forest understory by goats had resulted in little or no recruitment of canopy tree species in areas of known populations of the bat on some small islands in the Lau Group in Fiji and on Aguiuan Island in the Northern Mariana Islands, where the endangered Mariana subspecies (*E. semicaudata rotensis*) occurs, as documented by Gorresen et al. (2009, p. 339). The peer reviewer noted earlier predictions that the effects of overgrazing would result in the demise of the forests that are so important for the species (e.g., Palmeirim et al. 2005, p. 46).

The same reviewer commented that grazing by goats greatly minimizes clutter resulting from a well-developed shrub layer, thereby opening foraging spaces for bats under the canopy. In addition, the reviewer cited reports that the bat was doing well in highly overgrazed forests on Yaqueta and Aiwa...
The reviewer also requested clarification in the discussion regarding the threat to the bat from metapopulation breakdown, and in particular requested clarification regarding the location of significant source populations in Fiji. Finally, the reviewer commented that the future impact of sea level rise on populations of the Pacific sheath-tailed bat is not likely to be restricted to high islands and in fact is likely to be even greater on low islands, such as low limestone islands where this species is present. Our Response: We agree that genetic differentiation underscores the need to conserve the South Pacific subspecies of the Pacific sheath-tailed bat. We have incorporated the information on the bat’s distribution in Fiji into this final rule, and we have clarified the discussion regarding the metapopulation breakdown threat to the bat. The continued decline of the only significant source populations of Pacific sheath-tailed bat (on large islands in Fiji, especially the Viti Levu Group) greatly diminishes the probability of recolonization and persistence within Fiji as well as throughout the remainder of its range. Of particular note, the bat is currently considered to be extirpated or nearly extirpated on the largest Fijian island where the bat was once considered common. Regarding the portion of the reviewer’s comment on the impact of sea level rise, we agree that any impacts of future sea level rise on the Pacific sheath-tailed bat in Fiji are likely to be worse on low islands than on high islands where the bat is known to occur.

Peer Review Comments on the American Samoa DPS of the Friendly Ground-Dove

(6) Comment: One peer reviewer cited a recent study that reported a detection of the friendly ground-dove at a single location on Tau Island (Judge et al. 2013, pp. 14–15). The reviewer further commented that, although a possible range extension to Tau Island would be a positive change in the distribution of this rare species, the report of a single detection on another island would not change the Service’s determination of threatened or endangered status, given three extensive bird surveys conducted on Tau Island in 1975–76, 1986, and 2011 (Amerson et al. 1982, Engbring and Ramsey 1989, Judge et al. 2013) and various additional surveys conducted there by the American Samoa Department of Marine and Wildlife Resources.

Our Response: We agree that a single detection does not necessarily signify a range extension of American Samoa DPS of the friendly ground-dove to include Tau Island. In addition to the past and ongoing surveys cited by the reviewer, recent bird banding efforts conducted on Tau Island between 2013 and 2015 also failed to report the friendly ground-dove (Pyle et al. 2014, pp. 7, 19; Pyle et al. 2015, pp. 7, 21). On the other hand, this report does suggest the possible movement of friendly ground-doves from Ofu and Olosega Islands to Tau Island.

(7) Comment: One peer reviewer stated that the friendly ground-dove has not been pushed into higher elevation areas throughout its range (as asserted by Watling [2001, p. 118]), and still occurs at low elevations in some areas in Samoa, such as Salelologa lowland forest on Savaii and on Nuutele Island off the coast of Upolu. The reviewer also provided specific information indicating that predation by the Polynesian rat (Rattus exulans) should be considered a threat to the friendly ground-dove in American Samoa in addition to that of the black rat (R. rattus).

Our Response: In the proposed rule, we stated that the loss of lowland and coastal forest has been implicated as a limiting factor for populations of the friendly ground-dove, and as a result, the species has been pushed into more disturbed areas or forested habitat at higher elevations (Watling 2001, p. 118). The two areas cited by the reviewer, Nuutele Island and Salelologa, are sites where native lowland forest is intact and provides habitat that can support populations of the friendly ground-dove. However, our analysis of the available information indicates that these areas are exceptional, and that the loss of lowland and coastal forests remains a threat to the friendly ground-dove throughout its range, including in American Samoa. The fact that the species is known from only those lowland areas in Samoa that remain mostly forested provides supporting evidence of this ongoing threat. In American Samoa, lowland and coastal habitats on Ofu and Olosega have largely been converted to villages, grasslands, or coconut plantations, and the loss of these habitats to agriculture and development is expected to continue. We have added predation by the Polynesian rat as a threat to the friendly ground-dove in this final rule.

Peer Review Comments on Eua zebrina and Ostodes strigatus

(8) Comment: One peer reviewer commented that collection for scientific purposes is not a current threat to Eua zebrina and expressed doubt that it contributed to the decline of this species. The peer reviewer added that...
collection of Eua zebrina for other purposes (e.g., commercial, educational, or recreational) is also not a current threat.

The same reviewer commented that predation by the rosy wolf snail (Englandina rosea) cannot be considered the major existing threat to the native snail fauna in American Samoa in the absence of a quantitative evaluation of the importance of rosy wolf snail predation relative to other threats such as habitat destruction and predation by rats. The reviewer further stated that predation by the rosy wolf snail may be less of a threat to adult individuals of O. strigatus than to E. zebrina, because the former may be protected by its operculum (trap-door-like structure closing the shell aperture). The reviewer added that the rosy wolf snail feeds on small snails by swallowing them whole, but feeds on large snails by attacking them via the open shell aperture. The commenter further noted that both E. zebrina and O. strigatus adults are considered large from the perspective of the rosy wolf snail. If O. strigatus can close the aperture with the operculum when threatened by the rosy wolf snail, the predator may find access difficult; but whether this is the case is not known.

Lastly, the reviewer noted that whether juveniles (i.e., small snails) are more susceptible is also not known. The reviewer also stated that the protection provided by the Tutuila section of the National Park of American Samoa (NPSA) does not apply to Ostodes striatus because this species is only known from the western part of Tutuila, which is not within the NPSA’s boundaries. Finally, the reviewer commented that the statement “all live snails were found on understorey vegetation beneath intact forest canopy” is probably correct for most E. zebrina, but should not be attributed to all Samoan land snails.

Our Response: Regarding the threat of over-collection, we agree with the reviewer that collection for scientific purposes is not a current threat to Eua zebrina or Ostodes striatus. We erroneously included “overutilization for scientific purposes” in our assessment of threats to these species in the proposed rule, and have removed this factor from the Summary of Factors Affecting E. zebrina, and O. striatus. We consider the threat of predation by the rosy wolf snail to be one of several threats to the survival of Eua zebrina, and have made this clarification in the final rule (see Summary of Factors Affecting Eua zebrina, below). While the operculum of adult individuals of O. striatus may offer protection from predation by the rosy wolf snail, we maintain our finding that predation by the rosy wolf snail is a current threat to O. striatus based on the vulnerability of small, juvenile individuals of this species to being swallowed whole by predatory snails. We disagree with the reviewer’s statement regarding the lack of protection provided to O. striatus by the NPSA. Information in our files indicates the occurrence of O. striatus within the boundaries of the NPSA (Miller 1993, p. 23). Finally, we agree with the reviewer’s comment that the statement “all live snails were found on understorey vegetation beneath intact forest canopy” may hold true for E. zebrina, but should not be attributed to all Samoan land snails, and we have made this correction in this final rule.

Public Comments

In general, commenters did not express strong support for or opposition to the proposed listing. Some commenters expressed concerns regarding the potential impacts of the proposed listing on public- and private-sector projects and on cultural practices. Other commenters suggested that additional information on the five species was needed. Our responses are provided below.

Comments From States/Territories

(10) **Comment:** The Governor of American Samoa and two public commenters expressed concern that listing the five species as endangered could affect such activities as land clearing, development, planned wind power production, and cultural practices.

Our Response: We understand that concern exists about the effects on land use and cultural practices of listing species as threatened or endangered under the Act. Once a species is listed as endangered under the Act certain protective measures apply. These measures include prohibitions under section 9(a)(1) of the Act that make take (defined as harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect; or to attempt any of these) of listed wildlife species illegal and requirements for Federal agencies to consult with the Service under section 7(a)(2) of the Act to ensure that any action they fund, authorize, or carry out is not likely to jeopardize the continued existence of any endangered species or threatened species. See Available Conservation Measures, below, for detailed descriptions of requirements and prohibitions, respectively, under sections 7 and 9 of the Act.

We encourage any project proponents or landowners to work closely with the Service if activities on their land may negatively affect listed species. If a Federal activity is associated with the activity (e.g., funding, permit issuance, or other support or
authorization), the Federal agency is required to consult with the Service under section 7 (a)(2) of the Act. If there is no Federal involvement in the activity, we can help those project proponents or landowners determine whether a habitat conservation plan (HCP) or safe harbor agreement (SHA) may be appropriate. These plans or agreements provide for the conservation of the listed species while providing the project proponent or landowner with a permit for incidental take of the species during the course of otherwise lawful activities, such as those mentioned in the Governor’s comment letter, including cultural practices that may affect any of these five species.

(11) Comment: The Governor of American Samoa requested assistance from the Service in making improvements to Territorial law in order to allow local government agencies to work with the Service to conserve listed species and their habitats.

Our Response: We recognize and welcome the Governor’s request for assistance. The Service and the American Samoa Government have met to discuss the necessary improvements to Territorial law required for the Service’s conservation assistance programs to States or Territories for threatened and endangered species in accordance with section 6 of the Act, and we remain available to provide further assistance as needed.

(12) Comment: A member of the Office of Samoan Affairs supported our assessment of the threat of cats and rats to the five species. The member added that disease caused by rats and spread by cats and rats contributed to the endangered status of the five species.

Our Response: We appreciate the comment by the Office of Samoan Affairs. Our review of the best scientific and commercial data available does not indicate that disease is currently a factor affecting the continued existence of the five species. We welcome any information on this topic that becomes available in the future.

Comments From the General Public

(13) Comment: One commenter asked how species are protected once listed as endangered. Another commenter asked how the Service works to reestablish populations of species after they are listed as endangered.

Our Response: Once a species is added to either of the Lists of Endangered and Threatened Wildlife and Plants, it is afforded protection under the Act. For example, section 7(a)(2) of the Act requires Federal agencies, including the Service, to ensure that any action they fund, authorize, or carry out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat of such species; section 9(a)(1) of the Act prohibits the take of listed wildlife species (includes harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect; or to attempt any of these). Activities to reestablish and recover listed species, and details of sections 7 and 9 of the Act, are described below, under Available Conservation Measures.

(14) Comment: One commenter stated that the use of insecticides is contributing to the decline of the Pacific sheath-tailed bat by reducing prey populations such as mosquitoes and other insects.

Our Response: We evaluated the effects of pesticide use on the Pacific sheath-tailed bat in the proposed rule (80 FR 61568, October 13, 2015). The use of pesticides may negatively affect the Pacific sheath-tailed bat as a result of direct toxicity and the reduction in the availability of insect prey. Pesticides are known to adversely affect bat populations, either by secondary poisoning when bats consume contaminated insects, or by reducing the availability of insect prey (Hutson et al. 2001, p. 138; Mickleberg et al. 2002, p. 19). Pesticides may have contributed to declines and loss of the Mariana subspecies of Pacific sheath-tailed bat on islands where pesticides were once applied in great quantities (Giam, Saipan, and Tinian) (Wiles and Worthington 2002, p. 17).

In American Samoa and Tonga, current levels of pesticide use are likely lower than several decades ago when their use, particularly during the years in which taro was grown on large scales for export (1975–1985), coincided with the decline of bats in both places and has been implicated as the cause (Tarburton 2002, p. 107). However, Grant et al. (1994, pp. 135–136) dismissed the role of insecticides in the decline of the bat in American Samoa based on the absence of a similar population crash in the insectivorous white-rumped swiftlet (Aerodramus spodiopygius) and the limited use of agricultural and mosquito-control pesticides. On the island of Taveuni in Fiji, where bat populations have persisted at low levels over the last 10 years (Palmeirim et al. 2005, p. 62, Malotaux 2012, in litt.), several locals reported that pesticide use was quite widespread, and their use may be similar on other islands. (Malotaux 2012, in litt.). We do not have information about pesticide use in Tonga or Vanuatu. The best available information does not indicate that pesticide use is a current threat to the Pacific sheath-tailed bat or that it is likely to become a threat in the future.

(15) Comment: One commenter stated that flooding or high water levels during Hurricanes Ofa (1990) and Val (1991) may have washed out snails such as E. zebrina and O. strigatus from stream areas.

Our Response: In the proposed rule, we considered the effects of natural disturbances such as hurricanes and their associated impacts under Factor E: Other Natural and Manmade Factors Affecting Its Continued Existence for both E. zebrina and O. strigatus. The information we have does not indicate that either snail species was washed out of stream areas, per se, by heavy rains and flooding associated with hurricanes Ofa and Val; these are land snails, and they do not inhabit aquatic environments. However, hurricanes likely have adverse impacts on the habitats of E. zebrina and O. strigatus by destroying vegetation, opening the canopy, and thus modifying the availability of light and moisture, and creating disturbed areas conducive to invasion by nonnative plant species (Elmqvist et al. 1994, p. 387; Asner and Goldstein 1997, p. 148; Harrington et al. 1997, pp. 539–540; Lugo 2008, pp. 373–375, 386). Such impacts destroy or modify habitat elements (e.g., stem, branch, and leaf surfaces, undisturbed ground, and leaf litter) required to meet the snails’ basic life-history requirements. In addition, high winds and intense rains from hurricanes can also dislodge individual snails from the leaves and branches of their host plants and deposit them on the forest floor where they may be crushed by falling vegetation or exposed to predation by nonnative rats and snails (Hadfield 2011, pers. comm.). Therefore, we consider the threat of flooding and high water levels associated with the high wind and intense rains caused by hurricanes to be a factor in the continued existence of E. zebrina and O. strigatus.

(16) Comment: Two commenters recommended that the proposed rulemaking needed to be explained to traditional leaders, local people, and to a larger audience than attended the public hearing and informational meeting.

Our Response: We conducted a public hearing and public informational meeting on January 21, 2016, at which Service staff were available to answer questions from the public with Samoan language translation provided at both events. We published a notice of the
availability of the proposed rule in the local newspaper and accepted public comments on the proposed rule for a total of 90 days. We sent notification of publication of the proposed rule and public comment periods by mail to the Congressional Representative, American Samoa Government agencies, and local stakeholders. We conducted numerous radio and television interviews at local stations and provided information on the five species and the rulemaking process. We made a presentation and answered questions regarding the proposed rulemaking during a meeting with the members of the Office of Samoa Affairs on January 25, 2016, and we also conducted meetings with the American Samoa Government Department of Agriculture, Department of Marine and Wildlife Resources, Office of the Attorney General; and Federal agency partners including the National Park of American Samoa, NOAA—National Ocean Service, and the U.S. Department of Agriculture Natural Resource Conservation Service.

(17) Comment: Two commenters recommended further study of the species proposed for listing as endangered.

Our Response: We are required to make our determination based on the best scientific and commercial data available at the time of our rulemaking. We considered the best scientific and commercial data available regarding the five species to evaluate their potential status under the Act. We solicited peer review of our evaluation of the available data, and peer reviewers supported our analysis. Science is a cumulative process, and the body of knowledge is ever-growing. In light of this fact, the Service will always take new research into consideration. If new scientific information supports revision of this rule in the future, the Service will issue a proposed rule consistent with the Act and our established work priorities at that time.

(18) Comment: One commenter questioned why species thought to be extirpated in American Samoa, such as the mao, are being considered for listing. The commenter also expressed concern regarding the reintroduction of such species.

Our Response: We previously determined that the mao warranted listing under the Act (79 FR 72450; December 4, 2014) and present our determination of its status as endangered in this final rule. A species may become extirpated in a portion of its range and be listed throughout its range. The mao occurred historically on Tutuila, but is now considered to be extirpated there. If the mao occurs once again on Tutuila, whether as a result of natural dispersal or a reintroduction program, this species will be subject to the protections of the Act there. The primary purpose of the Act is the conservation of endangered and threatened species and the ecosystems upon which they depend. Once a species is listed as endangered or threatened under the Act, conservation measures provided to such species include recognition, recovery actions, requirements for Federal protection, and prohibitions against certain practices. For more information, please see Available Conservation Measures, below. The Service is required under section 4(f)(1) of the Act to prepare recovery plans for newly listed species, unless we determine that such a plan will not promote the conservation of the species. Reestablishing a threatened or endangered species in its former range is often necessary to enable or sustain recovery. Successful species recovery efforts necessitate the Service working collaboratively with Federal, State, and local agencies, conservation organizations, the business community, landowners, and other concerned citizens. Therefore, we look forward to working collaboratively with all stakeholders in efforts to conserve the mao and other listed species.

Summary of Changes From Proposed Rule

In preparing this final rule, we reviewed and fully considered comments from the peer reviewers and public on the proposed listings for the five species. This final rule incorporates the following substantive changes to our proposed rule, based on the comments we received:

(1) We have added habitat destruction or modification by feral goats as a threat to the continued existence or survival of the Pacific sheath-tailed bat in Fiji (see the discussion below under Pacific sheath-tailed bat, Summary of Factor A: The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range).

(2) We erroneously included “overutilization for scientific purposes” in our assessment of threats to Eua zebrina in the proposed rule and have removed this factor from the Summary of Factors Affecting E. zebrina in this final rule.

Other than the two changes just discussed and minor changes in response to recommendations, in this final rule, we made no substantive changes to the proposed rule.

Background

Species Addressed in This Final Rule

The table below (table 1) provides the common name, scientific name, listing status, and range for the species that are the subjects of this final rule.

<table>
<thead>
<tr>
<th>Common name [Samoan name or other local name]</th>
<th>Scientific name</th>
<th>Listing status</th>
<th>Locations where listed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific sheath-tailed bat (South Pacific sub-species) [beka beka, peapea vai, tagiiti].</td>
<td>Emballonura, semicaudata.</td>
<td>Endangered</td>
<td>American Samoa, Fiji, Samoa, Tonga, Vanuatu.</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendly (shy) ground-dove [tuaimeo]</td>
<td>Gallicolumba stiri</td>
<td>Endangered</td>
<td>American Samoa DPS.</td>
</tr>
<tr>
<td>Snails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No common name</td>
<td>Eua zebrina</td>
<td>Endangered</td>
<td>American Samoa.</td>
</tr>
<tr>
<td>No common name</td>
<td>Ostodes striatus</td>
<td>Endangered</td>
<td>American Samoa.</td>
</tr>
</tbody>
</table>
Please refer to the proposed listing rule (80 FR 61568; October 13, 2015) for geographic descriptions of the Samoan Archipelago, Samoa, Kingdom of Tonga, Republic of Fiji, Republic of Vanuatu, Territory of the Wallis and Futuna Islands and for additional factual details of the factors affecting the species, such as descriptions of nonnative plant species that affect the species’ habitat. Our assessment evaluated the biological status of the five species and threats affecting their continued existence. The assessment was based upon the best available scientific and commercial data and, except where noted below (and in the Summary of Changes From Proposed Rule, above), has not changed as a result of the new information obtained during the comment periods.

Pacific sheath-tailed bat (South Pacific subspecies), *Emballonura semicaudata* ssp. *semicaudata*, Peapea vai (American Samoa), Tagiti (Samoa), Beka beka (Fiji)

The Pacific sheath-tailed bat is a member of the Emballonuridae, an Old World bat family that has an extensive distribution primarily in the tropics (Nowak 1994, pp. 90–91). A Samoan specimen was first described by Peale in 1848 as *Vesperptillo semicaudatus* (Lyon and Osgood 1909, p. 259). The species was later included in the genus *Emballonura* (Temminck 1838; cited in the Integrated Taxonomic Information System (ITIS) 2014) and is now known as *Emballonura semicaudata* (Smithsonian Institution 1909; Tate and Archbold 1939, p. 8). This species is a small bat. Males have a forearm length of about 1.8 in (45 millimeters [mm]), and weigh approximately 0.2 ounces (oz) (5.5 grams [g]), and females are slightly larger in size and weight (Lemke 1986, p. 744; Nowak 1994, p. 91; Flannery 1995, p. 326; Uyehara and Wiles 2009, p. 5).

The Pacific sheath-tailed bat was once widespread in Polynesia, eastern Melanesia, and Micronesia and is the only insectivorous bat recorded from a large part of this area (Hutson et al. 2001, p. 138). Sheath-tailed bats are rich brown to dark brown above and paler below (Walker and Paradiso 1983, p. 211). The common name “sheath-tailed bat” refers to the nature of the tail attachment: The tail pierces the tail membrane, and its tip appears completely free on the upper surface of the membrane (Walker and Paradiso 1983, p. 209). The Pacific sheath-tailed bat (all subspecies) is listed as Endangered in the 2015 IUCN (International Union for Conservation of Nature) Red List (Bonaccorso and Allison 2008). Endangered is IUCN’s second most severe category of extinction assessment, which equates to a very high risk of extinction in the wild. IUCN criteria include the rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation; however, IUCN rankings do not confer any actual protection or management.

Four subspecies of Pacific sheath-tailed bats are currently recognized: *E. s. rotensis*, endemic to the Mariana Islands (Guam and the Commonwealth of the Northern Mariana Islands (CNMI); listed as endangered in 2014 (80 FR 59497, October 1, 2015), and referred to here as the South Pacific subspecies); *E. s. sulcata* in Chuuk and Pohnpei; *E. s. palauensis* in Palau; and *E. s. semicaudata* in American Samoa, Samoa, Tonga, Fiji, and Vanuatu (Koopman 1997, pp. 358–360; Oyler-McGance et al. 2013, pp. 1.030–1.036), referred to here as the South Pacific subspecies. Recent analysis found greater genetic differences between *E. s. rotensis* and *E. s. semicaudata* than typically reported between mammalian subspecies (Oyler-McGance et al. 2013, p. 1.030). Hereafter, “bat” or “Pacific sheath-tailed bat” refers to the South Pacific subspecies unless otherwise noted.

All subspecies of the Pacific sheath-tailed bat appear to be cave-dependent, roosting during the day in a wide range of cave types, including overhanging cliffs, crevices, lava tubes, and limestone caves (Grant 1993, p. 51; Grant et al. 1994, pp. 134–135; Hutson et al. 2001, p. 139; Palmeirim et al. 2005, p. 28). Large roosting colonies appear fairly common in the Palau subspecies, but smaller aggregations may be more typical of at least the Mariana subspecies and perhaps other species of *Emballonura* (Wiles et al. 1997, pp. 221–222; Wiles and Worthington 2002, pp. 15–17). The Mariana subspecies, which persists only on the island of Aguiguan (CNMI), appears to prefer relatively large caves (Wiles et al. 2005, p. 15; O’Shea and Valdez 2009). The limestone cave ecosystem of the Mariana subspecies on Aguiguan is characterized by constant temperature, high relative humidity, and no major air movement (O’Shea and Valdez 2009, pp. 77–78). Such basic habitat data are lacking for the South Pacific subspecies of Pacific sheath-tailed bat, but may be important because the alteration of climate conditions has been implicated in the abandonment of roost caves by other bat species (Hutson et al. 2001, p. 267). Pacific sheath-tailed bats are commonly found sharing caves with swiftlets (*Aerodramus* spp.) (Lemke 1986, p. 744; Hutson et al. 2001, p. 139; Tarburton 2002, p. 106; Wiles and Worthington 2002, p. 7; Palmeirim et al. 2005, p. 28). All subspecies of the Pacific sheath-tailed bat are nocturnal and typically emerge around dusk to forage on flying insects (Hutson et al. 2001, p. 138; Craig et al. 1993, p. 51).

The Mariana Islands subspecies forages almost entirely in forests (native and nonnative) near their roosting caves (Esselstyn et al. 2004, p. 307). Other subspecies in Micronesia have been observed foraging beneath the canopy of dense native forest (on Pohnpei) and over town streets (Palau and Chuk) (Bruner and Pratt 1979, p. 3). The bat’s preferred foraging habitat is mature well-structured forest with a high and dense canopy (Kalko 1995, pp. 262–265; Esselstyn et al. 2004, p. 307; Palmeirim et al. 2005, p. 29; Corresen et al. 2009, p. 336; Valdez et al. 2011, pp. 306–307; Marques et al. 2015, pp. 6–EV–9–EV).

In American Samoa, Amerson et al. (1982, p. 74) estimated a total population of approximately 11,000 Pacific sheath-tailed bats in 1975 and 1976. A precipitous decline of the bat on the island of Tutuila has been documented since 1990 (Grant et al. 1994, p. 134; Koopman and Steadman 1995, pp. 9–10; Helgen and Flannery 2002, pp. 4–5). Knowles (1988, p. 65) recorded about 200 in 1988, and in 1993, observers caught one bat and saw only three more (Grant et al. 1994, p. 134). A single bat was also observed on two occasions in a small cave north of Alao (Grant et al. 1994, pp. 134–135). Additional small caves and lava tubes have been checked for bats and swiftlets, however, Tutuila is entirely volcanic and does not have the extensive limestone cave systems that provide bat roosting habitat in the Mariana Islands and other Pacific island groups (Grant et al. 1994, p. 135). Two individuals were last observed in the cave at Anapeapea Cove on the north shore of Tutuila in 1998 (Hutson et al. 2001, p. 138). Surveys conducted by the Department of Marine and Wildlife Resources (DMWR) in 2006 failed to detect the presence of this species (DMWR 2006, p. 53). In an attempt to ascertain whether the species is still extant, DMWR conducted surveys consisting of acoustic sweeps and cave checks on all main islands in 2008 and 2012, and no bats were detected (Fraser et al. 2009, p. 9; U.R. Tulafono 2011, in litt.; DMWR 2013, in litt.). Based on its decline and the lack of detections since it was last seen in 1998, this species is thought to be nearly extirpated (if not already extirpated) in American Samoa (DMWR 2006, p. 54; Uyehara and Wiles ___ 2005, p. 28).
In Samoa, the Pacific sheath-tailed bat is known from the two main islands of Upolu and Savaii, but the species has experienced a severe decline over the last several decades, and has been observed only rarely since Cyclones Ofa (1990) and Val (1991) (Lovegrove et al. 1992, p. 30; Park et al. 1992, p. 47; Tarburton 2002, pp. 105–108). This species was previously abundant on Upolu with an individual cave estimated to support several thousand individuals (Ollier et al. 1979, pp. 22, 39). A survey of 41 lava tube caves and other locations on Upolu and Savaii conducted from 1994 to 1997 detected a total of 5 individuals at two sites, which had declined to 2 individuals total by the end of the survey (Hutson 2001, p. 139; Tarburton 2002, pp. 105–108, Tarburton 2011, p. 38). In Samoa, the Pacific sheath-tailed bat occupies sea caves and lava tubes located from the coast up to elevations of 2,500 ft (762 m) that range from 49 ft (15 m) to more than 2,130 ft (650 m) in length; vary in height and width, number of openings, and degree of branching; and may be subject to rockfalls and flooding during high rain events (Tarburton 2011, pp. 40–49).

In Tonga, the distribution of the Pacific sheath-tailed bat is not well known. It has been recorded on the island of Eua and Niaufouou (Rinke 1991, p. 134; Koopman and Steadman 1995, p. 7), and is probably absent from Atiu and Late (Rinke 1991, pp. 132–133). In 2007, ten nights of acoustic surveys on Tongatapu and Eua failed to record any detections of this species (M. Pennay pers. comm. in Scanlon et al. 2013, p. 456). Pennay describes Eua as the place most likely to support the Pacific sheath-tailed bat because of the island’s large tracts of primary forest and many rocky outcrops and caves, but he considers the bat to be extremely rare or extirpated from both islands (M. Pennay pers. comm. in Scanlon et al. 2013, p. 456).

In Fiji, the Pacific sheath-tailed bat is distributed throughout the archipelago, on large islands such as Vanua Levu and Taveuni, medium-sized islands in the Lau group (Lakeba, Nayau, Cicia, Vanua Balavu), and small islets such as Yaqeta in the Yasawa group and Vatu Vara and Aiwa in the Lau group (Palmeirim et al. 2005, pp. 31–32). Pacific sheath-tailed bats in Fiji roost in lava tubes and limestone caves of varying length and width with sheets of outcrops, and in cave-like areas formed by irregularly shaped boulders located in areas along the coast and up to 6.2 mi (10 km) inland (Palmeirim et al. 2007, pp. 1–13). Running water or pools of water are a common occurrence in inland caves with streams running through or coastal caves that are tidally influenced (Palmeirim et al. 2007, pp. 1–13).

Habitat surrounding roost sites includes undisturbed forest, secondary forest, cultivated areas, and forested cliffs (Palmeirim et al. 2007, pp. 1–13). The species was reported as common some decades ago on the small, volcanic island of Rotuma, a Fijian dependency, approximately 372 mi (600 km) from the Fiji archipelago (Clinue 1985, pp. 154–155). Although widely distributed, the species clearly has suffered a serious decline since the 1950s as evidenced by a contraction of its range and a decline in density and abundance on the islands where it still occurs (Flannery 1995, p. 327; Palmeirim et al. 2005, p. 31). In 2000 to 2001, bats were absent or present in diminished numbers in many of the caves known previously to be occupied on 30 Fijian islands, and villagers reported that small bats, presumably Pacific sheath-tailed bats, were no longer commonly seen (Palmeirim et al. 2005, p. 31).

The species is predicted to be extirpated or nearly so on Kadavu, Vanua Levu, and Fiji’s largest island, Viti Levu, where it was known to be widespread until the 1970s (Palmeirim et al. 2005, p. 31; Scanlon et al. 2013, p. 453). Field observations during the 2000 to 2001 surveys documented a single large colony of several hundred individuals on Yaqeta Island in the Yasawa group and a large colony on Vatu Vara Island in the Lau group, but otherwise only a few to dozens of individuals scattered among caves on small and remote islands in the Lau group (Palmeirim et al. 2005, pp. 55–62). Scanlon et al. 2013 (p. 453) revisited the large cave colony on Yaqeta between 2007 and 2011 and described it as without any evidence of any recent use by bats (e.g., odor, fresh guano) and probably abandoned. The loss of the Yaqeta colony and the species’ overall decline across the archipelago led Scanlon et al. 2013 (p. 456) to infer a reduction in population size of greater than 80 percent over the last 10 years. The most important remaining sites for the protection of this species are likely those on small and mid-sized islands in Lau where bats still occur (Palmeirim et al. 2007, p. 512).

In Vanuatu, the Pacific sheath-tailed bat is known from two museum specimens one collected in 1929 and one collected before 1878, both on the main island of Espiritu Santo (Helgen and Flannery 2002, pp. 210–211). No subsequent expeditions have recorded sheath-tailed bats, suggesting that this species was either extirpated or perhaps never actually occurred in Vanuatu (Medway and Marshall 1975, pp. 32–33; Hill 1983, pp. 140–142; Flannery 1995, p. 326; Helgen and Flannery 2002, pp. 210–211; Palmeirim et al. 2007, p. 517). For example, Medway and Marshall (1975, p. 453) detected seven other small, insectivorous bats (family Microchiroptera) in Vanuatu, but failed to observe the Pacific sheath-tailed bat, possibly as a result of survey sites and methods. However, the Vanuatu provenance of the two specimens is not in question (Helgen and Flannery 2002, p. 211). The current disjunct distribution of the Pacific sheath-tailed bat (all subspecies) is suggestive of extinctions (Flannery 1995, p. 45), and the possible extirpation of the South Pacific subspecies from Vanuatu could be an example of this possibility (Helgen and Flannery 2002, p. 211). The bat’s status in Vanuatu is unknown, and a basic inventory of Vanuatu’s bat fauna is lacking (Helgen and Flannery 2002, p. 211).

In summary, the Pacific sheath-tailed bat, once widely distributed across the southwest Pacific islands of American Samoa, Samoa, Tonga, and Fiji, has undergone a significant decline in numbers and contraction of its range. Reports of possible extirpation or extremely low numbers in American Samoa and Samoa, steep population declines in Fiji, and the lack of detections in Tonga and Vanuatu suggest that the Pacific sheath-tailed bat is vulnerable to extinction throughout its range. The remaining populations of the Pacific sheath-tailed bat continue to experience habitat loss from deforestation and development, predation by introduced mammals, and human disturbance of roosting caves, all of which are likely to be exacerbated in the future by the effects of climate change (see Summary of Factors Affecting the Pacific Sheath-tailed Bat discussion below). In addition, low population numbers and a breakdown of the metapopulation equilibrium across its range render the remaining populations of Pacific sheath-tailed bat more vulnerable to chance occurrences such as hurricanes.

Summary of Factors Affecting the Pacific Sheath-Tailed Bat

Section 4 of the Act (16 U.S.C. 1533), and its implementing regulations at 50 CFR part 424, set forth the procedures for adding species to the Federal Lists of Endangered and Threatened Wildlife and Plants. Under section 4(a)(1) of the
Act, we may list a species based on (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) Overutilization for commercial, recreational, scientific, or educational purposes; (C) Disease or predation; (D) The inadequacy of existing regulatory mechanisms; or (E) Other natural or manmade factors affecting its continued existence. Listing actions may be warranted based on any of the above threat factors, singly or in combination.

Factor A: The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

Habitat Destruction and Modification by Deforestation

Deforestation has caused the destruction and modification of foraging habitat of the Pacific sheath-tailed bat as a result of the loss of cover and reduction of available insect prey. The loss of native plant diversity associated with the conversion of native forests to agriculture and other uses usually results in a corresponding reduction in the diversity and number of flying insects (Hespenheide 1975, pp. 84, 96; Waugh and Hails 1983, p. 212; Tarburton 2002, p. 107). Deforestation results from logging, agriculture, development, and hurricanes (Government of Samoa 2001, p. 59; Wiles and Worthington 2002, p. 18). Based on the preference of the Mariana subspecies for foraging in forested habitats near their roost caves, Wiles et al. (2011, p. 307) predict that past deforestation in the Mariana archipelago may be a principal factor in limiting their current population to the island of Aguiuan, which has healthy native forest. Similarly, in Fiji, most sheath-tailed bat colonies are found roosting in caves in or near good forest (e.g., closed canopy, native forest) (Palmeirim et al. 2005, pp. 36, 44); however, much of it has been lost on the large Fijian islands (Palmeirim et al. 2007, p. 515). Deforestation has been extensive and is ongoing across the range of the Pacific sheath-tailed bat. On the island of Tutuila, American Samoa, agriculture and development cover approximately 24 percent of the island and are concentrated in the coastal plain and low-elevation areas where loss of forest is likely to have modified foraging habitat for sheath-tailed bats (American Samoa Community College (ASCC) 2010, p. 13). In Samoa, the amount of forested area declined from 74 to 46 percent of total land area between 1954 and 2005 in litt. (Government of Samoa and Agricultural Organization (FAO) 2005 in litt.). Between 1978 and 1990, 20 percent of all forest losses in Samoa were attributable to logging, with 97 percent of the logging having occurred on Savaii (Government of Samoa 1998 in Whistler 2002, p. 132). Forested land area in Samoa continued to decline at a rate of roughly 2.1 percent or 7,400 ac (3,000 ha) annually from 1990 to 2000 (FAO 2005 in litt.). As a result, there is very little undisturbed, mature forest left in Samoa (Watling 2001, p. 175; FAO 2005 in litt.).

Today, only 360 ac (146 ha) of native lowland rainforests (below 2,000 ft or 600 m) remain on Savaii and Upolu as a result of logging, agricultural clearing, residential clearing (including relocation due to tsunami), and natural causes such as rising sea level and hurricanes (Ministry of Natural Resources and Environment (MNRE) 2013, p. 47).

On Upolu, direct or indirect human influence has caused extensive damage to native forest habitat (above 2,000 ft or 600 m) (MNRE 2013, p. 13). Although forested, almost all upland forests on Upolu are largely dominated by introduced species today. Savaii still has extensive upland forests, which are for the most part undisturbed and composed of native species (MNRE 2013, p. 40). Although the large Fijian islands still have some areas of native forest, much of it has been lost (e.g., 17 percent between 1990 and 2000; FAO 2005 in litt.), and commercial logging continues (Palmeirim et al. 2007, p. 515). The best available information does not provide the current status of native forests and rates of forest loss in Tonga or Vanuatu. Native forests are preferred foraging habitat of the Pacific sheath-tailed bat, and deforestation is occurring in Fiji (where the last relatively large population occurs), and in Samoa, and has occurred in American Samoa. Therefore, we conclude that habitat destruction and modification by deforestation is a current threat to the species. This threat is concentrated in Fiji and Samoa, which comprise roughly 62 percent of the land area and occupy the center of the bat’s range.

Habitat Destruction and Modification by the Feral Goats

Overgrazing by nonnative feral goats has resulted in the destruction and degradation of forests on island ecosystems (Esselslyn et al. 2004, p. 307; Palmeirim et al. 2005, p. 46; Berger et al. 2011, pp. 36, 38, 40, 42–47; CNMISWARS 2010, p. 15; Kessler 2011, pp. 320–323; Pratt 2011, pp. 2, 36; Welch et al. 2011). Overgrazing of forest understory by goats resulted in little or no recruitment of canopy tree species in areas of known populations of the Pacific sheath-tailed bat on small islands in the Lau Group in Fiji (Palmeirim et al. 2005, p. 46) and on Aguiuan Island in the Northern Mariana Islands, where the endangered Mariana subspecies (E. semicaudata rotensis) occurs (Gorreson et al. 2009, p. 339). Palmeirim et al. (2005, p. 46) predicted that continued overgrazing would result in the demise of the forests that are so important for the Pacific sheath-tailed bat. Despite the reported negative impacts of goat browsing on tree recruitment, the current amount of well-developed forest canopy habitat and availability of food resources suggest that the bat is currently able to persist on islands where feral goat browsing is occurring (Esselslyn et al. 2004, p. 307; Palmeirim et al. 2005, pp. 28–29). However, because the direct and indirect impacts of goat browsing on the preferred foraging habitat of the bat are currently occurring and expected to continue into the future in Fiji, we conclude that habitat destruction and degradation by goat browsing is a threat to the continued existence of the bat in Fiji.

Conservation Efforts To Reduce Habitat Destruction, Modification, or Curtailment of Its Range

American Samoa

The National Park of American Samoa (NPSA) was established to preserve and protect the tropical forest and archaeological and cultural resources, to maintain the habitat of flying foxes, to preserve the ecological balance of the Samoan tropical forest, and, consistent with the preservation of these resources, to provide for the enjoyment of the unique resources of the Samoan tropical forest by visitors from around the world (Pub. L. 100–571, Pub. L. 100–336). Under a 50-year lease agreement between local villages, the American Samoa Government, and the Federal Government, approximately 8,000 ac (3,240 ha) of forested habitat on the islands of Tutuila, Tau, and Ofu are protected and managed, including suitable foraging habitat for the Pacific sheath-tailed bat (NPSA Lease Agreement 1993).

Samoa

As of 2014, a total of approximately 56,176 ac (23,543 ha), roughly 8 percent of the total land area of Samoa (285,000 ha) was enlisted in terrestrial protected areas, with the majority located in five national parks covering a total of 50,629 ac (20,489 ha), overlapping several sites known to be previously occupied by the

Fiji

Fiji currently has 23 terrestrial protected areas covering 188 sq mi (488 sq km) or 2.7 percent of the nation’s land area (Fiji Department of Environment 2014, pp. 20–21). Most notably, on Taveuni Island, the Bouma National Heritage Park (3,500 ac: (1,417 ha)), Taveuni Forest Reserve (27,577 ac: (11,160 ha)), and Ravuilevu Reserve (9,934 ac: (4,020 ha)) may contain caves and could provide important foraging habitat for the Pacific sheath-tailed bat (Fiji Department of Environment 2011; Naikatini 2015, in litt.; Scanlon 2015a, in litt.). Additional areas of remnant forest and important bat habitat are also managed informally under traditional custodial management systems (Scanlon 2015a, in litt.).

Summary of Factor A

Based on our review of the best available scientific and commercial information, habitat destruction and degradation by deforestation, as a result of logging and land-clearing for agriculture and other land-uses, is occurring throughout the range of the Pacific sheath-tailed bat. Although the conservation efforts described above provide some protection from timber harvesting and forest clearing for agriculture and development within protected areas, they do not provide protection of all of the sheath-tailed bat’s habitat from these activities, or from grazing and browsing by feral goats or habitat degradation and destruction by hurricanes, such that listing is not warranted. Habitat destruction and modification and range curtailment are current threats to the Pacific sheath-tailed bat that are likely to persist in the future.

Factor B: Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

In the analysis for our proposed rule, we had no information indicating that the Pacific sheath-tailed bat is collected for commercial, recreational, scientific, or educational purposes. We have received no new information. When this final listing becomes effective (see **DATES**, above), research and collection of this species will be regulated through permits issued under section 10(a)(1)(A) of the Act.

Factor C: Disease or Predation

Predation by Nonnative Mammals

Predation by nonnative mammals (mammals that occur in an area as a result of introduction by humans) is a factor in the decline of the Pacific sheath-tailed bat throughout its range. Terrestrial predators may be able to take the bat directly from its roosts, which are often in exposed sites such as shallow caves, rock overhangs, or cave entrances. Domestic and feral cats (*Felis catus*) can capture low-flying bats; cats have been documented to wait for bats as they emerge from caves and capture them in flight (Tuttle 1977 in Palmeirim et al. 2005, p. 33; Ransome 1990 in Palmeirim et al. 2005, p. 33; Woods et al. 2003, pp. 178, 188). Consequently, even a few cats can have a major impact on a population of cave-dwelling bats (Palmeirim et al. 2005, p. 34).

Of the predators introduced to Fiji, cats are the most likely to prey on bats (Palmeirim et al. 2005, pp. 33–34). On Cicca Island in the Lau group in Fiji, Palmeirim et al. (2005, p. 34) observed a cat next to the entrance of a cave where Pacific sheath-tailed bats roosted, far from any human settlement. On Lakeba (Lau), a cave that once harbored a large colony of Pacific sheath-tailed bats is now empty and called Qara ni Pusi (cave of the cat; Palmeirim et al. 2005, p. 34). Feral cats are also present on Tutuila and on the Manua Islands in American Samoa (Freifeld 2007, pers. comm.; Arcilla 2015, in litt.). Feral cats have also been documented in Samoa, Tonga, and are likely present in Vanuatu (Atkinson and Atkinson 2000, p. 32; Freifeld 2007, pers. comm.; Arcilla 2015, in litt.).

Rats (*Rattus spp.*) may also prey on the Pacific sheath-tailed bat. Rats are omnivores and opportunistic feeders and have a widely varied diet consisting of nuts, seeds, grains, vegetables, fruits, insects, worms, snails, eggs, frogs, fish, reptiles, birds, and mammals (Fellers 2000, p. 525; Global Invasive Species Database 2011). Rats are known to prey on non-volant (young that have not developed the ability to fly) bats at roosting sites and can be a major threat to bat colonies (Wiles et al. 2011, p. 306). Of several nonnative rats found on islands in the Pacific, black rats (*R. rattus*) likely pose the greatest threat to Pacific sheath-tailed bats because of their excellent climbing abilities (Palmeirim 2015, in litt.). Although we lack direct evidence of black rats preying on Pacific sheath-tailed bats, this rat species has had documented, adverse impacts to other colonial species of small bats, such as Townsend’s big-eared bat (*Corynorhinus townsendii*) in California (Fellers 2000, pp. 524–525), and several species (*Mystacina spp.*) in New Zealand (Daniel and Willis 2013, p. 20). Based on observations of swiftlets, cave-nesting birds often share bats’ roosting caves, where smooth rock overhangs in tall caverns provide nest sites safe from rats, cats, and other predators (Tarburton 2011, p. 38). However, bats roosting in caves with low ledges or those that are filled with debris as a result of rockfalls or severe weather events are likely to either abandon such caves or become more accessible to predators such as rats. Rats have been postulated as a problem for the Mariana subspecies of the Pacific sheath-tailed bat (Wiles et al. 2011, p. 306); their remaining roost sites on Aguigan appear to be those that are inaccessible to rodents (Wiles and Worthington 2002, p. 18; Berger et al. 2005, p. 144). Nonnative rats are present throughout the range of Pacific sheath-tailed bats (Atkinson and Atkinson 2000, p. 32), and although we lack information about the impact of rats on this species, based on information from other bat species, we consider rats to be predators of this species.

In summary, nonnative mammalian predators such as rats and feral cats are present throughout the range of the Pacific sheath-tailed bat. Predation of related subspecies and other cave-roosting bats by rats and feral cats strongly suggests a high probability of predation of the Pacific sheath-tailed bat. Based on the above information, we conclude that predation by rats and feral cats is a current and future threat to the Pacific sheath-tailed bat throughout its range.

Disease

Disease may contribute to the decline of the Pacific sheath-tailed bat, especially because of the bat’s communal roosting (Wiles and Worthington 2002, p. 13). Microchiropterans have been severely affected by certain diseases, such as white nose syndrome in North America; therefore, the possibility exists that an undetected disease has led or contributed to the extirpation of this species on several islands (Malotaux 2012a in litt.). However, disease has not been observed either in the Mariana or South Pacific subspecies of Pacific sheath-tailed bat (Palmeirim et al. 2007, p. 517; Wiles et al. 2011, p. 306). The best available information does not indicate that disease is a threat to this species; therefore, we conclude that disease is not a current threat to the Pacific sheath-tailed bat or likely to become a threat in the future.

Conservation Efforts To Reduce Disease or Predation

We are unaware of any conservation actions planned or implemented at this time to abate the threats of predation by...
feral cats or rats to the Pacific sheath-tailed bat.

Summary of Factor C

In summary, based on the best available scientific and commercial information, we consider predation by nonnative mammals to be an ongoing threat to the Pacific sheath-tailed bat that will continue into the future. We do not find that disease is a threat to the Pacific sheath-tailed bat, or that it is likely to become one in the future.

Factor D: The Inadequacy of Existing Regulatory Mechanisms

The Act requires that the Secretary assess available regulatory mechanisms in order to determine whether existing regulatory mechanisms may be inadequate as designed to address threats to the species being evaluated (Factor D). Under this factor, we examine whether existing regulatory mechanisms are inadequate to address the potential threats to the Pacific sheath-tailed bat discussed under other factors. In determining whether the inadequacy of regulatory mechanisms constitutes a threat to the Pacific sheath-tailed bat, we analyzed the existing Federal, Territorial, and international laws and regulations that may address the threats to this species or contain relevant protective measures. Regulatory mechanisms, if they exist, may preclude the need for listing if we determine that such mechanisms adequately address the threats to the species such that listing is not warranted.

American Samoa

In American Samoa no existing Federal laws, treaties, or regulations specify protection of the Pacific sheath-tailed bat’s foraging habitat from the threats of agriculture and development, protect its known roosting caves from disturbance, or address the threat of predation by nonnative mammals such as rats and feral cats. While some existing Territorial laws and regulations have the potential to afford the species some protection, their implementation does not achieve that result. The DMWR is given general statutory authority to “manage, protect, preserve, and perpetuate marine and wildlife resources” and to promulgate rules and regulations to this end (American Samoa Code Annotated (ASCA), title 24, chapter 3). This agency conducts monitoring surveys, conservation activities, and community outreach and education about conservation concerns. However, to our knowledge, DMWR has not used this authority to undertake conservation efforts for the Pacific sheath-tailed bat such as habitat protection and control of nonnative predators (DMWR 2006, pp. 79–80).

The Territorial Endangered Species Act provides for appointment of a Commission with the authority to nominate species as either endangered or threatened (ASCA, title 24, chapter 7). Regulations adopted under the Coastal Management Act (ASCA § 24.0501 et seq.) also prohibit the taking of threatened or endangered species listed as threatened or endangered by the American Samoa Government (ASG) (American Samoa Administrative Code (ASAC) § 26.0220.1.c). However, the ASG has not listed the bat as threatened or endangered, so these regulatory mechanisms do not provide protection for this species.

Commercial hunting and exportation of the Pacific sheath-tailed bat is prohibited under ASCA, title 24, chapter 23, “Conservation of Flying Foxes,” which also authorizes and directs the ASG DMWR to monitor flying fox populations, protect roosting areas from disturbance, and conduct other activities to manage and protect the species. This law identifies the Pacific sheath-tailed bat as a “flying fox species” (ASCA § 24.2302), but it has not led to measures implemented to protect the Pacific sheath-tailed bat or its habitat from known threats. The sale and purchase of all native bats is prohibited, and the take, attempt to take, and hunting of all native bats are prohibited unless explicitly allowed during an officially proclaimed hunting season (ASCA § 24.1106); take is defined as harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect or to attempt to engage in such conduct (ASCA § 24.1101(f)). However, we do not consider hunting or other forms of utilization to be a threat to the Pacific sheath-tailed bat.

Under a 50-year lease agreement between local villages, the American Samoa Government, and the Federal Government, approximately 8,000 ac (3,240 ha) of forested habitat on the islands of Tutuila, Tau, and Ofu are protected and managed in the National Park of American Samoa (NPSA Lease Agreement 1993). There is the potential for development surrounding park holdings, but such forest clearing would be isolated and small in scale compared to the large tracts of forested areas protected. Although the lease agreement results in overall protection of the lands in the national park from development, this protection does not reduce or eliminate range-wide threats to the Pacific sheath-tailed bat to the extent that listing is not warranted.

Under ASCA, title 24, chapter 06 (Quarantine), the director of the Department of Agriculture (DOA) has the authority to promulgate agriculture quarantine restrictions concerning animals. Using this authority, the DOA has restricted the importation of insects, farm animals, and “domestic pets,” including exotic animals, to entry by permit only (See ASAC § 24.0305 et seq.). Yet these restrictions do not expressly extend to all non-domesticated animals, nor does the DMWR have any consultative role in restricting entry of animals (or plants) harmful to wildlife or native flora. Accordingly, existing statutes and regulations leave a great deal of discretion to the DOA, which may not block the entry of animals harmful to native species or their habitats (DMWR 2006, p. 80). These regulations do not require any measures to control nonnative animals, such as mammalian predators, that are already established and proving harmful to native species and their habitats.

The Territorial Coastal Management Act establishes a land use permit (LUP) system for development projects and a Project Notification Review System (PNRS) for multi-agency review and approval of LUP applications (ASAC § 26.0206). The standards and criteria for review of LUP applications include requirements to protect Special Management Areas (SMA), Unique Areas, and “critical habitats” where “sustaining the natural characteristics is important or essential to the productivity of plant and animal species, especially those that are threatened or endangered” on all lands and in coastal waters in the territory not under federal management authority (ASCA § 24.0501 et seq.). To date, three SMAs have been designated (Pago Pago Harbor, Leone Pala, and Nuuuli Pala; ASCA § 26.0221), and all are in coastal and mangrove habitats on the south shore of Tutuila that likely provide little foraging habitat and no roosting habitat for the Pacific sheath-tailed bat. The only Unique Area designated to date is the Ottoville Rainforest (American Samoa Coastal Management Program 2011, p. 52), also on Tutuila’s south shore, which hypothetically may provide some foraging habitat for Pacific sheath-tailed bats, but it is a relatively small island of native forest in the middle of the heavily developed Tafuna Plain (Trail 1993, p. 4), far from the last known roost sites of this species. To the best of our knowledge, no critical habitats, as defined in the ASCA, have been designated.

Nonetheless, these laws and regulations are designed to ensure that
“environmental concerns are given appropriate consideration,” and include provisions and requirements that could address to some degree threats to native forests and other habitats important to the Pacific sheath-tailed bat, even though individual species are not named (ASAC § 26.0202 et seq.). Because the implementation of these regulations has been minimal, and because review of permits is not rigorous and does not reliably include the members of the PNRS Board responsible for management of wildlife and natural resources (ASCA § 26.026.C), issuance of permits has not provided the habitat protection necessary for the conservation of the species and there has been a continued loss of native habitat important to the Pacific sheath-tailed bat and other species as a result of land clearing for agriculture and development (DMWR 2006, p. 71). We conclude that the implementation of the Coastal Management Act and its PNRS does not address the threat of habitat destruction and degradation to the Pacific sheath-tailed bat.

In summary, some existing Territorial laws and regulatory mechanisms have the potential to offer some level of protection for the Pacific sheath-tailed bat and its habitat but are not currently implemented in a manner that would do so. The DMWR has not exercised its statutory authority to address threats, such as nonnative species, to the bat. The bat is not listed pursuant to the Territorial Endangered Species Act. The Coastal Management Act and its implementing regulations have the potential to address this threat more substantively, but are inadequately implemented. The lease agreements that establish the National Park of American Samoa do provide some protection of the bat’s habitat from land-clearing for agriculture, but do not address other threats to the bat. Therefore, we conclude that regulatory mechanisms in American Samoa do not reduce or eliminate the threats to the Pacific sheath-tailed bat.

Samoa

In Samoa, the Animals Ordinance 1960 and the Protection of Wildlife Regulations 2004 regulate the protection, conservation, and utilization of terrestrial or land-dwelling species (MNRE and the Secretariat of the Pacific Regional Environment Programme (SPREP) 2012, p. 5). These laws and regulations prohibit, and establish penalties for committing, the following activities: (1) The taking, keeping, or killing of protected and partially protected animal species; (2) harm of flying species endemic to Samoa; and (3) the export of any bird from Samoa (MNRE and SPREP 2012, pp. 5–6). As described above, the Pacific sheath-tailed bat is neither endemic to the Samoan archipelago, nor is it listed as a “flying species endemic to Samoa” under the Protection of Wildlife Regulations 2004. Therefore, it is not protected by the current regulations.

The Planning and Urban Management Act 2004 (PUMA) and PUMA Environmental Impact Assessment (EIA) Regulation (2007) were enacted to ensure all development initiatives are properly evaluated for adverse environmental impacts (MNRE 2013, p. 93). The information required under PUMA for Sustainable Management Plans (Para. 18, Consultation) and Environmental Impact Assessments (Para. 46, Matters the Agency shall consider) does not include specific consideration for species or their habitat (PUMA 2004, as amended). Other similar approval frameworks mandated under other legislation address specific stressors and activities. These include the permit system under the Lands Surveys and Environment Act 1989 for sand mining and coastal reclamation, and ground water exploration and abstraction permits under the Water Resources Act 2008 (MNRE 2013, p. 93). The PUMA process has been gaining in acceptance and use; however, information is lacking on its effectiveness in preventing adverse impacts to species or their habitats (MNRE 2013, p. 93).

The Forestry Management Act 2011 aims to provide for the effective and sustainable management and utilization of forest resources. This law creates the requirement for a permit or license for commercial logging or harvesting of native, agro-forestry, or plantation forest resources (MNRE and SPREP 2012, p. 18). Permitted and licensed activities must follow approved Codes of Practice, forestry harvesting plans, and other requirements set by the Ministry of Natural Resources and Environment. Certain restrictions apply to actions on protected lands such as national parks and reserves. Permits or licenses may designate certain areas for the protection of the biodiversity, endangered species, implementation of international conventions, or water resources or area determined to be of significance on which no forestry activities may be undertaken (Forestry Management Act 2011, Para. 57). Although this law includes these general considerations for management, it does not specifically provide protection to habitat for the Pacific sheath-tailed bat, and it does not appear to have been effective for that purpose.

Fiji

In Fiji, the Endangered and Protected Species Act (2002) regulates the international trade, domestic trade, possession, and transportation of species protected under CITES and other species identified as threatened or endangered under this act. Under the law, the Pacific sheath-tailed bat is recognized as an “indigenous species not listed under CITES.” Its recognition under the law can garner public recognition of the importance of conserving the bat and its habitat (Tuiiwawa 2015, in litt.); however, because the focus of the legislation is the regulation of foreign and domestic trade, and the bat is not a species in trade, this law is not intended to provide protection for the bat or its habitat within Fiji. The best available information does not identify any laws or regulations protecting the habitat of the Pacific sheath-tailed bat in Fiji.

Tonga

In Tonga, the Birds and Fish Preservation (Amendment) Act 1989 is a law to “make provision for the preservation of wild birds and fish.” The law protects birds and fish, and provides for the establishment of protected areas, but it does not specifically protect the Pacific sheath-tailed bat or its habitat (Kingdom of Tonga 1988, 1989).

Vanuatu

In Vanuatu, the Environment Management and Conservation Act (2002) provides for conservation, sustainable development, and management of the environment of Vanuatu. Areas of the law that may apply to species protection are the Environmental Impact Assessment process, which includes an assessment of protected, rare, threatened, or endangered species or their habitats in project areas, laws on bioprospecting, and the creation of Community Conservation Areas for the management of unique genetic, cultural, geological, or biological resources (Environmental Management and Conservation Act, Part 3, Environmental Impact Assessment). Although the EMCA contains the regulatory provisions mentioned above, they do not sufficiently address the ongoing threats of deforestation, predation, and small population size for the Pacific sheath-tailed bat in Vanuatu. The Wild Bird Protection law (Republic of Vanuatu 2006) is limited to birds and does not offer protection to the Pacific sheath-tailed bat or its habitat.
Summary of Factor D

Based on the best available information, some existing regulatory mechanisms have the potential to offer protection, but their implementation does not reduce or remove threats to the Pacific sheath-tailed bat. In American Samoa the DMWR has not exercised its statutory authority to address threats to the bat such as predation by nonnative species, the bat is not listed pursuant to the Territorial Endangered Species Act, and the Coastal Management Act’s land use permitting process is implemented inadequately to reduce or remove the threat of habitat destruction or modification to the Pacific sheath-tailed bat. In Samoa, laws and regulations that provide for species protection do not include the bat and protected species, and laws and regulations governing environmental review of development projects do not include consideration of native species or their habitat. Forestry management laws provide for protection of native species and habitat through permitting and licensing processes but have not resulted in amelioration of habitat loss in Samoa. Fiji’s endangered species law is focused on trade, and the Pacific sheath-tailed bat is not a species in trade and does not benefit from this law. Laws and regulations governing management of wildlife and native forest in Tonga and Vanuatu do not provide specific protections for the bat or its habitat, or have not resulted in conservation of habitat sufficient to preclude the need to list Pacific sheath-tailed bat. In sum, we conclude that existing regulatory mechanisms do not address the threats to the Pacific sheath-tailed bat.

Factor E: Other Natural or Manmade Factors Affecting Its Continued Existence

Roost Disturbance

Disturbance of roosting caves has contributed to the decline of the Pacific sheath-tailed bat throughout its range. Disturbance of roost caves by humans is likely to have occurred as a result of recreation, harvesting of co-occurring bat species, and, more commonly, guano mining (Grant et al. 1994, p. 135; Tarburton 2002, p. 106; Wiles and Worthington 2002, p. 17; Palmereim et al. 2005, pp. 63, 66; Malotaux 2012a in litt.; Malotaux 2012b in litt.). Roost disturbance is a well-known problem for many cave-dwelling species (Palmeirim et al. 2005, p. 3). Roosts are important sites for bats for mating, rearing young, and hibernating, and bats tend to roost in mid- and high-latitude species. Roosts often facilitate complex social interactions, offer protection from inclement weather, help bats conserve energy, and minimize some predation risk (Kunz and Lumsden 2003, p. 3); therefore, disturbance at caves and being repeatedly flushed from their roosts may cause bats to incur elevated energetic costs and other physiological stress and potentially increased risk of predation while in flight. Roost disturbance thus would negatively affect the survival and reproduction of the Pacific sheath-tailed bat.

In American Samoa, human disturbance at the two caves known to be historical roost sites for the bat is likely to be minimal. Guano mining occurred in the Anapepea caves in the 1960s (Amerson et al. 1982, p. 74), but ceased due to the high salt content as a result of flooding with seawater during cyclones (Grant et al. 1994, p. 135). On Taveuni, Fiji, a cave known to be used as a roosting cave for the Pacific sheath-tailed bat is under more immediate threat by humans, as the cave is situated close to farmland, and is often used by locals (Malotaux 2012a, p. 3). On Upolu, Samoa, caves previously known to support bats are well-known and often visited by tourists; one within O Le Pupu Pue National Park and others on village land (Tarburton 2011, pp. 40, 44). Swiftlets (Aerodramus spp.) are still observed in significant numbers in these caves (Tarburton 2011, p. 40), but these birds may be more tolerant than bats of human disturbance. We do not have information on human disturbance of roosts in Tonga or Vanuatu.

Goats are certainly a current threat and will likely continue to be a threat into the future. Pesticides

The use of pesticides may negatively affect the Pacific sheath-tailed bat as a result of direct toxicity and a reduction in the availability of insect prey. Pesticides are known to adversely affect bat populations, either by secondary poisoning when bats consume contaminated insects or by reducing the availability of insect prey (Hutson et al. 2001, p. 138; Mickleburgh et al. 2002, p. 19). Pesticides may have contributed to declines and loss of the Mariana subspecies of Pacific sheath-tailed bat on islands where pesticides were once applied in great quantities (Guam, Saipan, and Tinian) (Wiles and Worthington 2002, p. 17).

In American Samoa and Samoa, current levels of pesticide use are likely lower than several decades ago when their use, particularly during the years in which taro was grown on large scales for export (1975–1985), coincided with the decline of bats in both places and has been implicated as the cause (Tarburton 2002, p. 107). However, Grant et al. (1994, pp. 135–136) dismissed the role of insecticides in the decline of the bat in American Samoa based on the absence of a similar population crash in the insectivorous white-rumped swiftlet (Aerodramus spodiopygius) and the limited use of agricultural and mosquito-control pesticides. On the island of Taveuni in Fiji, where bat populations have persisted at low levels over the last 10 years (Palmeirim et al. 2005, p. 62, Malotaux 2012, in litt.), several locals reported that pesticide use was quite widespread, and their use may be similar on other Fijian islands (Malotaux 2012, in litt.). We do not have information about pesticide use in Tonga or Vanuatu. The best available information does not lead us to conclude that the use of pesticides is a current threat to the Pacific sheath-tailed bat or that it is likely to become one in the future.

Hurricanes

Although severe storms are a natural disturbance with which the Pacific sheath-tailed bat has coexisted for millennia, such storms exacerbate other threats to the species by adversely...
affecting habitat and food resources and pose a particular threat to its small and isolated remaining populations.

American Samoa, Samoa, Fiji, Tonga, and Vanuatu are irregularly affected by hurricanes (Australian BOM and CSIRO 2011 Vol. 1, p. 41). Located in the Southern Hemisphere, these countries experience most hurricanes during the November to April wet season, with the maximum occurrence between January and March (Australian BOM and CSIRO 2011 Vol. 1, p. 47). In the 41-year period ending in 2010, more than 280 hurricanes passed within 250 mi (400 km) of Samoa (52 storms), Tonga (71), Fiji (70), and Vanuatu (94) (Australian BOM and CSIRO 2011, pp. 76, 186, 216, 244). In recent decades, several major (named) storms have hit American Samoa and Samoa (Tusi in 1987, Ofa in 1990, Val in 1991, Heta in 2004, and Olaf in 2005 (MNRE 2013, pp. 31–32; Federal Emergency Management Agency 2015, in litt.)); Tonga (Waka in 2001 and Ian in 2014 (Tonga Meteorological Service 2006, in litt.; World Bank 2014, in litt.)); Fiji (Tomas in 2010 (Digital Journal 2010, in litt.)); and, most recently, Vanuatu (Pam in 2015 BBC 2015, in litt.).

The high winds, waves, strong storm surges, high rainfall, and flooding associated with hurricanes, particularly severe hurricanes (with sustained winds of at least 150 mi per hour or 65 m per second) cause direct mortality of the Pacific sheath-tailed bat. Cyclones Ofa (1990) and Val (1991) removed the dense vegetation that had obscured the entrance to the larger cave at Anapeapea Cave, inundated the cave with water, filled it with coral and fallen trees, and washed the cave walls clean (Craig et al. 1993, p. 52; Grant et al. 1994, p. 135). The majority of sheath-tailed bats in the cave likely were killed when the hurricane hit (Grant et al. 1994, p. 135).

Hurricanes also cause direct mortality of the Pacific sheath-tailed bat as a result of the bats’ inability to forage during extended periods of high wind or rain, during which they may starve. Cyclone Val (December 1991) remained stationary over the Samoan archipelago for 4 days, and Pacific sheath-tailed bats likely were unable to feed during this time (Grant et al. 1994, p. 135). Despite the ability of Pacific sheath-tailed bats to enter torpor to survive episodes of inclement weather, the high ambient temperatures in Samoa may preclude the energy savings necessary to sustain a small (4–7-g) torpid bat for an extended period (Grant et al. 1994, p. 135).

Hurricanes may also cause modification of the roosting habitat of the Pacific sheath-tailed bat by modifying vegetation in and around cave entrances and altering climate conditions within roosting caves as a result. Microchiropterans, such as the Pacific sheath-tailed bat, can spend over half their lives in their roosts; consequently, the microclimate of these habitats can exert a strong influence over their heat-energy balance (Campbell et al. 2011, p. 174). The presence of nearby forest cover and a well-developed tree canopy at cave entrances is likely to be important in maintaining temperature and relative humidity, and minimizing air movement in bat roosts, while allowing for passage. O’Shea and Valdez (2009, pp. 77–78) characterized the limestone cave ecosystem of the Mariana subspecies on Aguigan as having constant temperature, high relative humidity, and no major air movement. Although such data are lacking for the Pacific sheath-tailed bat, alteration of climate conditions has been implicated in the abandonment of roost caves by other bat species (Hutson et al. 2001, p. 101).

Loss of forest cover and associated insect prey for bats as a result of hurricanes can reduce foraging opportunities. Following Cyclones Ofa (1990) and Val (1991), about 90 percent of the forests on Upolu and Savaii were blown over or defoliated (Park et al. 1992, p. 4; Elmqvist et al. 2002, pp. 385, 388). Tarburton (2002, p. 107) noted that the abundance of flying insects remained low for weeks after cyclones had defoliated trees. Although the Pacific sheath-tailed bat has the capacity to forage in a variety of habitats, a study of habitat use by the Mariana subspecies showed a clear preference for forested habitats (Esselstyn et al. 2004, p. 307). Finally, the Pacific sheath-tailed bat’s severely diminished abundance and distribution increase the likelihood that mortality events will cause population-level impacts and increase the vulnerability of populations and of the species to environmental catastrophes. Based on the information described above, we consider hurricanes to be a factor that exacerbates other threats to the Pacific sheath-tailed bat.

Low Numbers of Individuals and Populations

The low numbers of individuals and populations of this subspecies place the Pacific sheath-tailed bat at great risk of extinction from inbreeding and stochastic events such as storms. The threat is significant for cave-dwelling species whose populations are often highly inbred with few number of animals that can easily be lost in a severe storm, disease outbreak, or disturbance to the roost caves (Wiles and Worthington 2002, p. 20).

Species that undergo significant habitat loss and degradation and face other threats resulting in decline in numbers and range reduction are inherently highly vulnerable to extinction resulting from localized catastrophes such as severe storms or disease outbreaks, climate change effects, and demographic stochasticity (Shaffer 1981, p. 131; Gilpin and Soulé 1986, pp. 24–34; Pimm et al. 1988, p. 757; Mangel and Tier 1994, p. 607). Conditions leading to this level of vulnerability are easily reached by island species that face numerous threats such as those described above. Small populations persisting in fragmented habitat face increased risk from environmental catastrophes, such as hurricanes, which could immediately extinguish some or all of the remaining populations; demographic stochasticity that could leave the species without sufficient males or females to be viable; or inbreeding depression or loss of adaptive potential that is associated with loss of genetic diversity and result in eventual extinction (Shaffer 1981, p. 131; Lacy 2000, pp. 40, 44–46). The problems associated with small population size and vulnerability to natural catastrophes or random demographic or genetic fluctuations are further magnified by synergistic interactions with ongoing threats such as those discussed above under Factors A and C (Lacy 2000, pp. 45–47).

Breakdown of the Metapopulation Equilibrium

The Pacific sheath-tailed bat is thought to have a metapopulation structure (Palmeirim et al. 2005, p. 29), and will only persist in an archipelago if the island colonization rate is sufficiently high to compensate for the rate of extirpation caused by stochastic factors on individual islands (Palmeirim et al. 2005, p. 36). However, the colonization rate is obviously proportional to the availability of source populations; immigration of bats to recolonize sites or islands where the species was extirpated is dependent on sufficient numbers of animals existing in multiple other sites or islands within dispersal distance (Hanski and Gilpin 1991, pp. 4–14). Consequently, the extirpation of the Pacific sheath-tailed bat from some islands, particularly from the largest islands, may in the long term result in the permanent regional extinction of the species, even if suitable environmental conditions persist on some islands (Palmeirim et al. 2005, p. 36). For example, the continued decline of the only significant source
population of Pacific sheath-tailed bat in the Fijian archipelago greatly diminishes the probability of recolonization and persistence throughout the remainder of its range in Fiji, where it is currently considered to be extirpated or nearly extirpated. The loss of a functioning metapopulation is a current threat and will continue to be a threat in the future.

Effects of Climate Change

Our analyses under the Act include consideration of ongoing and projected changes in climate. Currently, there are no climate change studies that address impacts to the specific habitat of the Pacific sheath-tailed bat. There are, however, climate change studies that address potential changes in the tropical Pacific on a broader scale. In our analyses, we reference the scientific assessment and climate change predictions for the western Pacific region prepared by the Pacific Climate Change Science Program (PCCSP), a collaborative research partnership between the Australian Government and 14 Pacific Island countries, including Samoa, Tonga, Fiji, and Vanuatu (Australian BOM and CSIRO 2011 Vol. 1, p. 15). The assessment builds on the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), and presents regional predictions for the area roughly between 25° S. to 20° N. and 120° E. to 150° W. (excluding the Australian region south of 10° S. and west of 155° E.) (Australian BOM and CSIRO 2011 Vol. 1, pp. 14–20). The findings for Samoa (13° S. and 171° E.) may be used as a proxy for American Samoa (14° S. and 170° W.).

The annual average air temperatures and sea surface temperatures are projected to increase in American Samoa, Samoa, Fiji, Tonga, and Vanuatu, as well as throughout the western Pacific region (Australian BOM and CSIRO 2011 Vol. 2, pp. 91, 198, 228, 258). The projected regional warming is around 0.5–1.0 °C by 2030, regardless of the emissions scenario. By 2055, the warming is generally 1.0–1.5 °C with regional differences depending on the emissions scenario. Projected changes associated with increases in temperature include, but are not limited to, changes in mean precipitation with unpredictable effects on local environments (including ecosystem processes such as nutrient cycling), increased occurrence of drought cycles, increases in the intensity and number of severe storms, sea-level rise, a shift in vegetation zones upslope, and shifts in the range of individual species (Loope and Giambelluca 1998, pp. 514–515; Pounds et al. 1999, pp. 611–612; IPCC AR4 2007, p. 48; Emanuel et al. 2008, p. 365; U.S. Global Change Research Program (US–GCRP) 2009, pp. 145–149, 153; Keeson et al. 2010, pp. 25–28; Sturrock et al. 2011, p. 144; Townsend et al. 2011, pp. 14–15; Warren et al. 2011, pp. 221–226; Finucane et al. 2012, pp. 23–26; Keener et al. 2012, pp. 47–51).

In the western Pacific region, increased ambient temperatures are projected to lead to increases in annual mean rainfall, the number of heavy rain days (20–50 mm), and extreme rainfall events in American Samoa, Samoa Fiji, Tonga, and Vanuatu (Australian BOM and CSIRO 2011 Vol. 1, p. 178; Australian BOM and CSIRO 2011 Vol. 2, pp. 87–88, 194–195, 224–225, 254–255). Impacts of increased precipitation on the Pacific sheath-tailed bat are unknown.

Hurricanes are projected to decrease in frequency in this part of the Pacific but increase in severity as a result of global warming (Australian BOM and CSIRO 2011 Vol. 2, p. 198, 199, 202, 255). The high winds, waves, storm surges, high rainfall, and flooding associated with hurricanes, particularly severe hurricanes (with sustained winds of 150 mi (240 km) per hour), have periodically caused great damage to roosting habitat of Pacific sheath-tailed bats and to native forests that provide their foraging habitat (Craig et al. 1993, p. 52; Grant et al. 1994, p. 135; Tarburton 2002, pp. 105–108; Palmeirim et al. 2005, p. 35), as described in the “Hurricanes” section, above.

In the western Pacific region, sea level is projected to rise 1.18 to 6.3 in (30 to 160 mm) by 2030, 2.6 to 12.2 in (70 to 310 mm) by 2055, and 8.3 in to 2 ft (210 to 620 mm) by 2090 under the high-emissions scenario (Australian BOM and CSIRO 2011 Vol. 2, pp. 91, 198, 228, 258). The Pacific sheath-tailed bat is known to roost in areas close to the coast and forage in the adjacent forested areas at or near sea-level, as well as inland and at elevations up to 2,500 ft (762 m). The impacts of projected sea-level rise on low-elevation and coastal roosting and foraging habitat are likely to reduce and fragment the bat’s habitat on individual high islands.

In summary, although we lack information about the specific effects of projected climate change on the Pacific sheath-tailed bat, we anticipate that increased ambient temperature, precipitation, hurricane intensity, and sea-level rise and inundation would create additional stresses on the bat and on its roosting and foraging habitat because of these disturbances. The risk of extinction as a result of the effects of climate change increases when a species’ range and habitat requirements are restricted, its habitat decreases, and its numbers and number of populations decline (IPCC 2007, pp. 8–11). In addition, the fragmented range, diminished number of populations, and low total number of individuals have caused the Pacific sheath-tailed bat to lose redundancy and resilience rangewide. Therefore, we would expect the Pacific sheath-tailed bat to be particularly vulnerable to the habitat impacts of projected environmental effects of climate change (Loos and Giambelluca 1998, pp. 504–505; Pounds et al. 1999, pp. 611–612; Still et al. 1999, p. 610; Benning et al. 2002, pp. 14, 246–14, 248; Giambelluca and Luke 2007, pp. 13–15). Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to these species, such as habitat loss and degradation.

Conservation Efforts To Reduce Other Natural or Manmade Factors Affecting Its Continued Existence

We are unaware of any conservation actions planned or implemented at this time to abate the threats to the Pacific sheath-tailed bat from roost disturbance, low numbers, hurricanes, climate change effects, or breakdown of the metapopulation equilibrium.

Summary of Factor E

In summary, based on the best scientific and commercial information available, we consider other natural and manmade factors to be current and ongoing threats to the Pacific sheath-tailed bat. Roost disturbance, small population size, and breakdown of the metapopulation are threats to the Pacific sheath-tailed bat and are likely to continue in the future. The bat’s small and isolated remaining populations are vulnerable to natural environmental catastrophes such as hurricanes, and the threats of small population size and hurricanes are likely to continue into the future. Due to reduced levels of pesticide use and the uncertainty regarding impacts to this species, we do not consider the use of pesticides to be a threat to the Pacific sheath-tailed bat. We expect this species and its habitat to be particularly vulnerable to the environmental effects of climate change. Even though the specific and cumulative effects of climate change on the sheath-tailed bat are presently unknown and we are unable to determine with confidence the future magnitude of this threat, we anticipate that climate change will...
continue to exacerbate other threats to this species.

Synergetic Effects

In our analysis of the five factors, we found that the Pacific sheath-tailed bat is likely to be affected by loss of forest habitat, predation by nonnative mammals, roost disturbance, loss of range-wide metapopulation dynamics, and small population size. We also identify several potential sources of risk to the species (e.g., disease, pesticides) that we do not consider to have a current, significant effect on the Pacific sheath-tailed bat because of their low occurrence today or apparently minimal overall impact on the species. Multiple stressors acting in combination have greater potential to affect the Pacific sheath-tailed bat than each factor alone. For example, projected warmer temperatures and increased storm severity resulting from climate change may enhance the spread of nonnative invasive plants in the bat’s forest habitat, and increased ambient temperature and storm severity resulting from climate change are likely to exacerbate other, direct threats to the species; these effects of climate change are projected to increase in the future. The combined effects of environmental, demographic, and catastrophic-event stressors, especially on a small population, can lead to a decline that is unrecoverable and results in extinction (Brook et al. 2008, pp. 457–458). The impacts of the stressors described above, which might be sustained by a larger, more resilient population, have the potential in combination to rapidly affect the size, growth rate, and genetic integrity of a species that persists as small, disjunct populations. Thus, factors that, by themselves, may not have a significant effect on the Pacific sheath-tailed bat, may affect the subspecies when considered in combination.

Determination for the Pacific Sheath-Tailed Bat

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats to the Pacific sheath-tailed bat. We find that the Pacific sheath-tailed bat is presently in danger of extinction throughout its entire range based on the severity and immediacy of the ongoing threats described above. Habitat loss and degradation due to deforestation (throughout the entire range) and overgrazing by goats (Fiji), predation by nonnative mammals, human disturbance of roost caves, and stochastic events such as hurricanes, floods, or disease outbreaks, which all pose a particular threat to the small and isolated remaining populations and probable low total abundance throughout its range, render the Pacific sheath-tailed bat in its entirety highly susceptible to extinction as a consequence of these imminent threats. The vulnerability of the species and its cave habitat to the impacts of predation and human disturbance is exacerbated by hurricanes and likely to be further exacerbated in the future by the effects of climate change, such as sea level rise, extreme rain events, and increased storm severity. The breakdown of the Pacific sheath-tailed bat’s metapopulation structure is expected to reduce opportunities for repopulation following local extirpations of dwindling populations due to stochastic events. In addition, the continued decline of the last relatively large population of this species in Fiji further diminishes the probability of persistence throughout the remainder of its range where it is currently considered to be extirpated or nearly extirpated.

In summary, habitat destruction and modification from deforestation is a threat to the Pacific sheath-tailed bat that is occurring throughout its range (Factor A). The threat of predation by nonnative predators such as rats and feral cats is ongoing (Factor C). Human disturbance of roost caves, low numbers of individuals and populations and their concomitant vulnerability to catastrophic events such as hurricanes, and the breakdown of the metapopulation structure are all current threats to the bat as well (Factor E). All of these factors pose threats to the Pacific sheath-tailed bat, whether we consider their effects individually or cumulatively. Existing regulatory mechanisms and conservation efforts do not address the threats to the Pacific sheath-tailed bat (Factor D), and all of these threats will continue in the future. The Act defines an endangered species as any species that is “in danger of extinction throughout all or a significant portion of its range” and a threatened species as any species “that is likely to become endangered throughout all or a significant portion of its range within the foreseeable future.” Based on the severity and immediacy of threats currently affecting the species, we find that the Pacific sheath-tailed bat is presently in danger of extinction throughout its entire range. The imminent threats of habitat loss and degradation, predation by nonnative rats and cats, the small and declining numbers of individuals and populations, the effects of small population size, and stochastic events such as hurricanes render this species in its entirety highly susceptible to extinction; for this reason, we find that threatened species status is not appropriate for the Pacific sheath-tailed bat.

Therefore, on the basis of the best available scientific and commercial information, we are listing the Pacific sheath-tailed bat as endangered in accordance with sections 3(6) and 4(a)(1) of the Act. Under the Act and our implementing regulations, a species may warrant listing if it is in danger of extinction or likely to become so throughout all or a significant portion of its range. Because we have determined that the Pacific sheath-tailed bat is endangered throughout all of its range, no portion of its range can be “significant” for purposes of the definitions of “endangered species” and “threatened species.” See the Final Policy on Interpretation of the Phrase “Significant Portion of Its Range” in the Endangered Species Act’s Definitions of “Endangered Species” and “Threatened Species” (79 FR 37577, July 1, 2014).

Mao, Gymnomyza samoensis

The genus Gymnomyza refers to birds in the honeyeater family Meliphagidae, which are restricted to a few islands in the southwestern Pacific Ocean. The mao (Gymnomyza samoensis), also called maomao, is one of three honeyeater species in the genus (Mayr 1945, p. 100). We have carefully reviewed the available taxonomic information (Watling 2001, p. 174; BirdLife International 2013; Gill and Donsker 2015; ITIS 2015a) and have concluded the species is a valid taxon.

The mao is a large honeyeater approximately 11 to 12 in (28 to 31 cm) long with dark plumage varying from blackish on the head and breast to olive-green on the wings, tail, and body (Stirmemann et al. 2015a, p. 1). It has an olive-green stripe under the eye. The bill is long, curved, and black in adults. Males have blue-grey and brown eyes, and females have brown eyes only (Stirmemann et al. 2015b, p. 383). Males are significantly larger than females with respect to wing, bill, tarsus, and tail length, although there is considerable overlap in size (Stirmemann et al. 2015, pp. 380–381 Wilson J.). Juveniles have a shorter bill than adults, and eye color changes 2 months post-fledging (Stirmemann et al. 2015, p. 383). The mao is a very vocal species and makes a variety of loud distinctive calls with bouts of calling lasting up to a minute (Watling 2001, p. 174). Calls differ between sexes (Stirmemann et al. 2015b, p. 382).

The mao is endemic to the Samoan archipelago. The species was thought to
be primarily restricted to mature, well-developed, moist, mossy forests at upper elevations (Watling 2001, p. 175; Engbring and Ramsey 1989, p. 68), but has recently been observed at elevations ranging from 932 to 5,075 ft (284 to 1,547 m) and in ecosystems including lowland rainforest, disturbed secondary forest, and montane rainforest (MNRE 2006, pp. 9–10). The birds use the mid-to-upper-canopy levels of the forest and will also forage along forest edges and brushy forest openings (Engbring and Ramsey 1989, p. 68). The mao has also been recorded visiting coconut trees near the coast (Watling 2001, p. 175).

Butler and Stirmann (2013, p. 30) provide the following information about the mao's habitat use. The birds occur only in forested areas with a canopy layer, including modified habitat such as plantations where large trees also are present. They do not occur in logged areas with no large trees or canopy. Mao are primarily found in the high canopy layer, but also spend considerable time in low bushes (such as Heliconia spp.), in low bushes (such as Zingiberaceae) and in low bushes (such as Heliconia spp.).

The mao is currently found only on the islands of Savaii and Upolu in Samoa (Amerson et al. 1982, p. 72; Engbring and Ramsey 1989; p. 68; Watling 2001, p. 174). The mao was observed during an 1839 expedition on Tutuila Island (Amerson et al. 1982, p. 72); two male specimens were collected there in 1924, and an unconfirmed observation of the mao on Tutuila was reported in 1977 (Engbring and Ramsey 1989; p. 68; Watling 2001, p. 174).

The mao is likely extirpated from Tutuila Island in American Samoa (Freifeld 1999, p. 1,208). Surveys conducted on Tutuila Island in 1982 and 1986 and from 1992 to 1996 did not detect the mao (Amerson et al. 1982, p. 72; Engbring and Ramsey 1989; p. 68; Freifeld 2015, in litt.). Given that the species is noisy and conspicuous, it is unlikely that a population on Tutuila was missed during the surveys (Engbring and Ramsey 1989; p. 68; Freifeld 2015, in litt.). Given that the species is noisy and conspicuous, it is unlikely that a population on Tutuila was missed during the surveys (Engbring and Ramsey 1989; p. 68; Freifeld 2015, in litt.). Given that the species is noisy and conspicuous, it is unlikely that a population on Tutuila was missed during the surveys (Engbring and Ramsey 1989; p. 68; Freifeld 2015, in litt.).

A general decline in distribution and numbers has resulted in small, increasingly fragmented populations estimated to comprise fewer than 1,000 mature individuals (MNRE 2006, p. 4; Tipamaa 2007, in litt., cited in Birdlife International 2012; Stirnemann 2015, in litt.). The mao is listed as Endangered in the 2014 IUCN Red List (Birdlife International 2012). Endangered is IUCN’s second most severe category of extinction assessment, which equates to a very high risk of extinction in the wild. IUCN criteria include the rate of decline, population size, area of geographic distribution, and degree of population and distribution fragmentation; however, IUCN rankings do not confer any actual protection or management.

Summary of Factors Affecting the Mao

Factor A: The Present or Threatened Destruction, Modification, or Curtailment of its Habitat or Range

Habitat Destruction and Modification by Deforestation

Several thousand years of subsistence agriculture and more recent commercial agriculture has resulted in the alteration and great reduction in area of forests at lower elevations in the Samoan archipelago (Whistler 1994, p. 40; Mueller-Dombois and Foixberg 1998, p. 2015a, p. 8). The mao’s diet consists primarily of nectar, and also includes some invertebrates and fruit (MNRE 2006, p. 11). Nectar is an especially important food source during the breeding season, and the mao will defend nectar patches (Butler and Stirnemann 2013, p. 30). The mao eats invertebrates by probing dead material and moss, and by glean from emerging leaves (Butler and Stirnemann 2013, p. 30). Females forage for invertebrates under dead leaves on the forest floor to feed their fledglings (Butler and Stirnemann 2013, p. 30). Fledglings solicit food from the female by begging continually from the forest floor (Butler and Stirnemann 2013, p. 28).

The mao has recently been observed at elevations ranging from 932 to 5,075 ft (284 to 1,547 m) and in ecosystems including lowland rainforest, disturbed secondary forest, and montane rainforest (MNRE 2006, pp. 9–10). The birds use the mid-to-upper-canopy levels of the forest and will also forage along forest edges and brushy forest openings (Engbring and Ramsey 1989, p. 68). The mao has also been recorded visiting coconut trees near the coast (Watling 2001, p. 175).
In American Samoa, forest clearing for agriculture has contributed to habitat loss and degradation of forests in the lowland areas on Tutuila, and has the potential to spread into higher elevations and previously undisturbed forest; however, owing to limits on the feasibility of land-clearing imposed by the island’s extreme topography, large areas of mature native rainforest have persisted. Deforestation, therefore, is unlikely to have been a cause of the mao’s extirpation on this island in American Samoa.

The loss of forested habitat in Samoa is a primary threat to the mao (MNRE 2006, p. 5). Between 1954 and 1990, the amount of forested area declined from 74 to 46 percent of total land area in Samoa (Food and Agricultural Organization (FAO) 2005 in litt.). Between 1978 and 1990, 20 percent of all forest losses in Samoa were attributable to logging, with 97 percent of the logging having occurred on Savaii (Government of Samoa 1990 in Whistler 2002, p. 132). Forested land area in Samoa continued to decline at a rate of roughly 2.1 percent or 7,400 ac (3,000 ha) annually from 1990 to 2000 (FAO 2005 in litt.). As a result, there is very little undisturbed, mature forest left in Samoa (Watling 2001, p. 175; FAO 2005 in litt.).

The clearing of land for commercial agriculture has been the leading cause of deforestation in Samoa—more so than plantations or logging (Whistler 2002, p. 131). The transition from subsistence agriculture to growing cash crops for export (e.g., taro, bananas, cacao) coupled with rapid population growth and new technologies, led to increased forest clearing in Samoa (Paulson 1994, pp. 326–332; Whistler 2002, pp. 130–131). Today, only 360 ac (146 ha) of native lowland rainforests (below 2,000 ft or 600 m) remain on Savaii and Upolu as a result of logging, agricultural clearing, residential clearing (including relocation due to tsunami), and natural causes such as rising sea level and hurricanes (MNRE 2013, p. 47). On Upolu, direct or indirect human influence has caused extensive damage to native forest habitat above 2,000 ft (600 m) (MNRE 2013, p. 13). Although upland Upolu is forested, almost all of the upland forests are largely dominated by introduced species today (MNRE 2013, p. 12).

Savaii still has extensive upland forests that are for the most part undisturbed and composed of native species (MNRE 2013, p. 40). However, forest clearing and ongoing threat to the mao (MNRE 2006, p. 5). Logging is slowing down because the most accessible forest has largely been removed, but is an ongoing problem on Savaii despite years of effort to phase it out (MNRE 2006, p. 5; Atherton and Jeffries 2012, p. 17). Shifting or slash-and-burn cultivation is an increasing concern in upland forest that provides important refuges for the mao because farmers use forestry roads from heavily logged lowland forests to gain access to formerly inaccessible land (MNRE 2006, p. 5). For example, there is much concern about potential forest loss because of road that has been bulldozed into the cloud forest (above 3,280 ft (1,000 m)) on Savaii, apparently illegally (Atherton and Jeffries 2012, p. 16). Such roads provide vectors for invasive nonnative plant and animal species as well, thus exacerbating those threats to the mao and its habitat (Atherton and Jeffries 2012, p. 108).

Habitat quality has also degraded with the loss of closed forest space (MNRE 2006, p. 5; Butler and Stirnemann 2013, p. 22). An analysis in 1999 identified 32 percent of the total forest cover as “open” forest (less than 30 percent tree cover) and less than 0.5 percent as “closed” forest, largely as a result of damage from Cyclones Ofa and Val (Butler and Stirnemann 2013, p. 22). An additional 24 percent of the forest cover is classified as secondary re-growth forest. As a result, the montane forest in Samoa is now extremely open and patchy with fewer food resources for birds, including the mao (Butler and Stirnemann 2013, p. 22). The montane forests are also increasingly vulnerable to invasion by nonnative trees and other plants (Butler and Stirnemann 2013, p. 22), which adversely affect native forests through competition for light, nutrients, and water; chemical inhibition; and prevention of reproduction. Loss of forest is likely to affect the mao by reducing breeding, nesting, and foraging habitat, increasing forest fragmentation, and increasing the abundance and diversity of invasive species (Butler and Stirnemann 2013, p. 22).

On the island of Tutuila, American Samoa, agriculture and urban development covers approximately 24 percent of the island, and up to 60 percent of the island contains slopes of less than 30 percent where additional land clearing is feasible (ASCC 2010, p. 13; DWMR 2006, p. 25). Farmers are increasingly encroaching into some of the steep forested areas as a result of suitable flat lands already being occupied with urban development and agriculture (ASCC 2010, p. 13). Consequently, an ongoing threat to the mao has spread from low elevations up to middle and some high elevations on Tutuila.

In summary, deforestation by land-clearing for agriculture has been the major contributing factor in the loss and degradation of forested habitat for the mao throughout its range in Samoa and American Samoa, and logging has been an additional major factor in loss and degradation of forest habitat in Samoa. The majority of the lowland forests have either been lost or fragmented by land-clearing for agriculture. Upland areas in Samoa have suffered extensive deforestation from logging and are increasingly at risk as agriculture and development expand into these areas. Based on the above information, we conclude that the threat of habitat destruction and modification by agriculture and development is a current threat to the mao and will continue into the future.

Habitat Destruction and Modification by Nonnative Plants

Nonnative plants are known to have invaded ecosystems in American Samoa and Samoa, with devastating impacts to native forests (Space and Flynn 2000, pp. 5, 12; Space and Flynn 2002, pp. 4–5; Whistler 2002, p. 122; Atkinson and Medeiros 2006, pp. 17–18; Craig 2009, pp. 94, 98; ASCC 2010, p. 22; NPSA 2012, in litt.; Atherton and Jeffries 2012, p. 103; Butler and Stirnemann 2013, p. 30; MNRE 2013, p. 29). The native flora of the Samoan archipelago (plant species that were present before humans arrived) consisted of approximately 550 taxa, 30 percent of which were endemic (species that occur only in the American Samoa and Samoa) (Whistler 2002, p. 8). An additional 250 plant species have been intentionally or accidentally introduced and have become naturalized, with 20 or more of these considered invasive or potentially invasive in American Samoa (Whistler 2002, p. 8; Space and Flynn 2000, pp. 23–24). Of these approximately 20 or more nonnative pest plant species, at least 10 have altered or have the potential to alter the habitat of the mao and the other four species proposed for listing (Atkinson and Medeiros 2006, p. 18; Craig 2009, pp. 94, 97–98; ASCC 2010, p. 15).

Nonnative plants can degrade native habitat in Pacific island environments by: (1) Modifying the availability of light through alterations of the canopy structure; (2) altering soil–water regimes; (3) modifying nutrient cycling; (4) ultimately converting native-dominated plant communities to nonnative plant communities; and (5) increasing the frequency of landslides (Smith 1992, pp. 17–218; Cuddihy and Stone, 1990, p. 74; Matson 1990, p. 245; D’Antonio and Vitousek 1992, p. 131).
Nonnative plant species often exploit the disturbance caused by other factors such as hurricanes, agriculture and development, and feral ungulates, and thus, in combination reinforce or exacerbate their negative impacts to native habitats. Although the areas within the National Park of American Samoa (NPSA, on the islands of Tutuila, Ofu, and Tau) contain many areas that are relatively free of human disturbance and nonnative invasive species and that largely represent pre-contact vegetation, the threat of invasion and further spread by nonnative plant species poses immense cause for concern (Atkinson and Medeiros 2006, p. 17; ASCC 2010, p. 22).

The invasive vines Merremia peltata and Mikania micrantha have serious impacts in forested areas and prevent reforestation of former agriculture areas in Samoa and American Samoa; they are prolific invaders of forest gaps and disturbed sites and can have a smothering effect on growing trees, blocking sunlight to subcanopy and undergrowth vegetation (MNRE 2013, p. 29). Similarly, several invasive trees also negatively affect native forests in Samoa by outcompeting native species in forest gaps, getting established and moving further into old secondary regrowth and primary forests. A significant portion of Samoa’s forest are now classified as secondary regrowth dominated by invasive tree species such as Falcatearia moluccana (albizia, tamali), Castilla elastica (Mexican rubber tree, pulu mamoe), Spathodea campanulata (African tulip, faapasi), and Funtunia elastica (African rubber tree, pulu vao) (MNRE 2013, p. 29). In addition, the invasive shrub Cldemia hirta is found in remote areas of upland forests in Savaii (Atherton and Jeffries 2012, p. 103).

Although the mao forage and occasionally nest in modified habitat, such as plantation areas where nonnative trees that provide nectar and nesting habitat (Falcatearia moluccana) may occur, these habitats lack the high tree-species diversity preferred by the mao and also place the species at a greater risk of predation by nonnative predators (see Factor C below) (Butler and Stirnemann 2013, p. 30). Please refer to the proposed rule (80 FR 61568; October 13, 2015) for descriptions of nonnative plant species that have the greatest negative impacts to the native forest habitat for the mao in American Samoa (Space and Flynn 2000, p. 23–26; Craig 2009, p. 94, 96–98; ASCC 2010, p. 15). In summary, while the best available information does not provide the exact distribution of nonnative plant species in the range of the mao, the habitat-modifying impacts of nonnative species are expected to continue and are not likely to be reduced in the future. Based on the above information, we conclude that the threat of habitat destruction and modification by nonnative plant species is a current threat to the mao and will continue into the future.

Habitat Destruction and Modification by Nonnative Ungulates

Feral pigs (Sus scrofa) cause multiple negative impacts to island ecosystems, including the destruction of vegetation, spread of invasive nonnative plant species, and increased soil erosion. In addition, feral cattle (Bos taurus) consume tree seedlings and browse saplings, and combined with undergrowth disturbance, prevent forest regeneration, subsequently opening the forest to invasion by nonnative species (Cuddihy 1984, p. 16). Feral pigs are known to cause deleterious impacts to ecosystem processes and functions throughout their worldwide distribution (Aplet et al. 1991, p. 56; Anderson and Stone 1993, p. 201; Campbell and Long 2009, p. 2,319). Feral pigs are extremely destructive and have both direct and indirect impacts on native plant communities. Pigs are a major vector for the establishment and spread of invasive, nonnative plant species by dispersing plant seeds on their hooves and fur, and in their feces (Diong 1982, pp. 169–170, 196–197), which also serve to fertilize disturbed soil (Siemann et al. 2009, p. 547). In addition, pig rooting and wallowing contributes to erosion by clearing vegetation and creating large areas of disturbed soil, especially on slopes (Smith 1985, pp. 190, 192, 196, 200, 204, 230–231; Stone 1985, pp. 254–255, 262–264; Tomich 1986, pp. 120–126; Cuddihy and Stone 1990, pp. 64–65; Aplet et al. 1991, p. 56; Loope et al. 1991, p. 18–19; Gagne and Cuddihy 1999, p. 52; Nogueira-Filho et al. 2009, p. 3,681; CNMI–SWARS 2010, p. 15; Dunkell et al. 2011, pp. 175–177; Kessler 2011, pp. 320, 323). Erosion resulting from rooting and trampling by pigs not only damages understory vegetation but contributing to watershed degradation and alteration of plant nutrient status, and increasing the likelihood of landslides (Vitousek et al. 2009, pp. 563–564; Chan-Halbrendt et al. 2010, p. 251; Kessler 2011, pp. 320–324). In the Hawaiian Islands, pigs have been described as the most pervasive direct nonnative influence on the unique native forests, and are widely recognized as one of the greatest current threats to Hawai‘i’s forest ecosystems (Aplet et al. 1991, p. 56; Anderson and Stone 1993, p. 195).

In American Samoa, feral pigs continue to negatively affect forested habitats. Feral pigs have been present in American Samoa since humans first settled the islands (American Samoa Historic Preservation Office 2015, in litt.). In the present, hunting pressure kept their numbers down, however, increasing urbanization and increasing availability of material goods has resulted in the decline in the practice of pig hunting to almost nothing (Whistler 1992, p. 21; 1994, p. 41). Feral pigs are moderately common to abundant in many forested areas, where they spread invasive plants, damage understory vegetation, and destroy riparian areas by their feeding and wallowing behavior (DMWR 2006, p. 23; ASCC 2010, p. 15). Feral pigs are a serious problem in the NPSA because of the damage they cause to native vegetation through their rooting and wallowing (Whistler 1992, p. 21; 1994, p. 41; Hoshide 1996, p. 2; Cowie and Cook 1999, p. 48; Togia pers. comm. in Loope et al. 2013, p. 321).

Such damage to understory vegetation is likely to reduce foraging opportunities for the mao. Pig densities have been reduced in some areas by snaring and hunting, but remain high in other areas (ASC 2010, p. 15).

In Samoa, feral pigs are present throughout lowland and upland areas on Savaii, and are considered to have a negative impact on the ecological integrity of upland forests of Savaii, an important conservation area for the mao and other rare species (Atherton and Jeffries 2012, p. 17). During recent surveys, feral pig activity was common at most sites in upland forests on Savaii, and was even detected at the upper range of the mao at an elevation of 4,921 ft (1,500 m) (Atherton and Jeffries 2012, pp. 103, 146).

Significant numbers of feral cattle were present in an upland site where their trampling had kept open grassy areas within forested flats, and where mao had previously been observed (Atherton and Jeffries 2012, pp. 103–105). Trampling in forested areas damages understory vegetation and is likely to reduce foraging opportunities for mao as well as provide vectors for invasion by nonnative plants. In summary, the widespread disturbance caused by feral ungulates is likely to continue to negatively impact the habitat of the mao. Based on the above information, we conclude that habitat destruction and modification by feral ungulates is a threat to the mao.
Conservation Efforts To Reduce Habitat Destruction, Modification, or Curtailment of Its Range

American Samoa

The National Park of American Samoa (NPSA) was established to preserve and protect the tropical forest and archaeological and cultural resources, to maintain the habitat of flying foxes, to preserve the ecological balance of the Samoan tropical forest, and, consistent with the preservation of these resources, to provide for the enjoyment of the unique resources of the Samoan tropical forest by visitors from around the world (Pub. L. 100–100, Pub. L. 100–336). Under a 50-year lease arrangement between local villages, the American Samoa Government, and the Federal Government, approximately 8,000 acres (3,240 hectares) of forested habitat on the islands of Tutuila, Tau, and Ofu are protected and managed (NPSA Lease Agreement 1993).

Several programs and partnerships to address the threat of nonnative plant species have been established and are ongoing in American Samoa. Since 2000, the NPSA has implemented an invasive plant management program that has focused on monitoring and removal of nonnative plant threats. The nonnative plant species prioritized for removal include the following: Adenanthera pavonina or lopa, Castilla elastica or pulu mamoe, Falcatacuria moluccanoa or tamaligi, Leucaena leucocephala or lusina, and Psidium cattleianum or strawberry guava (Togia 2015, in litt.). In particular, efforts have been focused on the removal of the tamaligi from within the boundaries of the NPSA as well as in adjacent areas (Hughes et al. 2012).

The thrip Lithothrips urichi is an insect that was introduced to American Samoa in the 1970s as a biocontrol for the weed Clidemia hirta (Tuialii and Vargo 1993, p. 59). This thrip has been successful at controlling Clidemia on Tutuila. Though Clidemia is still common and widespread throughout Tutuila, thrips inhibit its growth and vigor, preventing it from achieving ecological dominance (Cook 2001, p. 143).

In 2004, the American Samoa Invasive Species Team (ASIST) was established as an interagency team of nine local government and Federal agencies. The mission of ASIST is to reduce the rate of invasion and impact of invasive species in American Samoa with the goals of promoting education and awareness on invasive species and preventing, containing, and eradicating invasive species. In 2010, the U.S. Forest Service conducted an invasive plant management workshop for Territorial and Federal agencies, and local partners (Nagle 2010 in litt.). More recently, the NPSA produced a field guide of 15 invasive plants that the park and its partners target for early detection and response (NPSA 2012, in litt.). In 1996, the NPSA initiated a feral pig control program that includes fencing and removal of pigs using snares in the Tutuila Island and Tau Island Units. Two fences have been constructed and several hundred pigs have been removed since 2007 (Togia 2015, in litt.). The program is ongoing and includes monitoring feral pig activity twice per year and additional removal actions as needed (Togia 2015, in litt.).

Samoan Moa Recovery

In 2006, the Government of Samoa developed a recovery plan for the mao. The recovery plan identifies goals of securing the mao, maintaining its existing populations on Upolu and Savaii, and reestablishing populations at former sites (MNRE 2006). The plan has eight objectives: (1) Manage key forest areas on Upolu and Savaii where significant populations of the mao remain; (2) carry out detailed surveys to identify the numbers of pairs and establish monitoring; (3) increase understanding of the breeding and feeding ecology; (4) establish populations on rat-free islands or mainland sites; (5) evaluate development of a captive-management program; (6) develop a public awareness and education program; (7) develop partnerships to assist in the mao recovery; and (8) establish a threatened bird recovery group to oversee the implementation and review of this plan and other priority bird species. These objectives have not all been met, and currently funding is not available to update the plan (Stirmann in litt., 2016). In 2012, a detailed study provided information on the mao’s diet, habitat use, reproductive success, and survival, which are important life-history requirements that can be used to implement recovery efforts (Butler and Stirmann 2013).

The Mt. Vaea Ecological Restoration Project surveyed and mapped the presence of native bird and plant species and invasive plant species within lowland forest habitat of the 454-acre (183-hectare) Mt. Vaea Scenic Reserve on Upolu, Samoa (Bonin 2008, pp. 2–5). The project was envisioned as the first demonstration project of invasive species management and forest restoration in Samoa. Phase I of the project resulted in the development of a restoration plan recommending removal of five priority invasive plant species and planting of native tree species (Bonin 2008, pp. viii, 24). Phase 2 of the project resulted in identifying techniques for treatment of two problematic rubber species (Castilla elastica or pulu manoe and Funtumia elastica or pulu vaqo) and replanting areas with native tree species (Bonin 2010, pp. 20–21).

The Two Samoas Environmental Collaboration Initiative brings together government agencies, nongovernmental organizations, and institutions from American Samoa and Samoa and provides a platform for a single concerted effort to manage threats to environmental resources such as the management of fisheries, land-based sources of pollution, climate change, invasive species, and key or endangered species (MNRE 2014, p. 67). In 2010, a Memorandum of Understanding establishing the collaborative effort between the two countries was signed by the two agencies responsible for conservation of species and their habitats, MNRE (Samoan) and DMWR (American Samoa). This initiative establishes a framework for efforts to recover the mao in American Samoa and Samoa.

Summary of Factor A

In summary, based on the best available scientific and commercial information, we conclude that the destruction, modification, and curtailment of the mao’s habitat and range are ongoing threats and these threats will continue into the future. The destruction and modification of habitat for the mao is caused by agriculture, logging, feral ungulates, and nonnative plant species, the impacts of all of which are exacerbated by hurricanes (see Factor E). The most serious threat identified has been the loss of forested habitat caused by forest clearing for agriculture, and logging. Although some protection of the mao’s forest habitat in specific areas results from the efforts described above, none of these efforts reduces the threats of habitat loss to logging and conversion for agriculture (in Samoa) or habitat degradation by feral pigs, invasive, nonnative plants, and hurricanes (in Samoa and American Samoa) to the extent that listing is not warranted. All of these threats are ongoing and interact to exacerbate negative impacts and increase the vulnerability of extinction of the mao.
Factor B: Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

In the analysis for our proposed rule, we had no information indicating that overutilization has led to the loss of populations or a significant reduction in numbers of mao. We have received no new information. When this final listing becomes effective (see DATES, above), research and collection of this species will be regulated through permits issued under section 10(a)(1)(A) of the Act.

Factor C: Disease or Predation

Nest predation by rats has negative impacts on many island birds, including the mao (Atkinson 1977, p. 129; 1985, pp. 55-70; Butler and Stirnemann 2013, p. 29; O'Donnell et al. 2015, pp. 24-26). Rats have been identified as the main cause of decline in the closely related Gymnomyza aubryana in New Caledonia (MNRE 2006, p. 8). Juveniles spending time on the forest floor are also at risk from predation by feral cats (Butler and Stirnemann 2013, p. 31). In American Samoa, because large areas of good-quality, closed-canopy forest habitat remain, factors in addition to deforestation are likely responsible for the extirpation of the mao from American Samoa, including predation by rats and cats. The mao's low reproductive rate (one juvenile per year) and extended breeding season also increase the likelihood of population-level effects of predation (Stirnemann et al. 2015a, p. 8). Other potential predators include the native barn owl (Tyto alba) and wattled honeyeater (Foulehaio carunculatus); however, adults can potentially drive these species away from the nest (Butler and Stirnemann 2013, p. 31).

Butler and Stirnemann (2013, p. 29) captured footage of one nest depredation event by a black rat, which took a mao egg. The rat gained access to the egg by jumping on the incubating female’s back from the branch above, driving the female off the nest. Combined with the disappearance of two females during the breeding season, this footage suggests that adult females are potentially vulnerable to predation on the nest at night, while they are incubating (Butler and Stirnemann 2013, p. 31), a phenomenon documented or suspected in other island bird species, which lack innate behavioral defenses against nonnative mammalian predators (see for example Robertson et al. 1994, p. 1,084; Armstrong et al. 2006, p. 1,054; VanderWerf 2009, p. 741). This potential bias toward predation of females has the potential to create a skewed sex ratio in mao populations (Robertson et al. pp. 1,083-1,084).

The location of mao nests affects their vulnerability to predation by rats. Nests in close proximity to plantation habitats, where rats are most abundant, are particularly susceptible and experience low reproductive success (Butler and Stirnemann 2013, p. 31). Nests within 50 meters of a plantation are 40 percent more likely to be depredated than nests in forested areas farther from plantations (Butler and Stirnemann 2013, p. 31). Habitat loss from clearing of native forest combined with an expansion of plantations in Samoa may lead to an increase in rat populations (which find ample food in plantation habitats) and a potential for an increase in the mao nest predation rate.

Predation by feral cats has been directly responsible for the extinction of numerous birds on oceanic islands (Medina et al. 2011, p. 6). Native mammalian carnivores are absent from oceanic islands because of their low dispersal ability, but once introduced by humans, they become significant predators on native animals such as seabirds and landbirds that are not adapted to predation by terrestrial carnivores (Nogales et al. 2013, p. 804; Scott et al. 1986, p. 363; Ainley et al. 1997, p. 24; Hess and Banko 2006, in litt.). The considerable amount of time spent on the ground (up to 7 days) and poor flight ability of mao chicks post-fledging increases the risk of predation by feral cats (Butler and Stirnemann 2013, p. 28).

Evidence of feral cat presence exists in montane forests and along an elevational gradient on Savaii (Atherton and Jeffries 2012, pp. 76, 103). Predation by feral cats has been posited as a contributing factor in the mao's extirpation from Tutuila (Stirnemann 2015, in litt.); however, feral cats have not commonly been observed in native forest areas on Tutuila (Arcilla 2016, in litt.). It should be noted that feral cats have been observed in remote and forested areas on Tau Island, should these areas be considered for mao recovery efforts (Arcilla 2014, in litt.; Arcilla 2016, in litt.). Based on the above information, we conclude that predation by rats and cats is a current threat to the mao that is likely to continue in the future.

Disease

Field and laboratory investigations suggest that avian malaria may be indigenous and non-pathogenic in American Samoa and, therefore, is unlikely to affect bird populations (Jarvi et al. 2003, p. 636; Seamon 2004a, in litt.). The best available information does not indicate there are other diseases affecting the mao populations in Samoa (MNRE 2006, p. 8).

Conservation Efforts To Reduce Disease or Predation

A project to restore habitat for the mao and other priority species by removing the threat of predation by the Polynesian rat (R. exulans) was attempted on the uninhabited islands of Nuutele (267 ac (108 ha)) and Nuulua (62 ac (25 ha)) off the eastern end of Upolu, Samoa (Tye 2012, in litt). The demonstration project aimed to eradicate the Polynesian rat from both islands through aerial delivery of baits. Post-project monitoring detected rats on Nuutele, suggesting that rats survived the initial eradication effort or were able to recolonize the island (Tye 2012, in litt.).

Summary of Factor C

In summary, based on the best available scientific and commercial information, we conclude that disease is not a current threat to the mao, nor is it likely to become a threat in the future. Because of its low reproductive rate (1 egg per clutch) and vulnerability to predation at multiple life-history stages (eggs, chicks, fledglings, and adults), we conclude that the threat of predation by rats and feral cats is an ongoing threat to the mao that will continue into the future.

Factor D: The Inadequacy of Existing Regulatory Mechanisms

In determining whether the inadequacy of regulatory mechanisms constitutes a threat to the mao, we analyzed the existing Federal, Territorial, and international laws and regulations that may address the threats to this species or contain relevant protective measures.

Samoa

The Government of Samoa has enacted numerous laws and regulations and has signed on to various international agreements that address a wide range of activities such as land tenure and development, biodiversity, wildlife protection, forestry management, national parks, biosecurity, and the extraction of water resources (MNRE 2013, pp. 146-149; MNRE 2014, p. 57).

The Protection of Wildlife Regulations 2004 regulates the protection, conservation, and utilization of terrestrial or land-dwelling species (MNRE and SPREP 2012, p. 5). These regulations prohibit, and establish penalties for committing, the following activities: (1) The taking, keeping, or
killing of protected and partially protected animal species; (2) harm of flying species endemic to Samoa; and (3) the export of any bird from Samoa (MNRE and SPREP 2012, pp. 5–6). The mao is endemic to the Samoan archipelago, but it is not listed as a “flying species endemic to Samoa” under these regulations.

The Planning and Urban Management Act 2004 (PUMA) and PUMA Environmental Impact Assessment (EIA) Regulation (2007) were enacted to ensure all development initiatives are properly evaluated for adverse environmental impacts (MNRE 2013, p. 93). The information required for Sustainable Management Plans and Environmental Impact Assessments does not include specific consideration for species or their habitat (Planning and Urban Management Act 2004, as amended). Other similar approval frameworks mandated under other legislation address specific threats and activities. These include the permit system under the Lands Surveys and Environment Act 1989 for sand mining and coastal reclamation, and ground water exploration and abstraction permits under the Water Resources Act 2008 (MNRE 2013, p. 93). The PUMA process has been gaining in acceptance and use; however, information on its effectiveness in preventing adverse impacts to species or their habitats is lacking (MNRE 2013, p. 93).

The Forestry Management Act 2011 regulates the effective and sustainable management and utilization of forest resources. It creates the requirement for a permit or license for commercial logging or harvesting of native, agro-forestry, or plantation forest resources (MNRE and SPREP 2012, p. 18). Permitted and licensed activities must follow approved Codes of Practice, forestry harvesting plans, and other requirements set by the Ministry of Natural Resources and Environment. License or permit holders must also follow laws relating to national parks and reserves, and all provisions of management plans for any national park or reserve. Under this act, lands designated as protected areas for the purposes of the protection of biodiversity and endangered species prohibit any clearing for cultivation or removal of forest items from protected areas without prior consent of the MNRE (Forestry Management Act 2011, Para. 57). Although this law includes these general considerations for managing forest resources, and possibly provides some protection from forest removal in the mao’s habitat, it does not address habitat degradation by nonnative invasive plants and feral ungulates, or the impacts of permitted logging roads or illegal roads, both of which create vectors into native forest for these nonnative species (Atherton and Jeffries 2012, pp. 14–15).

The Quarantine (Biosecurity) Act 2005 forms part of the system to combat the introduction of invasive species and manage existing invasions. It is the main legal instrument to manage the deliberate or accidental importation of invasive species, pests, and pathogens and also to deal with such species should they be found in Samoa (MNRE and SPREP 2012, p. 38). This legislation also provides a risk assessment procedure for imported animals, plants, and living modified organisms. Although this law provides for management of invasive species, including those that degrade or destroy native forest habitat for the mao, we do not have information indicating the degree to which it has been implemented or effectiveness of such efforts.

In Samoa, there are several regulatory and nonregulatory protected area systems currently in place that protect and manage terrestrial species and their habitats; these include national parks, nature reserves, conservation areas, and village agreements. The National Parks and Reserves Act (1974) created the statutory authority for the protection and management of national parks and nature reserves. Conservation areas, unlike national parks and nature reserves, emphasize the importance of conservation, but at the same time address the need for sustainable development activities within the conservation area. Village agreements are voluntary agreements or covenants developed and signed by local villages and conservation organizations that stipulate specific conservation measures or land use prohibitions in exchange for significant development aid. As of 2014, a total of approximately 58,176 ac (23,543 ha), roughly 8 percent of the total land area of Samoa (285,000 ha) were enlisted in terrestrial protected areas, with the majority located in five national parks covering a total of 50,629 ac (20,489 ha) overlapping several key conservation areas identified for the mao (MNRE 2006, p. 14; MNRE 2014, p. 57). Although the protected status of these lands affords some protection to the mao’s forest habitat within these areas, it does not address range-wide threats such as predation by nonnative predators or habitat degradation by nonnative plants.

Conservation International (CI) and the Secretary of the Pacific Regional Environment Programme (SPREP) in collaboration with the Ministry of Natural Resources Environment identified eight terrestrial Key Biodiversity Areas (KBAs) intended to ensure representative coverage of all native ecosystems with high biodiversity values, five of which are targeted to benefit the conservation of the mao (CI et al. 2010, p. 12); Eastern Upolu Craters, Uafato-Tiavea Coastal Forest, O le Pupu Pue National Park, Apia Catchments, and Central Savaii Rainforest. All five KBAs also overlap with Important Bird Areas designated by BirdLife International (Schuster et al. 2010, pp. 16–43). Currently, these five KBAs, which are nonregulatory, are under various degrees of protection and conservation management, including national parks, Community Conservation Areas, and areas with no official protective status (CI et al. 2010, p. 12). Many of the KBAs and protected areas mentioned above are still faced with increasing pressures in large part due to difficulties of their location on customary lands (traditional village system) and the ongoing threats of development, invasive species, and logging (MNRE 2009, p. 1; CI et al. 2010, p. 12). The decline of closed forest habitat has been a result of logging on Savaii and agricultural clearing on the edges of National Parks and Reserves (MNRE 2006, p. 5).

In 2006, the Government of Samoa developed a 10-year recovery plan for the mao. The recovery plan identifies goals of securing the mao, maintaining its existing populations on Upolu and Savaii, and reestablishing populations at former sites (MNRE 2006). This plan is nonregulatory in nature, its goals have not been met, and as of this writing, resources are not available to update and renew the plan (Stirnemann 2016, in litt.).

In summary, existing regulatory mechanisms have the potential to address the threat of habitat destruction and degradation to the mao in Samoa, and provide some benefit to the species in this regard. However, these policies and legislation do not reduce or eliminate the threats to the mao in Samoa such that listing is not warranted.

American Samoa

In American Samoa no existing Federal laws, treaties, or regulations specify protection of the mao’s habitat from the threat of deforestation, or address the threat of predation by nonnative mammals such as rats and feral cats. However, some existing Territorial laws and regulations have the potential to afford the species some protection, but their implementation does not achieve that result. The DMWR
is given statutory authority to “manage, protect, preserve, and perpetuate marine and wildlife resources” and to promulgate rules and regulations to that end (ASCA, title 24, chapter 7). Regulations adopted under the Coastal Management Act (ASCA § 24.0501 et seq.) also prohibit the taking of threatened or endangered species (ASAC § 26.0220.1c). However, the ASC has not listed the mao as threatened or endangered, so these regulatory mechanisms do not provide protection for this species.

Under ASCA, title 24, chapter 06 (Quarantine), the director of DOA has the authority to promulgate agriculture quarantine restrictions concerning animals. These laws may provide some protection against the introduction of new nonnative species that may have negative effects on the mao’s habitat or become predators of the mao, but these regulations do not require any measures to control invasive nonnative plants or animals that already are established and proving harmful to native species and their habitats (DMWR 2006, p. 80) (see Factor D for the Pacific sheath-tailed bat, above).

As described above, the Territorial Coastal Management Act establishes a land use permit (LUP) system for development projects and a Project Notification Review System (PNRS) for multi-agency review and approval of LUP applications (ASAC § 26.0206). The standards and criteria for review of LUP applications include requirements to protect Special Management Areas (SMA), Unique Areas, and “critical habitats” (ASCA § 24.0501 et seq.). To date, the SMAs that have been designated (Pago Pago Harbor, Leone Pala, and Nuuuli Pala; ASAC § 26.0221), do not provide habitat for the mao. The only use site designated to date, the Ottoville Rainforest, does not provide habitat for the mao (American Samoa Coastal Management Program 2011, p. 52), hypothetically may provide some foraging habitat for the mao, but it is a small (20-ac (8-ha)) island of native forest in the middle of the heavily developed Tafuna Plain (Trail 1993, pp. 1, 4), far from large areas of native forest. These laws and regulations are designed to ensure that “environmental concerns are given appropriate consideration,” and include provisions and requirements that could address to some degree threats to native forest habitat required by the mao, even though individual species are not named (ASAC § 26.0202 et seq.). Because the implementation of these regulations has been minimal and the review of permits is not rigorous, the permit system has not provided the habitat protection necessary to provide for the conservation of the mao, and loss of native forest habitat important to the mao and other species as a result of land-clearing for agriculture and development has continued (DMWR 2006, p. 71). We conclude that the implementation of the Coastal Management Act and its PNRS is inadequate to address the threat of habitat destruction and degradation to the mao (see Factor D for the Pacific sheath-tailed bat for further details).

In summary, existing Territorial laws and regulatory mechanisms have the potential to offer some level of protection for the mao and its habitat if it were to be reintroduced to American Samoa but are not currently implemented in a manner that would do so. The DMWR has not exercised its statutory authority to address threats to the mao such as predation by nonnative predators; the mao is not listed pursuant to the Territorial Endangered Species Act; and the Coastal Management Act and its implementing regulations have the potential to address the threat of habitat loss to deforestation more substantively, but the implementation of this law does not address the threats to the mao.

Summary of Factor D

Based on the best available information, no existing Federal regulatory mechanisms address the threats to the mao. Some existing regulatory mechanisms in Samoa and American Samoa have the potential to offer some protection of the mao and its habitat, but their implementation does not reduce or remove threats to the species such as habitat destruction or modification or predation by nonnative species such that listing is not warranted. For these reasons, we conclude that existing regulatory mechanisms do not address the threats to the mao.

Factor E: Other Natural or Manmade Factors Affecting Its Continued Existence

Hurricanes

Hurricanes are a common natural disturbance in the tropical Pacific and have occurred in the Samoan archipelago with varying frequency and intensity (see Factor E discussion for the Pacific sheath-tailed bat). Catastrophic events such as hurricanes can be a major threat to the persistence of species already experiencing population-level impacts of other stressors (MNRE 2006, p. 8). Two storms in the 1990s, Cyclones Ofa (1990) and Val (1991), severely damaged much of the remaining forested habitat in Samoa, reducing forest canopy cover by 73 percent (MNRE 2006, pp. 5, 7). In addition, Cyclone Evan struck Samoa in 2012 causing severe and widespread forest damage, including defoliation and downed trees in 80 to 90 percent of the Reserves and National Parks on Upolu (Butler and Stirnemann 2013, p. 41). Secondary forests also were severely damaged by the storm, and most trees in the known mao locations were stripped of their leaves, fruits, and flowers (Butler and Stirnemann 2013, p. 41). Hurricanes thus exacerbate forest fragmentation and invasion of native forests by nonnative species, stressors that reduce breeding, nesting, and foraging habitat for the mao (see Factor A, above). Although severe storms are a natural disturbance with which the mao has coexisted for millennia, such storms exacerbate the threats to its remaining small, isolated populations by at least temporarily damaging or redistributing habitat and food resources for the birds and causing direct mortality of individuals (Wiley and Wunderle 1993, pp. 340–341; Wunderle and Wiley 1996, p. 261). If the mao was widely distributed, had ample habitat and sufficient numbers, and were not under chronic pressure from anthropogenic threats such as introduced predators, it might recover from hurricane-related mortality and the temporary loss or redistribution of resources in the wake of severe storms. However, this species’ current status makes it highly vulnerable to catastrophic chance events, such as hurricanes, which occur frequently throughout its range in Samoa and American Samoa.

Low Numbers of Individuals and Populations

Species with low numbers of individuals, restricted distributions, and small, isolated populations are often more susceptible to extinction as a result of natural catastrophes such as...
hurricanes or disease outbreaks, demographic fluctuations, or inbreeding depression (Shaffer 1981, p. 131; see Factor E discussion for the Pacific sheath-tailed bat, above). These problems associated with small population size are further magnified by interactions with each other and with other threats, such as habitat loss and predation (Lacy 2000, pp. 45–47; see Factor A and Factor C, above).

We consider the mao to be vulnerable to extinction because of threats associated with its low number of individuals—perhaps not more than a few hundred birds—and low numbers of populations. These threats include environmental catastrophes, such as hurricanes, which could immediately extinguish some or all of the remaining populations; demographic stochasticity that could leave the species without sufficient males or females to be viable; and inbreeding depression or loss of adaptive potential that can be associated with loss of genetic diversity and result in eventual extinction (Shaffer 1981, p. 131; Lacy 2000, op. cit., 40, 44–46).

Combined with ongoing habitat destruction and modification by logging, agriculture, development, nonnative plant species, and feral ungulates (Factor A) and predation by rats and feral cats (Factor C), the effects of these threats to small populations further increases the risk of extinction of the mao.

Effects of Climate Change

Our analyses under the Act include consideration of ongoing and projected changes in climate (see Factor E discussion for the Pacific sheath-tailed bat). The magnitude and intensity of the impacts of global climate change and increasing temperatures on western tropical Pacific island ecosystems currently are unknown. In addition, there are no climate change studies that address impacts to the specific habitats of the mao. The scientific assessment completed by the Pacific Science Climate Science Program provides general projections or trends for predicted changes in climate and associated changes in ambient temperature, precipitation, hurricanes, and sea level rise for countries in the western tropical Pacific region including Samoa (used also as a proxy for American Samoa) (Australian BOM and CSIRO 2011, Vol. 1 & Vol. 2; see Factor E discussion for the Pacific sheath-tailed bat for summary).

Although we do not have specific information on the impacts of the effects of climate change on the mao, increased ambient temperature and precipitation, and increased severity of hurricanes, would likely exacerbate other threats to this species as well as provide additional stresses on its habitat. The probability of species extinction as a result of climate change impacts increases when its range is restricted, habitat decreases, and numbers of populations decline (IPCC 2007, p. 48). The mao is limited by its restricted range and low numbers of individuals. Therefore, we expect this species to be particularly vulnerable to the environmental effects of climate change and subsequent impacts to its habitat, even though the specific and cumulative effects of climate change on the mao are presently unknown and we are not able to determine the magnitude of this future threat with confidence. Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to these species, such as habitat loss and degradation.

Conservation Efforts To Reduce Other Natural or Manmade Factors Affecting Its Continued Existence

We are unaware of any conservation actions planned or implemented at this time to abate the threats of hurricanes and low numbers of individuals or the effects of climate change that negatively impact the mao. However, the completion of a plan for the mao’s recovery in Samoa in 2006, basic research on the species’ life-history requirements, population monitoring, and cooperation between the Governments of American Samoa and Samoa may contribute to the conservation of the mao.

Synergistic Effects

In our analysis of the five factors, we found that the mao is likely to be affected by loss of forest habitat, predation by nonnative mammals, and the vulnerability of its small, isolated population to chance demographic and environmental occurrences. In addition, increased ambient temperature and storm severity resulting from climate change are likely to exacerbate other, direct threats to the mao and in particular place additional stress on its habitat; these effects of climate change are projected to increase in the future. Multiple stressors acting in combination have greater potential to affect the mao than each factor alone. For example, projected warmer temperatures and increased storm severity may enhance the spread of nonnative invasive plants in the mao’s forest habitat. The combined effects of environmental, demographic, and catastrophic-event stressors, especially on a small population, can lead to a decline that is unrecoverable and results in extinction (Brook et al. 2008, pp. 457–458). The impacts of any one of the stressors described above might be sustained by a species with a larger, more resilient population, but in combination habitat loss, predation, small-population risks, and climate change have the potential to rapidly affect the size, growth rate, and genetic integrity of a species like the mao that persists as small, disjunct populations. Thus, the synergy among factors may result in greater impacts to the mao than any one stressor by itself.

Determination for the Mao

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats to mao. This large honeyeater endemic to the Samoan archipelago is vulnerable to extinction because of the loss and degradation of its forested habitat, predation by nonnative mammals, and the impact of stochastic events to species that are reduced to small population size and limited distribution.

The threat of habitat destruction and modification from agriculture, logging, and development, nonnative plants, and nonnative ungulates is occurring throughout the range of the mao, and is not likely to be reduced in the future (Factor A). The threat of predation from nonnative predators such as rats and feral cats is ongoing and likely to continue in the future (Factor C). Additionally, the low numbers of individuals and populations of the mao render the species vulnerable to environmental catastrophes such as hurricanes, demographic stochasticity, and inbreeding depression (Factor E). These factors pose threats to the mao whether we consider their effects individually or cumulatively. Existing regulatory mechanisms and conservation efforts do not address the threats to this species (Factor D), and all of these threats are likely to continue in the future.

The Act defines an endangered species as any species that is “in danger of extinction throughout all or a significant portion of its range” and a threatened species as any species “that is likely to become endangered throughout all or a significant portion of its range within the foreseeable future.” Based on the severity and immediacy of threats currently affecting the species, we find that the mao is presently in danger of extinction throughout its entire range. The imminent threats of habitat loss and degradation, predation by nonnative rats and feral cats, the small number of individuals, the effects
of small population size, restricted range, and stochastic events such as hurricanes render this species in its entirety highly susceptible to extinction; for this reason, we find that threatened species status is not appropriate for the mao. Therefore, on the basis of the best available scientific and commercial information, we are listing the mao as endangered in accordance with sections 3(6) and 4(a)(1) of the Act.

Under the Act and our implementing regulations, a species may warrant listing if it is in danger of extinction or likely to become so throughout all or a significant portion of its range. Because we have determined that the mao is endangered throughout all of its range, no portion of its range can be “significant” for purposes of the definitions of “endangered species” and “threatened species.” See the Final Policy on Interpretation of the Phrase “Significant Portion of Its Range” in the Endangered Species Act’s Definitions of “Endangered Species” and “Threatened Species” (79 FR 37577, July 1, 2014).

American Samoa Population of the Friendly Ground-Dove, Gallicolumba stai, Tuameo (American Samoa, Samoa)

The genus Gallicolumba is distributed throughout the Pacific and Southeast Asia and is represented in the oceanic Pacific by six species. Three species are endemic to Micronesian islands or archipelagos, two are endemic to island groups in French Polynesia, and Gallicolumba stai is endemic to Samoa, Tonga, and Fiji (Sibley and Monroe 1990, p. 206). The species name used here, the friendly ground-dove, was derived from “Friendly Islands” (i.e., Tonga), where it is purported to have been first collected (Watling 2001, p. 118). Because of its shy and secretive habits, this species is also often referred to as the shy ground-dove (Pratt et al. 1997, pp. 194–195). Some authors recognize two subspecies of the friendly ground-dove: One, slightly smaller, in the Samoan archipelago (G. s. stai), and the other in Tonga and Fiji (G. s. vitiensis) (Mayr 1945, pp. 131–132). However, morphological differences between the two are slight (Watling 2001, p. 117), and no genetic or other studies have validated the existence of separate subspecies.

The friendly ground-dove is a medium-sized dove, approximately 10 in (26 cm) long. Males have rufous-brown upperparts with a bronze-green iridescence, the crown and nape are grey, the wings rufous with a purplish luster, the tail dark brown. The abdomen and belly are dark brown-olive, while the breast shield is dark pink with a white border. Immature birds are similar to adults but are uniformly brown. Females are dimorphic in Fiji and Tonga, where a brown phase (tawny underparts and no breast shield) and pale phase (similar to males but duller) occur. In Samoa and American Samoa, only the pale phase is known to occur (Watling 2001, p. 117).

In American Samoa, the friendly ground-dove is typically found on or near steep, forested slopes, particularly those with an open understory and fine scree or exposed soil (Tulafono 2006, in litt.). Elsewhere the species is known to inhabit brushy vegetation or native forest on offshore islands, native limestone forest (Tonga), and forest habitats on large, high islands (Steadman and Freifeld 1998, p. 617; Clunie 1999, pp. 42–43; Freifeld et al. 2001, p. 79; Watling 2001, p. 118). This bird spends most of its time on the ground, and feeds on seeds, fruit, buds, snails, and insects (Clunie 1999, p. 42; Craig 2009, p. 123). The friendly ground-dove typically builds a nest of twigs several feet from the ground or in a tree fern crown, and lays one to two white eggs (Clunie 1999, p. 43). Nesting was also observed in a log less than a meter off the ground (Stirnemann 2015, in litt.).

The friendly ground-dove is uncommon or rare throughout its range in Fiji, Tonga, Wallis and Futuna, Samoa, and American Samoa (Steadman and Freifeld 1998, p. 626; Schuster et al. 1999, pp. 13, 70; Freifeld et al. 2001, pp. 78–79; Watling 2001, p. 118; Steadman 1997, pp. 745, 747), except for on some small islands in Fiji (Watling 2001, p. 118). The status of the species as a whole is not monitored closely throughout its range, but based on available information, the friendly ground-dove persists in very small numbers in Samoa (Schuster et al. 1999, pp. 13, 70; Freifeld et al. 2001, pp. 78–79), and is considered to be among the most endangered of native Samoan bird species (Watling 2001, p. 118). In Tonga, the species occurs primarily on small, uninhabited islands and in one small area of a larger island (Steadman and Freifeld 1998, pp. 617–618; Watling 2001, p. 118). In Fiji, the friendly ground-dove is thought to be widely distributed but uncommon on large islands and relatively common on some small islands (Watling 2001, p. 118).

In American Samoa, the species was first reported on Ofu in 1976 (Amerson et al. 1982, p. 69), and has been recorded infrequently on Ofu and more commonly on Olosega since the mid-1990s (Engbring and Ramsey 1989, p. 57; Seamon 2004a, in litt.; Tulafono 2006, in litt.). Amerson et al. (1982, p. 69) estimate a total population of about 100 birds on Ofu and possibly Olosega. Engbring and Ramsey (1989, p. 57) described the population on Ofu as “very small,” but did not attempt a population estimate. More than 10 ground-doves were caught on Olosega between 2001 and 2004, suggesting that numbers there are greater than on Ofu, but birds may move between the two islands (Seamon 2004a, in litt.), which once were a single land mass and are today connected by a causeway that is roughly 490 feet (150 meters (m)) long. No current population estimate is available; the secretive habits of this species make monitoring difficult.

Monitoring surveys over the last 10 years do not, however, suggest any change in the relative abundance of the friendly ground-dove (Seamon 2004a, in litt.). The DMWR biologists regularly observe this species at several locations on Ofu and Olosega (DMWR 2013, in litt.), and have initiated a project to color-band the population in order to better describe their distribution and status on the two islands (Miles 2015b, in litt.). The American Samoa population of the friendly ground-dove likely persists at low absolute numbers (Amerson et al. 1982, p. 69; Engbring and Ramsey 1989, p. 57), and at low abundance relative to other Samoan forest bird species (Amerson et al. 1982, p. 69; Seamon 2004, in litt.; Tulafono 2006, in litt.; Pyle 2016, in litt.).

Distinct Population Segment (DPS) Analysis

Under the Act, we have the authority to consider for listing any species, subspecies, or for vertebrates, any distinct population segment (DPS) of these taxa if there is sufficient information to indicate that such action may be warranted. To guide the implementation of the DPS provisions of the Act, we and the National Marine Fisheries Service (NOAA–Fisheries), published the Policy Regarding the Recognition of Distinct Vertebrate Population Segments Under the Endangered Species Act (DPS Policy) in the Federal Register on February 7, 1996 (61 FR 47422). Under our DPS Policy, we use two elements to assess whether a population segment under consideration for listing may be recognized as a DPS: (1) The population segment’s discreteness from the remainder of the species to which it belongs and (2) the significance of the population segment to the species to which it belongs. If we determine that a population segment being considered for listing is a DPS, then the population segment’s conservation status is evaluated based on the five listing
factors established by the Act to determine if listing it as either endangered or threatened is warranted. Below, we evaluate the American Samoa population of the friendly ground-dove to determine whether it meets the definition of a DPS under our Policy.

Discreteness

Under our DPS Policy, a population segment of a vertebrate taxon may be considered discrete if it satisfies either one of the following conditions: (1) It is markedly separated from other populations of the same taxon as a consequence of physical, physiological, ecological, or behavioral factors (quantitative measures of genetic or morphological discontinuity may provide evidence of this separation); or (2) it is delimited by international governmental boundaries within which differences in control of exploitation, management of habitat, conservation status, or regulatory mechanisms exist that are significant in light of section 4(a)(1)(D) of the Act.

The American Samoa population of the friendly ground-dove, a cryptic, understory-dwelling dove not noted for long-distance dispersal, is markedly separate from other populations of the species. The genus Gallicolumba is widely distributed in the Pacific, but populations of the friendly ground-dove are restricted to individual archipelagos, or single islands, or offshore islets are presumed to be relatively sedentary, weak, or reluctant fliers, with inter-island flights rarely observed (Baptista et al. 1997, pp. 95, 179–187, Freifeld et al. 2001, p. 79). Therefore, there is a low likelihood of frequent dispersal or immigration over the large distances that separate the American Samoa population on Ofu and Olosega islands from the other populations in Samoa (118 miles mi (190 km)), Tonga (430 mi (690 km)), and Fiji (more than 625 mi (1,000 km)). In addition, the American Samoa island of Tutuila lies between the American Samoa population and the nearest population in Samoa, and no Tutuila records of the friendly ground-dove exist. For these reasons, it is likely that populations of the friendly ground-dove, which occur in three archipelagos, are ecologically isolated from each other (i.e., the likelihood is low that a population decimated or lost would be rebuilt by immigration from another population).

Based on our review of the available information, we have determined that the American Samoa population of the friendly ground-dove is markedly separate from other populations of the species due to geographic (physical) isolation from friendly ground-dove populations in Samoa, Tonga, and Fiji (Fig. 1). The geographic distance between the American Samoa population and other populations coupled with the low likelihood of frequent long-distance exchange between populations further separate the American Samoa population from other populations of this species throughout its range. Therefore, we have determined that the American Samoa population of friendly ground-dove meets a condition of our DPS policy for discreteness.

Significance

Under our DPS Policy, once we have determined that a population segment is discrete, we consider its biological and ecological significance to the larger taxon to which it belongs. This consideration may include, but is not limited to: (1) Evidence of the persistence of the discrete population segment in an ecological setting that is unusual or unique for the taxon, (2) evidence that loss of the population segment would result in a significant gap in the range of the taxon, (3) evidence that the population segment represents the only surviving natural occurrence of a taxon that may be more abundant elsewhere as an introduced population outside its historical range, or (4) evidence that the discrete population segment differs markedly from other populations of the species in its genetic characteristics. At least one of these criteria is met. We have found substantial evidence that loss of the American Samoa population of the friendly ground-dove would constitute a significant gap in the range of this species, and thus this population meets our criteria for significance under our Policy.

The American Samoa population of the friendly ground-dove represents the easternmost distribution of this species. The loss of this population would truncate the species’ range by approximately 100 mi (161 km), or approximately 15 percent of the linear extent of its range, which trends southwest-to-northeast from Fiji to Tonga to Wallis and Futuna, Samoa, and American Samoa. Unlike other Pacific Island columbids, this species does not fly high above the canopy; it is an understory species that forages largely on the ground and nests near the ground (Watling 2001, p. 118). Because of its flight limitations, the friendly ground-dove is unlikely to disperse over the long distances between American Samoa and the nearest surrounding populations. Therefore, the loss of the American Samoa population coupled with the low likelihood of recolonization from the nearest source populations in Samoa, Fiji, and Tonga would create a significant gap in the range of the friendly ground-dove.

Summary of DPS Analysis Regarding the American Samoa Population of the Friendly Ground-Dove

Given that both the discreteness and the significance elements of the DPS policy are met for the American Samoa population of the friendly ground-dove, we find that the American Samoa population of the friendly ground-dove is a valid DPS. Therefore, the American Samoa DPS of friendly ground-dove is a listable entity under the Act, and we now assess this DPS’s conservation status in relation to the Act’s standards for listing, (i.e., whether this DPS meets the definition of an endangered or threatened species under the Act).
Summary of Factors Affecting the American Samoa DPS of the Friendly Ground-Dove

Factor A: The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

Habitat Destruction and Modification by Agriculture and Development

The loss or modification of lowland and coastal forests has been implicated as a limiting factor for populations of the friendly ground-dove and has likely pushed this species into more disturbed areas or forested habitat at higher elevations (Watling 2001, p. 118). Several thousand years of subsistence agriculture and more recent, larger-scale agriculture have resulted in the alteration and great reduction in area of forests at lower elevations in American Samoa (see Factor A discussion for the mao). On Ofu, the coastal forest where the ground-dove has been recorded, and which may be the preferred habitat for this species range-wide (Watling 2001, p. 118), largely has been converted to villages, grasslands, or coconut plantations (Whistler 1994, p. 127). However, none of the land-clearing or development projects proposed for Ofu or Olosega in recent years has been approved or initiated in areas known to be frequented by friendly ground-doves (Tulafono 2006, in litt.; Stein et al. 2014, p. 25). Based on the above information, we find that agriculture and development have caused substantial destruction and modification of the habitat of the friendly ground-dove in American Samoa and have likely resulted in the curtailment of its range in American Samoa. Habitat destruction and modification by agriculture is expected to continue into the future, but probably at a low rate; the human population on Ofu and Olosega has been declining over recent decades and was estimated at 176 (Ofu) and 177 (Olosega) in 2010 (American Samoa Government 2013, p. 8). However, because any further loss of habitat to land-clearing will further isolate the remaining populations of this species in American Samoa, we conclude that habitat destruction and modification by agriculture is a current threat to the American Samoa DPS of the friendly ground-dove that will continue in the future.

Conservation Efforts To Reduce Habitat Destruction, Modification, or Curtailment of Its Range

The National Park of American Samoa (NPSA) was established to preserve and protect the tropical forest and...
archaeological and cultural resources, to maintain the habitat of flying foxes, to preserve the ecological balance of the Samoan tropical forest, and, consistent with the preservation of these resources, to provide for the enjoyment of the unique resources of the Samoan tropical forest by visitors from around the world (Pub. L. 100–571, Pub. L. 100–336).

Under a 50-year lease agreement between local villages, the American Samoa Government, and the Federal Government, approximately 73 ac (30 ha) on Ofu Island are located within park boundaries (NPSA Lease Agreement 1993). While the majority of the park’s land area on Ofu consists of coastal and beach habitat, approximately 30 ac (12 ha) in the vicinity of Sunuitao Peak may provide forested habitat for the friendly ground-dove.

Summary of Factor A
Past clearing for agriculture and development has resulted in the significant destruction and modification of coastal forest habitat for the American Samoa DPS of the friendly ground-dove. Land-clearing for agriculture is expected to continue in the future, but likely at a low rate. However, the degraded and fragmented status of the remaining habitat for the ground-dove is likely to be exacerbated by hurricanes (see Factor E discussion). While the NPSA provides some protection for the forested habitat required by the friendly ground-dove within the park, it is not of sufficient quantity to ameliorate the impacts from habitat loss elsewhere on Ofu and Olosega islands, or from habitat degradation and loss caused by hurricanes (inside and outside the park). Therefore, we consider habitat destruction and modification to be a threat to this DPS.

Factor B: Overutilization for Commercial, Recreational, Scientific, or Educational Purposes
Pigeon-catching was a traditional practice in ancient Samoan society (Craig 2009, p. 104). Hunting of terrestrial birds and bats in American Samoa primarily for subsistence purposes continued until the documented decline of wildlife populations led to the enactment of a hunting ban and formal hunting regulations (Craig et al. 1994, pp. 345–346). The bird species most commonly taken were the Pacific pigeon or lupe (Ducula ducula) and the purple-capped fruit-dove or manutagi (Ptilinopus porphyreus). Although the many-colored fruit-dove or manuma (Ptilinopus peroussi) is too rare to be sought by hunters, a few may have been killed each year by hunters in search of the Pacific pigeon or purple-capped fruit-dove (Craig 2009, p. 106). The accidental killing of the friendly ground-dove by hunters in pursuit of other bird species (during a sanctioned hunting season; see Factor D) has the potential to occur. Poaching is not considered a threat to the friendly ground-dove in American Samoa (Seamon 2004a, in litt.; 2004b, in litt.). In addition, the use of firearms on the islands of Ofu and Olosega has rarely, if ever, been observed (Caruso 2015a, in litt.). In the proposed rule, we had no information indicating that overutilization has led to the loss of populations or a significant reduction in numbers of the friendly ground-dove in American Samoa. We have received no new information. In summary, based on the best available scientific and commercial information, we do not consider overutilization for commercial, recreational, scientific, or educational purposes to be a threat to the American Samoa DPS of the friendly ground-dove. When this final listing becomes effective (see DATES, above), research and collection of this species will be regulated through permits issued under section 10(a)(1)(A) of the Act.

Factor C: Disease or Predation
Disease
Research suggests that avian malaria may be indigenous and non-pathogenic in American Samoa, and, therefore, is unlikely to limit populations of the friendly ground-dove (Jarvi 2003, p. 636; Seamon 2004a, in litt.). Although other blood parasites are common in many bird species in American Samoa, none have been reported to date in friendly ground-dove samples (Atkinson et al. 2006, p. 232). The best available information does not show there are other avian diseases that may be affecting this species.

Predation
Depredation by introduced mammalian predators is the likely cause of widespread extirpation of the friendly ground-dove throughout portions of its range (Steadman and Freifeld 1998, p. 617; Watling 2001, p. 118). Three species of rats occur in American Samoa and are likely to be present on the islands of Ofu and Olosega: The Polynesian rat, Norway rat, and black rat (Atkinson 1985, p. 38; DMWR 2006, p. 22; Caruso 2015b, in litt.). Domestic cats have been observed in remote areas known to be frequented by ground-doves and may prey on friendly ground-doves and other species that nest on or near the ground (Arcilla 2015, in litt.). Therefore, the threat of predation by feral cats could have a significant influence on this species, particularly given that the American Samoa DPS of the friendly ground-dove population appears to be very small and limited to small areas on the islands of Ofu and Olosega.

Conservation Efforts To Reduce Disease or Predation
We are unaware of any conservation actions planned or implemented at this time to abate the threats of predation by feral cats or rats to the American Samoa DPS of the friendly ground-dove. In summary, based on the best available scientific and commercial information, we conclude that disease is not a factor in the continued existence of the friendly ground-dove.
island birds such as the friendly ground-dove are extremely vulnerable to predation by nonnative predators, the threat of predation by rats and feral cats is likely to continue and is considered a threat to the continued existence of this DPS.

Factor D: The Inadequacy of Existing Regulatory Mechanisms

In American Samoa no existing Federal laws, treaties, or regulations specify protection of the friendly ground-dove's habitat from the threat of deforestation, or address the threat of predation by nonnative mammals such as rats and feral cats. However, some existing Territorial laws and regulations have the potential to afford the species some protection, but their implementation does not achieve that result. The DMWR has given statutory authority to “manage, protect, preserve, and perpetuate marine and wildlife resources” and to promulgate rules and regulations to that end (ASCA, title 24, chapter 3). This agency conducts monitoring surveys, conservation activities, and community outreach and education about conservation concerns. However, to our knowledge, the DMWR has not used this authority to undertake conservation efforts for the friendly ground-dove such as habitat protection and control of nonnative predators such as rats and cats (DMWR 2006, pp. 79–80).

The Territorial Endangered Species Act provides for appointment of a Commission with the authority to nominate species as either endangered or threatened (ASCA, title 24, chapter 7). Regulations adopted under the Coastal Management Act (ASCA § 24.0501 et seq.) also prohibit the taking of threatened or endangered species (ASCA § 26.0220.L.c). However, the ASG has not listed the friendly ground-dove as threatened or endangered, so these regulatory mechanisms do not provide protection for this species.

Under ASCA, title 24, chapter 08 (Noxious Weeds), the Territorial DOA has the authority to ban, confiscate, and destroy species of plants harmful to the agricultural economy. Similarly, under ASCA, title 24, chapter 06 (Quarantine), the director of DOA has the authority to promulgate agriculture quarantine restrictions concerning animals. These laws may provide some protection against the introduction of new nonnative species that may have negative effects on the friendly ground-dove’s habitat or become predators of the species, but these regulations do not require any measures to control invasive nonnative plants or animals that already are established and proving harmful to native species and their habitats (DMWR 2006, p. 80) (see Factor D for the Pacific sheath-tailed bat, above).

As described above, the Territorial Coastal Management Act establishes a land use permit (LUP) system for development projects and a Project Notification Review System (PNRS) for multi-agency review and approval of LUP applications (ASAC § 26.0206). The standards and criteria for review of LUP applications include requirements to protect Special Management Areas (SMA), Unique Areas, and “critical habitats” (ASCA § 24.0501 et seq.). To date, the SMAs that have been designated (Pago Pago Harbor, Leone Pala, and Nuuuli Pala; ASCA § 26.0221), are all on Tutuila and do not provide habitat for the friendly ground-dove, which occurs only on the islands of Ofo and Olosega. The only Unique Area designated to date, the Ottoville Rainforest (American Samoa Coastal Management Program 2011, p. 52), also is on Tutuila and does not provide habitat for the friendly ground-dove. These laws and regulations are designed to ensure that “environmental concerns are given appropriate consideration,” and include provisions and requirements that could address some degree threats to native forest habitat required by the friendly ground-dove, even though individual species are not named (ASAC § 26.0202 et seq.).

Because the implementation of these regulations has been minimal and review of permits is not rigorous, the permit system does not provide the habitat protection necessary to provide for the conservation of the friendly ground-dove and instead result in loss of native habitat important to this and other species as a result of land-clearing for agriculture and development (DMWR 2006, p. 71). We conclude that the implementation of the Coastal Management Act and its PNRS does not address the threat of habitat destruction and degradation to the friendly ground-dove to the extent that listing is not warranted (see Factor D for the Pacific sheath-tailed bat for further details).

Summary of Factor D

In summary, existing Territorial laws and regulatory mechanisms have the potential to offer some level of protection for the American Samoa DPS of the friendly ground-dove and its habitat but are not currently implemented in a manner that would do so. The DMWR has not exercised its statutory authority to address threats to the ground-dove such as predation by nonnative predators: the species is not listed pursuant to the Territorial Endangered Species Act; and the Coastal Management Act and its implementing regulations have the potential to address the threat of habitat loss to deforestation more substantively, but this law is inadequately implemented. Based on the best available information, some existing regulatory mechanisms have the potential to offer some protection of the friendly ground-dove and its habitat, but their implementation does not reduce or remove threats to the species such as habitat destruction or modification or predation by nonnative species. For these reasons, we conclude that existing regulatory mechanisms do not address the threats to the American Samoa DPS of the friendly ground-dove.

Factor E: Other Natural or Manmade Factors Affecting Its Continued Existence

Hurricanes

Hurricanes may cause the direct and indirect mortality of the friendly ground-dove, as well as modify its already limited habitat (see Factor A above). This species has likely coexisted with hurricanes for millennia in American Samoa, and if the friendly ground-dove was widely distributed in American Samoa, had ample habitat and sufficient numbers, and was not under chronic pressure from anthropogenic threats such as habitat loss and introduced predators, it might recover from hurricane-related mortality and the temporary loss or redistribution of resources in the wake of severe storms. For example, Hurricanes Heta (in January 2004) and Olaf (in February 2005) destroyed suitable habitat for the friendly ground-dove at one of the areas on Olosega where this species was most frequently encountered; detections of ground-doves in other, less storm-damaged areas subsequently increased, suggesting they had moved from the area affected by the storms (Seamons 2005, in litt.; Tulafono 2006, in litt.). However, this species’ current status in American Samoa makes it highly vulnerable to chance events, such as hurricanes.

Low Numbers of Individuals and Populations

Species with a low total number of individuals, restricted distributions, and small, isolated populations are often more susceptible to extinction as a result of natural catastrophes, demographic fluctuations, or inbreeding depression (Shaffer 1981, p. 131; see Factor E discussion for the Pacific sheath-tailed bat, above). The American Samoa DPS of the friendly ground-dove...
is at risk of extinction because of its probable low remaining number of individuals and distribution restricted to small areas on the islands of Ofu and Olosega, conditions that render this DPS vulnerable to the small-population stressors listed above. These stressors include environmental catastrophes, such as hurricanes, which could immediately extinguish some or all of the remaining populations; demographic stochasticity that could leave the species without sufficient males or females to be viable; and inbreeding depression or loss of adaptive potential that can be associated with loss of genetic diversity and result in eventual extinction. These small-population stressors are a threat to the American Samoa DPS of the friendly ground-dove, and this threat is exacerbated by habitat loss and degradation (Factor A) and predation by nonnative mammals (Factor C).

Effects of Climate Change

Our analyses under the Act include consideration of ongoing and projected changes in climate (see Factor E discussion for the Pacific sheath-tailed bat). The magnitude and intensity of the impacts of global climate change and increasing temperatures on western tropical Pacific island ecosystems are currently unknown. In addition, there are no climate change studies that address impacts to the specific habitats of the American Samoa DPS of the friendly ground-dove. The scientific assessment completed by the Pacific Science Climate Science Program provides general projections or trends for predicted changes in climate and associated changes in ambient temperature, precipitation, hurricanes, and sea level rise for countries in the western tropical Pacific region including Samoa (Australian BOM and CSIRO 2011, Vol. 1 and 2; used as a proxy for American Samoa) (see Factor E discussion for the Pacific sheath-tailed bat).

Although we do not have specific information on the impacts of climate change to the American Samoa DPS of the friendly ground-dove, increased ambient temperature and precipitation, increased severity of hurricanes, and sea level rise and inundation would likely exacerbate other threats to its habitat. Although hurricanes are part of the natural disturbance regime in the tropical Pacific, and the friendly ground-dove has evolved in the presence of this disturbance, the projected increase in the severity of hurricanes resulting from climate change is expected to exacerbate the hurricane-related impacts such as habitat destruction and modification and availability of food resources of the friendly ground-dove, whose diet consists mainly of seeds, fruit, buds, and young leaves and shoots (Watling 2001, p. 118). The probability of species extinction as a result of climate change impacts increases when a species’ range is restricted, its habitat decreases, and its numbers are declining (IPCC 2007, p. 8). The friendly ground-dove is limited by its restricted range, diminished habitat, and small population size. Therefore, we expect the friendly ground-dove to be particularly vulnerable to the environmental impacts of projected changes in climate and subsequent impacts to its habitat.

Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to these species, such as habitat loss and degradation.

Conservation Efforts To Reduce Other Natural or Manmade Factors Affecting Its Continued Existence

We are unaware of any conservation actions planned or implemented at this time to abate the threats of hurricanes, low numbers of individuals, and climate change effects that negatively affect the American Samoa DPS of the friendly-ground-dove.

Synergistic Effects

In our analysis of the five factors, we found that the American Samoa DPS of the friendly ground-dove is likely to be affected by loss of forest habitat, especially in lowland and coastal areas, predation by nonnative mammals, and the vulnerability of its small, isolated population to chance demographic and environmental occurrences. We also identify the effects of climate change as another source of risk to the species because increased ambient temperature and storm severity resulting from climate change are likely to exacerbate other, direct threats to the ground-dove in American Samoa, and in particular place additional stress on its habitat; these effects of climate change are projected to increase in the future. Multiple stressors acting in combination have greater potential to affect the ground-dove than each factor alone. For example, projected warmer temperatures and increased storm severity will likely enhance the spread of nonnative invasive plants in the ground-dove’s coastal forest habitat. The combined effects of environmental, demographic, and catastrophic-event stressors, especially on a small population, can lead to a decline that is unrecoverable and results in extinction (Brook et al. 2008, pp. 457–458). The impacts of any one of the stressors described above might be sustained by a species with a larger, more resilient population, but in combination, habitat loss, predation, small-population risks, and effects of climate change have the potential to rapidly affect the size, growth rate, and genetic integrity of a species like the American Samoa DPS of the friendly ground-dove that persists as small, disjunct populations. Thus, the synergy among factors may result in greater impacts to the species than any one stressor by itself.

Determination for the American Samoa DPS of the Friendly Ground-Dove

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats to the American Samoa DPS of the friendly ground-dove. The American Samoa DPS of the friendly ground-dove is vulnerable to extinction because of its reduced population size and distribution, habitat loss, and depredation by nonnative mammals.

The habitat of the American Samoa DPS of the friendly ground-dove remains degraded and destroyed by past land-clearing for agriculture, and hurricanes exacerbate the poor status of this habitat, a threat that is likely to continue in the future (Factor A) and worsen under the projected effects of climate change. The threat of predation by nonnative mammals such as rats and cats is a current threat and likely to continue in the future (Factor C). The DPS of the friendly ground-dove persists in low numbers of individuals and in few and disjunct populations on two small islands (Factor E), a threat that interacts synergistically with other threats. These factors pose threats to the American Samoa DPS of the friendly ground-dove, whether we consider their effects individually or cumulatively. Current Territorial wildlife laws and regulations and conservation efforts do not address the threats to this DPS (Factor D), and these threats will continue in the future.

The Act defines an endangered species as any species that is “in danger of extinction throughout all or a significant portion of its range” and a threatened species as any species “that is likely to become endangered throughout all or a significant portion of its range within the foreseeable future.” Based on the severity and immediacy of threats currently affecting the species, we find that the American Samoa DPS of the friendly ground-dove is presently in danger of extinction throughout its range. The imminent threats of habitat...
loss and degradation, predation by nonnative rats and feral cats, the small number of individuals and populations, the effects of small population size, a range restricted to small areas of two small islands in American Samoa, and stochastic events such as hurricanes render this species in its entirety highly susceptible to extinction; for this reason, we find that threatened species status is not appropriate for the friendly ground-dove. Therefore, on the basis of the best available scientific and commercial information, we are listing the American Samoa DPS of the friendly ground-dove as endangered in accordance with sections 3(6) and 4(a)(1) of the Act.

Under the Act and our implementing regulations, a species may warrant listing if it is in danger of extinction or likely to become so throughout all or a significant portion of its range. Because we have determined that the DPS of the friendly ground-dove is endangered throughout all of its range, no portion of its range can be “significant” for purposes of the definitions of “endangered species” and “threatened species.” See the Final Policy on Interpretation of the Phrase “Significant Portion of Its Range” in the Endangered Species Act’s Definitions of “Endangered Species” and “Threatened Species” (79 FR 37577, July 1, 2014).

Snails

Eua zebrina

Eua zebrina, a tropical tree snail in the family Partulidae, occurs solely on the islands of Tutuila and Ofu in American Samoa. Snails in this family (which includes three genera: Eua, Partula, and Samoana) are widely distributed throughout the high islands of Polynesia, Melanesia, and Micronesia in the south- and west-Pacific basin (Johnson et al. 1986a, pp. 161–177; Goodacre and Wade 2001, p. 6; Lee et al. 2014, pp. 2, 6–8). Many of the roughly 120 or more partulid species, including Eua zebrina, are restricted to single islands or isolated groups of islands (Kondo 1968, pp. 75–77; Cowie 1992, p. 169).

The Samoan partulid tree snails in the genera Eua and Samoana are a good example of this endemism. Cowie’s (1998) taxonomic work is the most recent and accepted taxonomic treatment of this species. Eua zebrina varies in color ranging from almost white to pale-brown, to dark brown or purplish; with or without a zebra-like pattern of flecks and lines (Cowie and Cooke 1999, pp. 29–30). Most Eus have transverse patterning (distinct coloration perpendicular to whorls) with a more flared aperture (i.e., tapered or wide-rimmed shell lip) than species of the related genus Samoana (Cowie et al. in prep.). Adult Tutuila snail shells usually fall between 0.7 and 0.8 in (18 to 21 mm) in height and between 0.4 and 0.5 in (11 to 13 mm) in width.

The biology of Samoan partulid snails has not been extensively studied, but there is considerable information on the partulid snails of the Mariana Islands (Crampton 1925a, pp. 1–113; Cowie 1992, pp. 167–191; Hopper and Smith 1992, pp. 77–85) and Society Islands (Crampton 1925b, pp. 5–35; Crampton 1932, pp. 1–194; Murray et al. 1982, pp. 316–325; Johnson et al. 1986a, pp. 167–177; Johnson et al. 1986b, pp. 319–327). Snails in the family Partulidae are predominantly nocturnal, arboreal herbivores that feed mainly on partially decayed and fresh plant material (Murray 1972 cited in Cowie 1992, p. 175; Murray et al. 1982, p. 324; Cowie 1992, pp. 167, 175; Miller 2014, pers. comm.).

Partulids are slow growing and hermaphroditic (Cowie 1992, pp. 167, 174). Eggs develop within the maternal body and hatch within or immediately after extrusion; they may or may not receive nourishment directly from the parent prior to extrusion (Cowie 1992, p. 174). Some species in the family are known to be self-fertile, but most partulids rely predominantly on out-crossing (Cowie 1992, pp. 167, 174). Adult partulids generally live about 5 years and give birth about every 20 days, producing about 18 offspring per year (Cowie 1992, pp. 174, 179–180).

Partulids can have a single preferred host plant or multiple host plants, in addition to having preference toward anatomical parts of the plant (i.e., leaves, branch, or trunk). Habitat partitioning may occur among three additional species (Crampton 1925a, pp. 1–113; Cowie 1992, pp. 167, 174). Some species in the family are known to be self-fertile, but most partulids rely predominantly on out-crossing (Cowie 1992, pp. 167, 174). Adult partulids generally live about 5 years and give birth about every 20 days, producing about 18 offspring per year (Cowie 1992, pp. 174, 179–180).

Partulids can have a single preferred host plant or multiple host plants, in addition to having preference toward anatomical parts of the plant (i.e., leaves, branch, or trunk). Habitat partitioning may occur among three additional species (Crampton 1925a, pp. 1–113; Cowie 1992, pp. 167, 174). Some species in the family are known to be self-fertile, but most partulids rely predominantly on out-crossing (Cowie 1992, pp. 167, 174). Adult partulids generally live about 5 years and give birth about every 20 days, producing about 18 offspring per year (Cowie 1992, pp. 174, 179–180).

Partulids can have a single preferred host plant or multiple host plants, in addition to having preference toward anatomical parts of the plant (i.e., leaves, branch, or trunk). Habitat partitioning may occur among three additional species (Crampton 1925a, pp. 1–113; Cowie 1992, pp. 167, 174). Some species in the family are known to be self-fertile, but most partulids rely predominantly on out-crossing (Cowie 1992, pp. 167, 174). Adult partulids generally live about 5 years and give birth about every 20 days, producing about 18 offspring per year (Cowie 1992, pp. 174, 179–180).

Partulids can have a single preferred host plant or multiple host plants, in addition to having preference toward anatomical parts of the plant (i.e., leaves, branch, or trunk). Habitat partitioning may occur among three additional species (Crampton 1925a, pp. 1–113; Cowie 1992, pp. 167, 174). Some species in the family are known to be self-fertile, but most partulids rely predominantly on out-crossing (Cowie 1992, pp. 167, 174). Adult partulids generally live about 5 years and give birth about every 20 days, producing about 18 offspring per year (Cowie 1992, pp. 174, 179–180).
major conservation significance (Cowie 2001, p. 217).

Summary of Factors Affecting Eua zebrina

Factor A: The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

Habitat Destruction and Modification by Agriculture and Development

Several thousand years of subsistence agriculture and more recent plantation agriculture has resulted in the alteration and great reduction in area of forests on the relatively flat land at lower elevations throughout American Samoa (Whistler 1994, p. 40; Mueller-Dombois and Fosberg 1996, p. 361). The threat of land conversion to unsuitable habitat (i.e., steep topography at elevations above the coastal plain) will accelerate if the human population continues to grow or if the changes in the economy shift toward commercial agriculture (DMWR 2006, p. 71).

On the island of Tutuila, the NPSA provides approximately 2,533 ac (1,025 ha) of forested habitat on Tutuila that is largely protected from clearing for agriculture and development and managed under a 50-year lease agreement with the American Samoa Government and multiple villages (NPSA Lease Agreement 1990). In addition, areas of continuous, undisturbed native forest on northwestern Tutuila outside of the NPSA boundaries may support additional populations of *E. zebrina*, but survey data for these areas are lacking. However, agriculture and urban development covers approximately 24 percent of the island, and up to 60 percent of the island contains slopes of less than 30 percent where additional land-clearing is feasible (ASCC 2010, p. 13; DMWR 2006, p. 25). Farmers are increasingly encroaching into some of the steep forested areas as a result of suitable flat lands already being occupied with urban development and agriculture (ASCC 2010, p. 13). Consequently, agricultural plots on Tutuila have spread from low elevations up to middle and some high elevations on Tutuila, significantly reducing the forest area and thus reducing the resilience of the native forest and populations of native snails. In addition, substantial housing increases are also projected to occur in some rural forests along the northern coastline of Tutuila, and in a few scattered areas near existing population bases with established roads (Stein et al. 2014, p. 24). These areas are outside of known snail locations within NPSA, but they do include forested habitat where snails may occur.

The development of roads, trails, and utility corridors has also caused habitat destruction and modification in or adjacent to existing populations of *Eua zebrina* on Tutuila (Cowie and Cook 1999, pp. 3, 30). Development and agriculture along the Alava Ridge road and in the areas surrounding the Amalau inholding within NPSA pose a threat to populations of *E. zebrina* in these areas (Whistler 1994, p. 41; Cowie and Cook 1999, pp. 48–49). In addition, construction activities, regular vehicular and foot trail access, and road maintenance activities cause erosion and the increased spread of nonnative plants resulting in further destruction or modification of habitat (Cowie and Cook 1999, pp. 3, 47–48). In summary, although the NPSA protects some forested habitat for the species, agriculture and development have contributed to habitat destruction and modification, and continue to be a threat to *E. zebrina* on Tutuila. The marginal forested habitat in the NPSA and Forest Service areas (Whistler 1992, p. 19; Cowie and Cook 1999, pp. 48, 49) may serve as a buffer to prevent population decline in the future.

Habitat Destruction or Modification by Feral Pigs

Feral pigs are known to cause deleterious impacts to ecosystem processes and functions throughout their worldwide distribution (Aplet et al. 1991, p. 56; Anderson and Stone 1993, p. 201; Campbell and Long 2009, p. 2.319). Feral pigs are extremely destructive and have both direct and indirect impacts on native plant communities. Pigs are a major vector for the establishment and spread of invasive, nonnative plant species by dispersing plant seeds on their hooves and fur, and in their feces (Diong 1982, pp. 169–170, 196–197), which also serve to fertilize disturbed soil (Siemann et al. 2009, p. 547). In addition, pig rooting and wallowing contributes to erosion by clearing vegetation and creating large areas of disturbed soil, especially on slopes (Smith 1985, pp. 190, 192, 196, 200, 204, 230–231; Stone 1985, pp. 254–255, 262–264; Tomich 1986, pp. 120–126; Cuddihy and Stone 1990, pp. 64–65; Aplet et al. 1991, p. 56; Loop et al. 1991, pp. 18–19; Gagne and Cuddihy 1991, p. 64; Nogueira-Filho et al. 2009, p. 3, 64; Kessler 2011, p. 52; Musschenbroek et al. 2011, pp. 175–177; Dunkell et al. 2011, pp. 320, 323). Erosion resulting from rooting and trampling by pigs impacts native plant communities by contributing to watershed degradation, alteration of plant nutrient status, and increasing the likelihood of landslides (Vitousek et al. 2009, pp. 3,074–3,086; Chan-Halbrendt et al. 2010, p. 251; Kessler et al. 2011, pp. 320–324). In the Hawaiian Islands, pigs have been described as the most pervasive and disruptive nonnative influence on the unique native forests and are widely recognized as one of the greatest current threats to Hawaii’s forest ecosystems (Aplet et al. 1991, p. 56; Anderson and Stone 1993, p. 195).

Feral pigs have been present in American Samoa since humans settled these islands (American Samoa Historic Preservation Office 2015, in litt.). In the past, hunting pressure kept their numbers down, however, increasing urbanization and increasing availability of material goods has resulted in the decline in the practice of pig hunting to almost nothing (Whistler 1992, p. 21; 1994, p. 41). Feral pigs are moderately common to absent in many forested areas, where they spread invasive plants, damage understory vegetation, and destroy riparian areas by their feeding and wallowing behavior (DMWR 2006, p. 23; ASCC 2010, p. 15). Feral pigs are a serious problem in the NPSA because of the damage they cause to native vegetation through their rooting and wallowing (Whistler 1992, p. 21; 1994, p. 41; Hoshide 1996, p. 2; Cowie and Cook 1999, p. 48; Togia pers. comm. in Loope et al. 2013, p. 321). Pig densities have been reduced in some areas (Togia 2015, in litt.), but without control methods that effectively reduce feral pig populations, they are likely to persist and remain high in areas that provide habitat for *E. zebrina* (Hess et al. 2006, p. 53; ASCC 2010, p. 15). Based on the reliance of *E. zebrina* on understory vegetation under native forest canopy, as well as the snail’s potential to feed on the ground in the leaf litter, the actions by feral pigs of rooting, wallowing, and trampling, and the associated impacts to native vegetation and soil, negatively affect the habitat of *E. zebrina* and are a current threat to the species.

Habitat Destruction and Modification by Nonnative Plant Species

Nonnative plant species can seriously modify native habitat and render it unsuitable for native snail species (Hadfield 1986, p. 325). Although some Hawaiian tree snails have been recorded on nonnative vegetation, it is more generally the case that native snails throughout the Pacific are specialized to survive only on the native plants with
which they have evolved (Cowie 2001, p. 219). Cowie (2001, p. 219) reported few observations of native snails, including Eua zebrina, in disturbed habitats on Tutuila.

The native flora of the Samoan archipelago (plant species that were present before humans arrived) consisted of approximately 550 taxa, 30 percent of which were endemic (species that occur only in the American Samoa and Samoa) (Whistler 2002, p. 8). An additional 250 plant species have been intentionally or accidentally introduced and have become naturalized with 20 or more of these considered invasive or potentially invasive in American Samoa (Whistler 2002, p. 8; Space and Flynn 2000, pp. 23–24). Of these approximately 20 or more nonnative pest plant species, at least 10 have altered or have the potential to alter the habitat of the species listed in this final rule (Atkinson and Medeiros 2006, p. 18; Craig 2009, pp. 94, 97–98; ASCC 2010, p. 15).

Nonnative plants can degrade native habitat in Pacific island environments by: (1) Modifying the availability of light through alterations of the canopy structure; (2) altering soil–water regimes; (3) modifying nutrient cycling; (4) ultimately converting native-dominated plant communities to nonnative plant communities; and (5) increasing the frequency of landslides and erosion (Smith 1985, pp. 217–218; Cuddihy and Stone, 1990, p. 74; Matson 1990, p. 245; D’Antonio and Vitousek 1992, p. 73; Vitousek et al. 1997, pp. 6–9; Atkinson and Medeiros 2006, p. 16). Nonnative plant species often exploit the disturbance caused by other factors such as hurricanes, agriculture and development, and feral ungulates, and thus, in combination reinforce or exacerbate their negative impacts to native habitats. Although the areas within the National Park of American Samoa on the islands of Tutuila, Ofu, and Tau contain many areas that are relatively free of human disturbance and nonnative plant invasion and largely represent pre-contact vegetation, the threat of invasion and further spread by nonnative plant species poses immense cause for concern (Space and Flynn 2000, pp. 23–24; Craig 2009, pp. 94, 96–98; Atkinson and Medeiros 2006, p. 17; ASCC 2010, p. 22; ASCC 2010, p. 15).

For brief descriptions of the nonnative plants that impose the greatest negative impacts to the native habitats in American Samoa, please refer to the proposed rule (80 FR 61568; October 13, 2015). In summary, based on the habitat requirements, impacts of nonnative plant species, habitat destruction and modification by nonnative plant species is and will continue to be a threat to Eua zebrina.

Conservation Efforts To Reduce Habitat Destruction, Modification, or Curtailment of Its Range

Several programs and partnerships to address the threat of habitat modification by nonnative plant species and feral pigs have been established and are ongoing within areas that provide habitat for E. zebrina (see Factor A discussion for the mao). In addition, approximately 2,533 ac (1,025 ha) of forested habitat within the Tutuila Unit of the NPSA are protected and managed under a 50-year lease agreement with the American Samoa Government and multiple villages contributing to the conservation of E. zebrina (NPSA Lease Agreement 1993). Although the habitat for E. zebrina within the national park is protected from large-scale land-clearing, it is not protected from modification by feral pigs or invasive plants inside or outside of the park.

Summary of Factor A

In summary, based on the best available scientific and commercial information, we consider the threats of destruction, modification, and curtailment of the species habitat and range to be ongoing threats to Eua zebrina. The decline of the native land snails in American Samoa has resulted, in part, from the loss of native habitat to agriculture and development, disturbance by feral pigs, and the establishment of nonnative plant species; these threats are ongoing, and are likely exacerbated by impacts to native forest structure from hurricanes. While there are some efforts to address these impacts, such as establishment of the NPSA, they do not address habitat degradation and destruction by nonnative mammals and plants where the snail occurs to the extent that listing is not warranted. All of the above threats are ongoing and interact to exacerbate the negative impacts and increase the vulnerability of extinction of E. zebrina.

Factor B: Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

Tree snails can be found around the world in tropical and subtropical regions and have been valued as collectibles for centuries. For example, the endemic Hawaiian tree snails within the family Achatinellidae were extensively collected for scientific and recreational purposes by Europeans in the 18th and 19th centuries (Hadfield 1986, p. 322). During the 1800s, collectors sometimes took more than 4,000 snails in several hours (Hadfield 1986, p. 322). Repeated collections of hundreds to thousands of individuals may have contributed to decline in these species by reduction of reproductive potential (removal of breeding adults) as well as by reduction of total numbers (Hadfield 1986, p. 327). In the Hawaiian genus Achatinella, noted for its colorful variations, 22 species are now extinct and the remaining 19 species endangered due in part to this original collection pressure (Hadfield 1986, p. 320).

In the proposed rule, we erroneously included “overutilization for scientific purposes” in our assessment of threats to Eua zebrina. We maintain that collection for scientific purposes likely contributed to a reduction in the number of E. zebrina in the wild; however, we recognize that at the time the majority of collections were made for scientific purposes, E. zebrina was neither at risk of extinction nor did the numbers collected increase the risk of its extinction.

In American Samoa, thousands of partulid tree snail shells (mostly E. zebrina) have been collected and used for decorative purposes (e.g., chandeliers) (Cowie 1995, pp. 1, 9). In general, the collection of tree snails persists to this day, and the market for rare tree snails serves as an incentive to collect them. A recent search of the Internet found a Web site advertising the sale of E. zebrina as well as three other Partulid species (Conchology, Inc. 2015, in litt.). Based on the history of collection of E. zebrina, the evidence of its sale on the Internet, and the vulnerability of the small remaining populations of this species, we consider over-collection for commercial and recreational purposes to be a threat to the continued existence of E. zebrina. When this final listing becomes effective (see DATES, above), research and collection of this species will be regulated through permits issued under section 10(a)(1)(A) of the Act.

Factor C: Disease or Predation Disease

We are not aware of any threats to Eua zebrina that would be attributable to disease.

Predation by Nonnative Snails

At present, the major existing threat to long-term survival of the native snail fauna in American Samoa is predation by the nonnative rosy wolf snail, the most commonly recommended biological control agent of the giant African snail (Achatina fulica), which also is an invasive nonnative species in
American Samoa. In 1980, the rosy wolf snail was released on Tutuila to control the giant African snail (Lai and Nakahara 1980 as cited in Miller 1993, p. 9). By 1984, the rosy wolf snail was considered to be well established on Tutuila, having reached the mountains (Eldredge 1988, pp. 122, 124–125), and by 2001 was reported as widespread within the National Park of American Samoa on Tutuila (Cowie and Cook 2001, pp. 156–157). While there are no records of introduction of the rosy wolf snail to the Manua Islands (Ofu, Olosega, and Tau), this species has been reported on Tau (Miller 1993, p. 10). The absence of the rosy wolf snail on the islands of Ofu and Olosega is significant because E. zebrina is present on Ofu (Miller 1993, p. 10, Cowie and Cook 2001, p. 143; Cowie et al. 2003, p. 39).

Numerous studies show that the rosy wolf snail feeds on endemic island snails and is a major agent in their declines and extinctions (Hadfield and Mountain 1981, p. 357; Howarth 1983, p. 240, 1985, p. 161, 1991, p. 489; Clarke et al. 1984, pp. 101–103; Hadfield 1986, p. 327; Murray et al. 1988, pp. 150–153; Hadfield et al. 1993, pp. 616–620; Cowie 2001, p. 219). Live individuals of the rosy wolf snail have been observed within meters of partulids on Tutuila, including E. zebrina and Samoana conica (Miller 1993, p. 10). Shells of E. zebrina and S. conica were found on the ground at several of the locations surveyed on Tutuila, along with numerous shells and an occasional live individual of the rosy wolf snail (Miller 1993, pp. 13, 23–28). The population of E. zebrina on Nuusetoga Island, a small islet off the north shore of Tutuila, was probably isolated from an ancestral parent population on Tutuila in prehistoric time (Miller 1993, p. 13). No live rosy wolf snails were found on this offshore islet in 1992, and E. zebrina on the islet were deemed safe from predatory snails at that time (Miller 1993, p. 13). Due to the widespread presence of the rosy wolf snail on Tutuila and the high probability of its unintentional introduction into additional areas within the range of E. zebrina, predation by the rosy wolf snail is a current threat to E. zebrina that will continue into the future.

Predation by several other nonnative carnivorous snails, Gonaxis kibweziensis, Streptostele musaeola, and Gulella bicolor, has been suggested as a potential threat to Eua zebrina and other native land snails. Species of Gonaxis, also widely introduced in the Pacific, attempts to control the giant African snail, have been implicated, though less strongly, in contributing to the decline of native snail species in the region (Cowie and Cook 1999, p. 46). Gonaxis kibweziensis was introduced on Tutuila in American Samoa in 1977 (Eldredge 1988, p. 122). This species has been reported only from Tutuila (Miller 1993, p. 9, Cowie and Cook 1999, p. 36) and is not as common as the rosy wolf snail (Miller 1993, p. 11). However, the two other predatory snails have been recorded on the Manua Islands: S. musaeola from Tutuila, Tau, and Ofu; and G. bicolor on Ofu (Cowie and Cook 1999, pp. 36–37). The potential impacts of these two species on the native fauna are unknown; both are much smaller than the rosy wolf snail and G. kibweziensis and were rarely observed during surveys (Cowie and Cook 1999, pp. 36–37, 46). However, Solem (1975 as cited in Miller 1993, p. 16) speculated that S. musaeola might have a role in the further decline of native species, and Miller (1993, p. 16) considered that it “undoubtedly had a negative impact.” Despite the lack of current information on the abundance of G. kibweziensis, but because of its predatory nature and the declining trend and small remaining populations of E. zebrina, we consider this species to be a threat to the continued existence E. zebrina. However, because of their previously observed low abundance and comparatively small size, and the lack of specific information regarding their impacts to E. zebrina, we do not consider predation by G. bicolor or S. musaeola to be a threat to the continued existence of E. zebrina. In summary, predation by the nonnative rosy wolf snail and Gonaxis kibweziensis is a current threat to E. zebrina and will continue into the future.

Predation by the New Guinea or Snail-Eating Flatworm

The New Guinea flatworm has contributed to the decline of native tree snails due to its ability to ascend into trees and bushes (Sugiura and Yamaura 2009, p. 741). Although mostly ground-dwelling, the New Guinea flatworm has also been observed to climb trees and feed on partulid tree snails (Hopper and Smith 1992, p. 82). Areas with populations of the flatworm usually lack partulid tree snails or have declining numbers of snails (Hopper and Smith 1992, p. 82). Because E. zebrina feeds on the ground as well as in shrubs and trees, it faces increased risk of predation by the New Guinea flatworm (Cooke 1928, p. 6). In summary, due to the presence of the New Guinea flatworm on Tutuila, and the high probability of its accidental introduction to the islands of Ofu and Olosega, predation by the New Guinea flatworm is a current threat to E. zebrina that will continue into the future.

Predation by Rats

Rats are likely responsible for the greatest number of animal extinctions on islands throughout the world, including extinctions of various snail species (Towne et al. 2006, p. 88). Rats are known to prey upon arboreal snails endemic to Pacific islands and can devastate populations (Hadfield et al. 1993, p. 621). Rat predation on tree snails has been observed on the Hawaiian Islands of Lanai (Hobdy 1993, p. 208; Hadfield 2005, in litt. p. 4), Molokai (Hadfield and Sauffer 2009, p. 1,595), and Maui (Hadfield 2006, in litt.). Three species of rats are present in American Samoa: The Polynesian rat, probably introduced by early Polynesian colonizers, and Norwegian and black rats, both introduced subsequent to western contact (Atkinson 1985, p. 38; Cowie and Cook 1999, p. 47; DMWR 2006, p. 22). Polynesian and Norwegian rats are considered abundant in American Samoa, but insufficient data exist on the populations of black rats (DMWR 2006, p. 22).

Evidence of predation by rats on E. zebrina was observed at several locations on Tutuila (Miller 1993, pp. 13, 16). Shells of E. zebrina were damaged in a fashion that is typical of rat predation; the shell is missing a large piece of the body whorl or the apex (Miller 1993, p. 13). Old shells may be weathered in a similar fashion, except that the fracture lines are not sharp and angular. Frequent evidence of predation by rats was also observed on native land snails during subsequent surveys (Cowie and Cook 1999, p. 47). In summary, based on the presence of rats on Tutuila and Ofu, evidence of predation, and the effects of rats on...
native land snail populations, predation by rats is a threat to E. zebrina and is likely to continue to be a threat in the future.

Conservation Efforts To Reduce Disease or Predation

We are unaware of any conservation actions planned or implemented at this time to abate the threats of predation by rats, nonnative snails, or flatworms to E. zebrina.

Summary of Factor C

In summary, based on the best available scientific and commercial information, we consider predation by the rosy wolf snail, Gonaxis kibweziensis, New Guinea flatworm, and rats to be a threat to E. zebrina that will continue in the future.

Factor D: The Inadequacy of Existing Regulatory Mechanisms

No existing Federal laws, treaties, or regulations specify protection of E. zebrina’s habitat from the threat of deforestation, or address the threat of predation by nonnative species such as rats, the rosy wolf snail, and the New Guinea flatworm. Some existing Territorial laws and regulations have the potential to afford E. zebrina some protection, but their implementation does not achieve that result. The DMWR is given statutory authority to “manage, protect, preserve, and perpetuate marine and wildlife resources” and to promulgate rules and regulations to that end (ASCA, title 24, chapter 3). This agency conducts monitoring surveys, conservation activities, and community outreach and education about conservation concerns. However, to our knowledge, the DMWR has not used this authority to undertake conservation efforts for E. zebrina such as habitat protection and control of nonnative molluscs and rats (DMWR 2006, pp. 79–80).

The Territorial Endangered Species Act provides for appointment of a Commission with the authority to nominate species as either endangered or threatened (ASCA, title 24, chapter 7). Regulations adopted under the Coastal Management Act (ASCA § 24.0501 et seq.) also prohibit the taking of threatened or endangered species (ASAC § 26.0220.1c). However, the ASG has not listed E. zebrina as threatened or endangered, so these regulatory mechanisms do not provide protection for this species.

Under ASCA, title 24, chapter 08 (noxious weeds), the Territorial DOA has the authority to ban, confiscate, and destroy species of plants harmful to the agricultural economy. Similarly, under

ASCA, title 24, chapter 06 (Quarantine), the director of DOA has the authority to promulgate agriculture quarantine restrictions concerning animals. These laws may provide some protection against the introduction of new nonnative species that may have negative effects on E. zebrina’s habitat or become predators of the species, but these regulations do not require any measures to control invasive nonnative plants or animals that already are established and proving harmful to native species and their habitats (DMWR 2006, p. 80) (see Factor D for the Pacific sheath-tailed bat, above).

As described above, the Territorial Coastal Management Act establishes a land use permit (LUP) system for development projects and a Project Notification Review System (PNRS) for multi-agency review and approval of LUP applications (ASAC § 26.0206). The standards and criteria for review of LUP applications include requirements to protect Special Management Areas (SMA), Unique Areas, and “critical habitats” (ASCA § 24.0501 et seq.). To date, all of the SMAs that have been designated (Pago Pago Harbor, Leone Pala, and Nuuuli Pala; ASAC § 26.0221) are in coastal and mangrove habitats on the south shore of Tutuila and do not provide habitat for E. zebrina. The only Unique Area designated to date is the Ottoville Rainforest (American Samoa Coastal Management Program 2011, p. 52), also on Tutuila’s south shore, which could provide habitat for E. zebrina, but it is a relatively small island of native forest in the middle of the heavily developed Ta’ufuna Plain (Trail 1993, p. 4), and we do not have any information that the species occurs there.

These laws and regulations are designed to ensure that “environmental concerns are given appropriate consideration,” and include provisions and requirements that could address some degree of threat to native forest habitat required by E. zebrina on Tutuila and Ofu, even though individual species are not named (ASAC § 26.0202 et seq.). Because the implementation of these regulations has been minimal and review of permits is not rigorous, issuance of permits may not provide the habitat protection necessary to provide for the conservation of E. zebrina, and land-clearing for agriculture and development have continued to impact the species (DMWR 2006, p. 71). We conclude that the implementation of the Coastal Management Act and its Coastal Resource Planning System does not address the threat of habitat destruction and degradation to E. zebrina (see Factor D for the Pacific sheath-tailed bat for further details).
suggested by surveys that failed to detect any snails in areas bordering agricultural plots or in forest areas that were severely damaged by three hurricanes (1987, 1990, and 1991) (Miller 1993, p. 16). Under natural conditions, loss of forest canopy to hurricanes did not pose a great threat to the long-term survival of these snails because there was enough intact forest with healthy populations of snails that would support dispersal back into newly regrown canopy forest. Similarly, forest damage may only be temporary and limited to defoliation or minor canopy damage, and vary depending on the aspect of forested areas in relation to the direction of approaching storms (Pierson et al. 1992, pp. 15–16). In general, forests in American Samoa, having evolved with the periodic disturbance regime of hurricanes, show remarkable abilities for regeneration and recovery, apart from catastrophic events (Webb et al. 2011, pp. 1,248–1,249).

Nevertheless, the destruction of native vegetation and forest canopy, and modification of light and moisture conditions both during and in the months and possibly years following hurricanes, can negatively impact the populations of *E. zebrina*. In addition, today, the impacts of habitat loss and degradation caused by other factors such as nonnative plant species (see “Habitat Destruction and Modification by Nonnative Plant Species” above), agriculture and urban development (see “Habitat Destruction and Modification by Agriculture and Development” above) and feral pigs (see “Habitat Destruction and Modification by Feral Pigs”), are exacerbated by hurricanes. As snail populations decline and become increasingly isolated, future hurricanes are more likely to lead to the loss of populations or the extinction of species such as this one that rely on the remaining canopy forest. Therefore, we consider the threat of hurricanes to be a factor in the continued existence of *E. zebrina*.

Low Numbers of Individuals and Populations

Species that undergo significant habitat loss and degradation and other threats resulting in decline and range reduction are inherently highly vulnerable to extinction resulting from localized catastrophes such as severe storms or disease outbreaks, climate change effects, and demographic stochasticity (Gilpin and Soulé 1986, pp. 24–34; Pimm et al. 1988, p. 757; Mangel and Tier 1994, p. 607). Conditions leading to this level of vulnerability are easily reached by island species that face numerous threats such as those described above for *E. zebrina*. Small, isolated populations that are diminished by habitat loss, predation, and other threats can exhibit reduced levels of genetic variability, which can diminish the species’ capacity to adapt to environmental changes, thereby increasing the risk of inbreeding depression and reducing the probability of long-term persistence (Shaffer 1981, p. 131; Gilpin and Soulé 1986, pp. 24–34; Pimm et al. 1988, p. 757). The problems associated with small occurrence size and vulnerability to random demographic fluctuations or natural catastrophes are further magnified by interactions with other threats, such as those discussed above (see Factor A, Factor B, and Factor C, above).

We consider *E. zebrina* vulnerable to extinction because of threats associated with low numbers of individuals and low numbers of populations. This species has suffered a serious decline and is limited by its slow reproduction and growth (Cowie and Cook 1999, p. 31). Threats to *E. zebrina* include: habitat destruction and modification by hurricanes, agriculture and development, nonnative plant species and feral pigs; collection and overutilization; and predation by the rosy wolf snail, *Gonaxis kilbewziensis*, and the New Guinea flatworm. The effects of these threats are compounded by the current low number of individuals and populations of *E. zebrina*.

Effects of Climate Change

Our analyses under the Act include consideration of ongoing and projected changes in climate (see Factor E discussion for the Pacific sheath-tailed bat). The magnitude and intensity of the impacts of global climate change and increasing temperatures on western tropical Pacific island ecosystems currently are unknown. In addition, there are no climate change studies that address impacts to the specific habitats of *E. zebrina*. The scientific assessment completed by the Pacific Science Climate Science Program (Australian BOM and CSIRO 2011, Vol. 1 and Vol. 2) provides general projections or trends for predicted changes in climate and associated changes in ambient temperature, precipitation, hurricanes, and sea level rise for countries in the western tropical Pacific region including Samoa (used as a proxy for American Samoa) (see Factor E discussion for the Pacific sheath-tailed bat for additional discussion).

Although we have specific information on the impacts of the effects of climate change to *E. zebrina*, increased ambient temperature and precipitation and increased severity of hurricanes will likely exacerbate other threats to this species as well as provide additional stresses on its habitat. The probability of species extinction as a result of climate change impacts increases when its range is restricted, habitat decreases, and numbers of populations decline (IPCC 2007, p. 48). *Eua zebrina* is limited by its restricted range in small areas on two islands and small total population size. Therefore, we expect this species to be particularly vulnerable to environmental impacts of climate change and subsequent impacts to its habitat. Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to this species, such as habitat loss and degradation.

Conservation Efforts to Reduce Other Natural or Manmade Factors Affecting Its Continued Existence

We are unaware of any conservation actions planned or implemented at this time to abate the threats of hurricanes, low numbers of individuals, and effects of climate change that negatively affect *E. zebrina*.

Synergistic Effects

In our analysis of the five factors, we found that the snail *Eua zebrina* is likely to be affected by loss of forest habitat, overcollection for commercial purposes, predation by nonnative snails, flatworms, and rats, and the vulnerability of its small, isolated populations to chance demographic and environmental occurrences. We also identify climate change effects as another source of risk to the species because increased ambient temperature and storm severity resulting from climate change are likely to exacerbate other direct threats to *E. zebrina* in American Samoa, and in particular place additional stress on its habitat; these effects of climate change are projected to increase in the future. Multiple stressors acting in combination have greater potential to affect *E. zebrina* than each factor alone. For example, projected warmer temperatures may enhance reproduction in nonnative predatory snails and flatworms or the spread of nonnative invasive plants. The combined effects of environmental, demographic, and catastrophic-event stressors, especially on small populations, can lead to a decline that is unrecoverable and results in extinction (Brook et al. 2008, pp. 457–458). The impacts of any one of the stressors described above might be...
sustained by a species with larger, more resilient populations, but in combination, habitat loss, predation, small-population risks, and climate change have the potential to rapidly affect the size, growth rate, and genetic integrity of a species like E. zebrina that persists as small, disjunct populations. Thus, the synergy among factors may result in greater impacts to the species than any one stressor by itself.

Determination for Eua zebrina

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats to E. zebrina. This endemic partulid tree snail restricted to the islands of Tutuila and Ofu in American Samoa has declined dramatically in abundance and is expected to continue along this declining trend in the future.

The threat of habitat destruction and modification from agriculture and development of plant species, and feral pigs is occurring throughout the range of E. zebrina and is not likely to be reduced in the future (Factor A). The threat of overutilization for commercial and recreational purposes has likely contributed to the historical decline of E. zebrina, is a current threat to the species, and is likely to continue into the future (Factor B). The threat of predation from nonnative snails, a nonnative predatory flatworm, and rats is of the highest magnitude, and likely to continue in the future (Factor C).

Additionally, the low numbers of individuals and populations of E. zebrina are likely to continue (Factor E), and these small isolated populations face increased risk of extinction from stochastic events such as hurricanes. Small population trends are compounded by the threats of habitat destruction and modification, overutilization, predation, and regulatory mechanisms that do not address the threats to the species. These factors pose threats to E. zebrina whether we consider their effects individually or cumulatively. Current Territorial wildlife laws and conservation efforts do not address the threats to the species (Factor D), and these threats will continue in the future.

The Act defines an endangered species as any species that is “in danger of extinction throughout all or a significant portion of its range” and a threatened species as any species “that is likely to become endangered throughout all or a significant portion of its range within the foreseeable future.” We find that E. zebrina is likely to become endangered throughout all or a significant portion of its range (79 FR 37577, July 1, 2014).
snail was common or abundant (Miller 1993, p. 23). In 1998, surveys within the newly established National Park of American Samoa (NPAS) on northern Tutuila did not detect any live O. strigatus or shells (Cowie and Cook 2001, pp. 143–159); however, Cowie and Cook (1999, p. 24) note that these areas were likely outside the range of O. strigatus. We are unaware of any surveys conducted for this species since 1998; however, local field biologists that frequent the forest above Maloata Valley for other biological field work report they have not seen O. strigatus (Miles 2015c, in litt.). Observations of live individuals at a single location on western Tutuila more than 20 years ago suggest that this species has undergone a significant reduction in its range and numbers (Miller 1993, pp. 15, 23–27; Cowie 2001, p. 215). Live individuals or shells of O. strigatus have not been reported since 1992, and no systematic surveys have been conducted for this species since the late 1990s (Cowie and Cook 1999, p. 24; Miles 2015c, in litt.).

Summary of Factors Affecting Ostodes strigatus

Factor A: The Present or Threatened Destruction, Modification, or Curtailment of Its Habitat or Range

The threats of nonnative plants, agriculture and development, and feral pigs negatively impact the habitat of Ostodes strigatus in a manner similar to that described for Eua zebrina (see Factor A discussion for Eua zebrina above). For the same reasons described in the Factor A discussion for E. zebrina, we consider the threats of destruction, modification, and curtailment of the species habitat and range to be significant ongoing threats to Ostodes strigatus. The decline of the native land snails in American Samoa has resulted, in part, from the loss of native habitat to agriculture and development, impacts to native forest structure from hurricanes, the establishment of nonnative plant species, and disturbance by feral pigs; these threats are ongoing and interact to exacerbate negative impacts and increase the vulnerability of extinction of O. strigatus.

Conservation Efforts To Reduce Habitat Destruction, Modification, or Curtailment of Its Range

Several programs and partnerships to address the threat of habitat modification by nonnative plant species and feral pigs have been established and are ongoing and areas that provide habitat for O. strigatus (see Factor A discussion for the mao). In addition, approximately 2,533 ac (1,025 ha) of forested habitat within the Tutuila Unit of the NPAS are protected and managed under a 50-year lease agreement with the American Samoa Government and multiple villages within a portion of the range of O. strigatus (NPAS Lease Agreement 1993). Although some of the habitat for O. strigatus is protected by the NPAS lease agreement from large-scale land-clearing, the national park designation does not protect this species’ habitat outside the park, or protect habitat inside or outside the park from degradation or destruction by feral pigs or invasive nonnative plants.

Factor B: Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

In the proposed rule, we erroneously included “overutilization for scientific purposes” in our assessment of threats to Ostodes strigatus. We maintain that collection for scientific purposes likely contributed to a reduction in the number of O. strigatus in the wild; however, we recognize that at the time the majority of collections were made for scientific purposes, O. strigatus was not at risk of extinction nor did the numbers collected increase the risk of its extinction. We have no evidence of this species having been collected for other purposes. In summary, based on the best available scientific and commercial information, we do not consider the overutilization for commercial, recreational, scientific, or educational purposes to be a current threat to O. strigatus. When this final listing becomes effective (see DATES above), research and collection of this species will be regulated through permits issued under section 10(a)(1)(A) of the Act.

Factor C: Disease or Predation

Disease

We are not aware of any threats to Ostodes strigatus that would be attributable to disease.

Predation by Nonnative Snails

The nonnative rosy wolf snail is widespread on Tutuila and has been shown to contribute to the decline and extinction of native land snails (see Factor C discussion for Eua zebrina). Several live individuals and numerous shells of the rosy wolf snail were found in the same sites in which live individuals (one site) and numerous shells (three sites) of O. strigatus were found (Miller 1993, pp. 23–27). Due to its widespread presence on Tutuila, predation by the rosy wolf snail is considered a threat to O. strigatus.

Predation by several other nonnative carnivorous snails, Gonaxis kibweziensis, Streptostele musaecola, and Gulella bicolor, has been suggested as a potential threat to O. strigatus and other native land snails (see Factor C discussion for Eua zebrina). Despite the lack of current information on the abundance of G. kibweziensis, but because of its predatory nature and the documented decline and lack of recent sightings of O. strigatus, we consider the predation by G. kibweziensis to be a threat to O. strigatus. Because of their previously observed low abundance, comparatively small size, and lack of specific information regarding impacts to O. strigatus, we do not consider predation by G. bicolor or S. musaecola as threats to O. strigatus that will continue in the future. In summary, predation by the nonnative rosy wolf snail and Gonaxis kibweziensis is a current threat to O. strigatus and will continue into the future.

Predation by New Guinea or Snail-eating Flatworm

The nonnative New Guinea or snail-eating flatworm has been the cause of decline and extinction of native land snails (see Factor C discussion for Eua zebrina). This predatory flatworm is found on Tutuila. The ground-dwelling habit of O. strigatus and its occurrence in the leaf litter places O. strigatus at a greater risk of exposure to the threat of predation by this terrestrial predator. Therefore, predation by P. manokwari is considered a threat to O. strigatus that will continue in the future.

Predation by Rats

Rats are known to prey upon endemic land snails and can devastate populations (see Factor C discussion for Eua zebrina). Three rat species are present in American Samoa, and frequent evidence of predation by rats on the shells of native land snails was reported during surveys (Miller 1993, p. 16; Cowie and Cook 2001; p. 47). Based on the presence of rats on Tutuila and evidence that they prey on native snails, the threat of predation by rats is likely to continue and is a significant factor in the continued existence of Ostodes strigatus that will continue in the future.

Conservation Efforts to Reduce Disease or Predation

We are unaware of any conservation actions planned or implemented at this time to abate the threats of predation by rats, nonnative snails, or flatworms to O. strigatus.
Summary of Factor C

In summary, based on the best available scientific and commercial information, we consider predation by the rosy wolf snail, Gonaxis kibweziensis, the New Guinea flatworm, and rats to be a threat to O. strigatus that will continue in the future.

Factor D: The Inadequacy of Existing Regulatory Mechanisms

No existing Federal laws, treaties, or regulations specify protection of the habitat of O. strigatus from the threat of deforestation, or address the threat of predation by nonnative species such as rats, the rosy wolf snail, and the New Guinea flatworm. Some existing Territorial laws and regulations have the potential to afford O. strigatus some protection, but their implementation does not achieve that result. The DMWR is given statutory authority to “manage, protect, preserve, and perpetuate marine and wildlife resources” and to promulgate rules and regulations to that end (ASCA title 24, chapter 3). This agency conducts monitoring surveys, conservation activities, and community outreach and education about conservation concerns. However, to our knowledge, the DMWR has not used this authority to undertake conservation efforts for O. strigatus such as habitat protection and control of nonnative molluscs and rats (DMWR 2006, pp. 79–80).

The Territorial Endangered Species Act provides for appointment of a Commission with the authority to nominate species as either endangered or threatened (ASCA title 24, chapter 7). Regulations adopted under the Coastal Management Act (ASCA § 24.0501 et seq.) also prohibit the taking of threatened or endangered species (ASAC § 26.0220.1c). However, the ASG has not listed O. strigatus as threatened or endangered, so these regulatory mechanisms do not provide protection for this species.

Under ASCA, title 24, chapter 08 (Noxious Weeds), the Territorial DOA has the authority to ban, confiscate, and destroy species of plants harmful to the agricultural economy. Similarly, under ASCA, title 24, chapter 06 (Quarantine), the director of DOA has the authority to promulgate agriculture quarantine restrictions concerning animals. These laws may provide some protection against the introduction of nonnative species that may have negative effects on the habitat of O. strigatus or become predators of the species, but these regulations do not require any measures to control invasive nonnative plants or animals that already are established and proving harmful to native species and their habitats (DMWR 2006, p. 80) (see Factor D for the Pacific sheath-tailed bat, above).

As described above, the Territorial Coastal Management Act establishes a land use permit (LUP) system for development projects and a Project Notification Review System (PNRS) for multi-agency review and approval of LUP applications (ASAC § 26.0206). The standards and criteria for review of LUP applications include requirements to protect Special Management Areas (SMA), Unique Areas, and “critical habitats” (ASCA § 24.0501 et seq.). To date, all of the SMAs that have been designated (Pago Pago Harbor, Leone Pala, and Nuuuli Pala; ASCA § 26.0221) are in coastal and mangrove habitats on the south shore of Tutuila and do not provide habitat for O. strigatus, which is known only from the interior western portion of the island. The only Unique Area designated to date is the Ottoville Rainforest (American Samoa Coastal Management Program 2011, p. 52), also on Tutuila’s south shore, which could possibly provide habitat for O. strigatus, but it is a relatively small island of native forest in the middle of the heavily developed Tafuna Plain (Trail 1993, p. 4), far from the areas where O. strigatus has been recorded.

These laws and regulations are designed to ensure that “environmental concerns are given appropriate consideration” and include provisions and requirements that could address to some degree threats to native forest habitat required by O. strigatus, even though individual species are not named (ASAC § 26.0202 et seq.). Because the implementation of these regulations has been minimal and review of permits is not rigorous, the permit system may not provide the habitat protection necessary to provide for the conservation of O. strigatus and instead result in loss of native habitat important to this and other species as a result of land-clearing for agriculture and development (DMWR 2006, p. 71).

We conclude that the implementation of the Coastal Management Act and its PNRS does not address the threat of habitat destruction and degradation to O. strigatus (see Factor D for the Pacific sheath-tailed bat for further details).

Summary of Factor D

In summary, existing Territorial laws and regulatory mechanisms have the potential to offer some level of protection for O. strigatus and its habitat but are not currently implemented in a manner that would do so. The DMWR has not exercised its statutory authority to address threats to O. strigatus such as predation by nonnative predators; the species is not listed pursuant to the Territorial Endangered Species Act; and the Coastal Management Act and its implementing regulations have the potential to address the threat of habitat loss to deforestation more substantively, but this law is inadequately implemented. Based on the best available information, some existing regulatory mechanisms have the potential to offer some protection of O. strigatus and its habitat, but their implementation does not reduce or remove threats to the species such as habitat destruction or modification or predation by nonnative species. For the reasons, we conclude that existing regulatory mechanisms do not address the threats to O. strigatus.

Factor E: Other Natural or Manmade Factors Affecting Its Continued Existence

Low Numbers of Individuals and Populations

Species with low numbers of individuals, restricted distributions, and small, isolated populations are often more susceptible to extinction as a result of reduced levels of genetic variation, inbreeding depression, reproduced reproductive vigor, random demographic fluctuations, and natural catastrophes such as hurricanes (see Factor E discussion for Eua zebrina, above). The problem is exacerbated with small occurrence size and vulnerability to random demographic fluctuations or natural catastrophes such as severe storms or hurricanes are further magnified by interactions with other threats, such as those discussed above (see Factor A, Factor B, and Factor C, above).

We consider O. strigatus to be vulnerable to extinction due to impacts associated with low numbers of individuals and low numbers of populations because this species has suffered a serious decline in numbers and has not been observed in recent years (Miller 1993, pp. 23–27). Threats to O. strigatus include: Habitat destruction and modification by hurricanes, agriculture and development, nonnative plant species and feral pigs; and predation by the rosy wolf snail, Gonaxis kibweziensis, and the New Guinea flatworm. The effects of these threats are compounded by the current low number of individuals and populations of O. strigatus.

Effects of Climate Change

We do not have specific information on the impacts of the effects of climate change to O. strigatus, and our
evaluation of the impacts of climate change to this species is the same as that for E. zebra, above (and see Factor E discussion for the Pacific sheath-tailed bat). Increased ambient temperature and precipitation and increased severity of hurricanes would likely exacerbate other threats to this species as well as provide additional stresses on its habitat. The probability of species extinction as a result of climate change impacts increases when its range is restricted, habitat decreases, and numbers of populations decline (IPCC 2007, p. 48). Ostodes strigatus is limited by its restricted range in one portion of Tutuila and small population size. Therefore, we expect this species to be particularly vulnerable to environmental impacts of climate change and subsequent impacts to its habitat. Although we cannot predict the timing, extent, or magnitude of specific impacts, we do expect the effects of climate change to exacerbate the current threats to these species, such as habitat loss and degradation.

Conservation Efforts to Reduce Other Natural or Manmade Factors Affecting Its Continued Existence

We are unaware of any conservation actions planned or implemented at this time to abate the threats of hurricanes, low numbers of individuals, and the effects of climate change that negatively impact O. strigatus.

Synergistic Effects

In our analysis of the five factors, we found that the snail Ostodes strigatus is likely to be affected by loss of forest habitat, predation by nonnative snails, flatworms, and rats, and the vulnerability of its small, isolated populations to chance demographic and environmental occurrences. We also identify climate change as another source of risk to the species because increased ambient temperature and storm severity resulting from climate change are likely to exacerbate other direct threats to O. strigatus in American Samoa, and in particular place additional stress on its habitat; these effects of climate change are projected to increase in the future. Multiple stressors acting in combination have greater potential to affect O. strigatus than each factor alone. For example, projected warmer temperatures may enhance reproduction in nonnative predatory snails and flatworms or the spread of nonnative invasive plants. The combined effects of environmental, demographic, and catastrophic-event stressors, especially on small populations, can lead to a decline that is unrecoverable and results in extinction (Brook et al. 2008, pp. 457–458). The impacts of any one of the stressors described above might be sustained by a species with larger, more resilient populations, but in combination habitat loss, predation, small-population risks, and climate change have the potential to rapidly affect the size, growth rate, and genetic integrity of a species like O. strigatus that persists as small, disjunct populations. Thus, the synergy among factors may result in greater impacts to the species than any one stressor by itself.

Determination for Ostodes strigatus

We have carefully assessed the best scientific and commercial information available regarding the past, present, and future threats to Ostodes strigatus. Observations of live individuals at a single location on western Tutuila more than 20 years ago suggest that this species has undergone a significant reduction in its range and numbers. The threat of habitat destruction and modification from agriculture and development, hurricanes, nonnative plant species, and feral pigs is occurring throughout the range of O. strigatus and is not likely to be reduced in the future. The impacts from these threats are cumulatively of high magnitude (Factor A). The threat of predation from nonnative snails, rats, and the nonnative predatory flatworm is of the highest magnitude, and likely to continue in the future (Factor C). Additionally, the low numbers of individuals and populations of O. strigatus, i.e., the possible occurrence of this species restricted to a single locality where it was observed more than 20 years ago, is likely to continue (Factor E) and is compounded by the threats of habitat destruction and modification and predation. These factors pose threats to O. strigatus whether we consider their effects individually or cumulatively. Current Territorial wildlife laws and conservation efforts do not address the threats to the species (Factor D), and these threats will continue in the future.

The Act defines an endangered species as any species that is “in danger of extinction throughout all or a significant portion of its range” and a threatened species as any species “that is likely to become endangered throughout all or a significant portion of its range within the foreseeable future.” We find that Ostodes strigatus is presently in danger of extinction throughout its entire range based on the severity and immediacy of the ongoing and projected threats discussed above. The loss and degradation of its habitat, predation by nonnative snails and flatworms, small number of individuals, limited distribution, the effects of small population size, and stochastic events such as hurricanes render this species in its entirety highly susceptible to extinction as a consequence of these imminent threats; for this reason, we find that a threatened species status is not appropriate for O. strigatus. Therefore, on the basis of the best available scientific and commercial information, we are listing Ostodes strigatus as endangered in accordance with sections 3(6) and 4(a)(1) of the Act. Under the Act and our implementing regulations, a species may warrant listing if it is endangered or threatened throughout all or a significant portion of its range. Because we have determined that the small O. strigatus is endangered throughout all of its range, no portion of its range can be “significant” for purposes of the definitions of “endangered species” and “threatened species.” See the Final Policy on Interpretation of the Phrase “Significant Portion of Its Range” in the Endangered Species Act’s Definitions of “Endangered Species” and “Threatened Species” (79 FR 37577, July 1, 2014).

Available Conservation Measures

Conservation measures provided to species listed as endangered or threatened under the Act include recognition, recovery actions, requirements for Federal protection, and prohibitions against certain practices. Recognition through listing creates public awareness and can stimulate conservation by Federal, Territorial, and local agencies, private organizations, and individuals. The Act encourages cooperation with the States and Territories and requires that recovery actions be carried out for all listed species. The protection required by Federal agencies and the prohibitions against certain activities are discussed, in part, below.

The primary purpose of the Act is the conservation of endangered and threatened species and the ecosystems upon which they depend. The ultimate goal of such conservation efforts is the recovery of these listed species, so that they no longer need the protective measures of the Act. Subsection 4(f) of the Act requires the Service to develop and implement recovery plans for the conservation of endangered and threatened species. The recovery planning process involves the identification of actions that are necessary to halt or reverse the species’ decline by addressing the threats to its survival and recovery. The goal of this process is to restore listed species to a point where they are secure, self-
sustaining, and functioning components of their ecosystems.

Recovery planning includes the development of a recovery outline shortly after a species is listed followed by preparation of a draft and final recovery plan. The recovery outline guides the immediate implementation of urgent recovery actions and describes the process to be used to develop a recovery plan. Revisions of the plan may be done to address continuing or new threats to the species, as new substantive information becomes available. The recovery plan identifies site-specific management actions that set a trigger for review of the five factors that control whether a species remains endangered or may be downlisted or delisted, and methods for monitoring recovery progress. Recovery plans also establish a framework for agencies to coordinate their recovery efforts and provide estimates of the cost of implementing recovery tasks. Recovery teams (composed of species experts, Federal and State or Territorial agencies, nongovernmental organizations, and stakeholders) are often established to develop recovery plans. When completed, the recovery outline, draft recovery plan, and the final recovery plan will be available on our Web site (http://www.fws.gov/endangered), or from our Pacific Islands Office (see FOR FURTHER INFORMATION CONTACT).

Implementation of recovery actions generally requires the participation of a broad range of partners, including other Federal agencies, States, Territories, nongovernmental organizations, businesses, and private landowners. Examples of recovery actions include habitat restoration (e.g., restoration of native vegetation), research, captive propagation and reintroduction, and outreach and education. The recovery of many listed species cannot be accomplished solely on Federal lands because their range may occur primarily or solely on non-Federal lands. To achieve recovery of these species requires cooperative conservation efforts on all lands.

When these species are listed, funding for recovery actions will be available from a variety of sources, including Federal budgets, State programs, and cost-share grants for non-Federal landowners, the academic community, and nongovernmental organizations. In addition, pursuant to section 6 of the Act, U.S. Territory of American Samoa would be eligible for Federal funds to implement management actions that promote the protection or recovery of these species. Information on our grant programs that are available to aid species recovery can be found at: http://www.fws.gov/grants.

Please let us know if you are interested in participating in recovery efforts for these species. Additionally, we invite you to submit any new information on these species whenever it becomes available and any information you may have for recovery planning purposes (see FOR FURTHER INFORMATION CONTACT).

Section 7(a) of the Act requires Federal agencies to evaluate their actions with respect to any species that is proposed or listed as an endangered or threatened species and with respect to its critical habitat, if any is designated. Regulations implementing this interagency cooperation provision of the Act are codified at 50 CFR part 402. Section 7(a)(4) of the Act requires Federal agencies to confer with the Service on any action that is likely to jeopardize the continued existence of a species proposed for listing or result in destruction or adverse modification of proposed critical habitat. If a species is listed subsequently, section 7(a)(2) of the Act requires Federal agencies to ensure that activities they authorize, fund, or carry out are not likely to jeopardize the continued existence of the species or destroy or adversely modify its critical habitat. If a Federal action may affect a listed species or its critical habitat, the responsible Federal agency must enter into consultation with the Service.

Section 8(a) of the Act authorizes the provision of limited financial assistance for the development and management of programs that the Secretary of the Interior determines to be necessary or useful for the conservation of endangered or threatened species in foreign countries. Sections 8(b) and 8(c) of the Act authorize the Secretary to encourage conservation programs for foreign listed species, and to provide assistance for such programs, in the form of personnel and the training of personnel.

The Act and its implementing regulations set forth a series of general prohibitions and exceptions that apply to all endangered wildlife. The prohibitions of section 9(a)(1) of the Act, codified at 50 CFR 17.21 for endangered wildlife, in part, make it illegal for any person subject to the jurisdiction of the United States to take (includes harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect; or to attempt any of these) any such species within the United States or the territorial sea of the United States or upon the high seas; to transport or ship, by any means whatsoever, any such species in violation of the Act. Certain exceptions apply to agents of the Service and State conservation agencies.

We may issue permits to carry out otherwise prohibited activities involving endangered and threatened wildlife species under certain circumstances. Regulations governing permits are codified at 50 CFR 17.22 for endangered species. With regard to endangered wildlife, a permit may be issued for the following purposes: for scientific purposes, to enhance the propagation or survival of the species, or for incidental take in connection with otherwise lawful activities. Requests for copies of the regulations regarding listed species and inquiries about prohibitions and permits may be addressed to U.S. Fish and Wildlife Service, Pacific Region, Ecological Services, Eastside Federal Complex, 911 NE. 11th Avenue, Portland, OR 97232–4181 (telephone 503–231–6131; facsimile 503–231–6243).

It is our policy, as published in the Federal Register on July 1, 1994 (59 FR 34272), to identify to the maximum extent practicable at the time a species is listed, those activities that would or would not constitute a violation of section 9 of the Act. The intent of this policy is to increase public awareness of the effect of a proposed listing on proposed and ongoing activities within the range of species proposed for listing. The following activities could potentially result in a violation of section 9 of the Act; this list is not comprehensive: Activities that result in take of any of the five species in American Samoa by causing significant habitat modification or degradation such that it causes actual injury by significantly impairing essential behaviors. This may include, but is not limited to, introduction of nonnative species in American Samoa that prey upon the listed species or the release in the territory of biological control agents that attack any life-stage of these species.

Questions regarding whether specific activities would constitute a violation of section 9 of the Act should be directed to the Pacific Islands Fish and Wildlife Office (see FOR FURTHER INFORMATION CONTACT) for review of the regulations concerning listed animals and general inquiries regarding
prohibitions and permits may be addressed to the U.S. Fish and Wildlife Service, Pacific Region, Ecological Services, Endangered Species Permits, Eastside Federal Complex, 911 NE. 11th Avenue, Portland, OR 97232–4181 (telephone 503–231–6131; facsimile 503–231–6243).

Required Determinations

National Environmental Policy Act (42 U.S.C. 4321 et seq.)

We have determined that environmental assessments and environmental impact statements, as defined under the authority of the National Environmental Policy Act (NEPA; 42 U.S.C. 4321 et seq.), need not be prepared in connection with listing a species as an endangered or threatened species under the Endangered Species Act. We published a notice outlining our reasons for this determination in the Federal Register on October 25, 1983 (48 FR 49244).

References Cited

Authors

The primary authors of this rule are the staff members of the Pacific Islands Fish and Wildlife Office.

List of Subjects in 50 CFR Part 17

- Endangered and threatened species,
- Exports, Imports, Reporting and recordkeeping requirements,
- Transportation.

Regulation Promulgation

Accordingly, we amend part 17, subchapter B of chapter I, title 50 of the Code of Federal Regulations, as set forth below:

PART 17—ENDANGERED AND THREATENED WILDLIFE AND PLANTS

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Where listed</th>
<th>Status</th>
<th>Listing citations and applicable rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bat, Pacific sheath-tailed (South Pacific subspecies) (= peapea vai, American Samoa; = tagiti, Samoa; = beka beka, Fiji).</td>
<td>Emballonura semicaudata semicaudata</td>
<td>Wherever found</td>
<td>E</td>
<td>81 FR [Insert Federal Register page where the document begins]; September 22, 2016.</td>
</tr>
</tbody>
</table>

Birds

<table>
<thead>
<tr>
<th>* * * * * *</th>
<th>* * * * *</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>* * * * * *</th>
<th>* * * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mao (= maomao) (honeyeater)</td>
<td>Gymnomyza samoensis .. Wherever found</td>
</tr>
</tbody>
</table>

Snails

<table>
<thead>
<tr>
<th>* * * * * *</th>
<th>* * * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snail [no common name]</td>
<td>Eua zebrina Wherever found</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>* * * * * *</th>
<th>* * * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snail [no common name]</td>
<td>Ostodes strigatus Wherever found</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>* * * * * *</th>
<th>* * * * *</th>
</tr>
</thead>
<tbody>
<tr>
<td>* * * * * *</td>
<td>* * * * *</td>
</tr>
<tr>
<td>* * * * * *</td>
<td>* * * * *</td>
</tr>
</tbody>
</table>
Dated: September 1, 2016.

James W. Kurth,
Acting Director, U.S. Fish and Wildlife Service.

[FR Doc. 2016–22276 Filed 9–21–16; 8:45 am]