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ABSTRACT: The primary purpose of the Kenai National Wildlife Refuge (KENWR) is  
to “conserve fish and wildlife populations in their natural diversity,” where “fish and 
wildlife” explicitly includes arthropods. To this end, we developed a Long Term 
Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest  
Inventory and Analysis (FIA) Program. In 2004 and 2006, we sweep-netted terrestrial  
arthropods on 255 100m2 circular plots systematically distributed at 5-km intervals over  
the 805,000 ha KENWR. These samples yielded 15,136 specimens, which were sorted to  
families and to species when possible. The comprehensive spatial coverage of the  
LTEMP sampling design provided spatial data suitable for species distribution modeling,  
but we sought to improve upon this design by explicitly accounting for imperfect  
detection. We proposed a rotating panel design where each site would be visited once 
every ten years.  Imperfect detection would be accounted for by spatial sub-sampling 
within plots. Using Monte-Carlo simulation, we assessed the proposed design of LTEMP 
for accurately monitoring changes in arthropod species distributions over time. Our  
simulations demonstrated that, for species that are likely to be collected in a single 50m2 

sweep net sample where they are present, the proposed LTEMP sampling design should  
provide accurate estimates of species distributions and local rates of colonization and 
extinction over the long-term. In order to document the landscape-scale patterns of  
arthropod diversity over the KENWR, we modeled arthropod family richness using 
random forest regression.  Arthropod family richness data were obtained from LTEMP 
and topographic, temporal, and productivity variables were obtained from GIS datasets.  
The resulting map explained 22% of variation of diversity of sweep net samples. Highest  
diversity was predicted on the margins of coastal wetlands and in productive hardwood 
and mixed forests; lowest diversity was predicted at barren alpine sites.
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Introduction

Motivation: A Broad Conservation Mandate

The primary purpose of the Kenai National Wildlife Refuge (KENWR) is “to 
conserve fish and wildlife populations and habitats in their natural diversity,” 
where the term “fish and wildlife” was defined as “any member of the animal 
kingdom, including without limitation any mammal, fish, bird, amphibian, reptile, 
mollusk, crustacean, arthropod or other invertebrate,” (Alaska National Interest 
Lands Conservation Act (ANILCA) of 1980).

Most of the “fish and wildlife” that the KENWR is charged to conserve are 
arthropods. They represent 80% of described diversity worldwide (Kremen et al. 
1993).  In Alaska, an incomplete, unpublished checklist of terrestrial arthropods 
included 6,500 species (unpublished checklist by Derek Sikes, University of 
Alaska Museum, Fairbanks, Alaska), roughly an order of magnitude greater than 
the number of vertebrate species of the state.  Consistent with the world and the 
region, arthropods represent most of metazoan diversity on the KENWR.

Arthropods are generally more important than vertebrates in terms of 
ecosystem functioning in most terrestrial systems (Wilson 1987).  In many 
ecosystems, herbivory by arthropods has a greater influence on primary 
production than vertebrates (Schowalter 2006).  Most plants require pollination by 
insects (Tepedino 1979). Arthropods also serve as important predators (Snyder 
and Evans 2006), parasites, fungivores (Hopkin 1997), and decomposers 
(Wallwork 1983).  Even a single species of arthropod can alter the composition 
and functioning of a landscape.  For example, an outbreak of the spruce bark 
beetle, Dendroctonus rufipennis Kirby, has recently removed the overstory of vast 
forests of mature white spruce (Picea glauca (Moench) Voss) on the KENWR, 
resulting in proliferation of understory grasses (Boucher and Mead 2006).  Many 
arthropod species, including the spruce bark beetle, are essential to the natural 
functioning of the KENWR.

Despite the mandate of ANILCA to conserve the natural diversity of 
arthropods, the fact that they represent most of biodiversity, and their immense 
ecological importance, little progress had been made toward finding out what 
arthropod species occur on KENWR.  Insects, spiders, and other arthropods have 
been overlooked because of somewhat circular reasons: (1) none of the species on 
KENWR were known to be of conservation concern, (2) arthropod species are 
assumed to be free from risk of extinction unless contrary evidence exists and (3) 
they are thought to be prohibitively difficult to learn about or conserve.  
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Figure 1: Map of the Kenai Peninsula showing the Kenai National Wildlife Refuge and LTEMP 
sampling locations.

The obvious first step is an inventory, a survey of the arthropod species that are 
present on the KENWR. However, a static inventory is inadequate because the 
composition of the fauna of the KENWR is changing and is expected to continue 
to change over the coming decades due to the responses of arthropods to a 
warming climate and due to additional introductions of exotic species. Mobile 
species are already moving up-slope and pole-ward as the climate warms 
(Gottfried et al., 1999; Parmesan 1996, 2006; Parmesan et al., 1999; Parmesan 
and Yohe 2003; Walther et al. 2002; Wilson et al. 2005), tracking their climatic 
preferences.  As this process of re-distribution continues, some areas will become 
refugia (Gottfried et al. 1999) while others will serve as corridors (Hannah et al. 
2002). While the most vagile species may respond rapidly, less motile species 
may not re-distribute themselves quickly enough to track climate. Habitat loss and 
fragmentation of suitable habitat will further exacerbate this problem, sometimes 
preventing species from moving to more suitable areas. Many species are 
expected to be lost as this process continues unless actions are taken to facilitate 
the re-distribution of species (Williams et al. 2005). Positioned as we are at the 
beginning of the re-distribution of species due to accelerating climate change, the 
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need for accurate documentation of current distributions of species and 
subsequent monitoring of species distributions is increasingly being recognized 
(Guisan and Thuiller 2005; Magness et al. 2008).

Long Term Ecological Monitoring Program (LTEMP) of the KENWR, a grid-
based, multi-species, collaborative, inventory and monitoring framework 
undertaken through a memorandum of understanding between the USDA Forest 
Service Forest Inventory and Analysis (FIA) program (Figure 1), provided ample 
spatial data for documenting distributions of species (e.g. Magness et al. 2008). 
However, due to the sampling methods used, imperfect detection could not be 
accounted for.

When a species is not detected perfectly by field methods there is a possibility 
of reporting false absences (i.e., recording a species as absent where it was in fact 
present, but not observed). This leads to bias in estimates of the probability of 
occurrence of a species (MacKenzie et al. 2003, 2006). This issue of imperfect 
detection is especially relevant in a monitoring context.  Unless it is accounted 
for, changes in the observed distribution of a species may be attributable to either 
(1) changes in the area occupied by a species or (2) changes in the likelihood that 
a species is detected due to changes in abundance, changes in seasonal phenology, 
etc.

Accounting for Imperfect Detection Using Occupancy Models

Substantial literature exists on the subject of accounting for imperfect detection 
(see MacKenzie et al. 2006 for a review). Occupancy models explicitly account 
for imperfect detection using repeated survey data to obtain unbiased estimates of 
presence/absence metrics (MacKenzie et al. 2003, 2006). Multi-season occupancy 
models can also be used to estimate local rates of colonization and extinction, 
potentially some of the most relevant monitoring metrics given expected 
distribution shifts and potential expansions of exotic species. 

In order to accurately monitor species distributions of arthropods over time, we 
propose to modify the field methods of LTEMP so that imperfect detection can be 
explicitly accounted for.

Diversity as a Measure of Ecosystem Health

Species richness can be defined as the number of species distributions that 
overlap with the area of interest. Since ecosystem stability (McCann 2000), 
ecosystem function (Hooper et al. 2005) and resilience (Chapin et al. 2000) are 
generally correlated with diversity, species richness is itself considered to be a 
good indicator of the health of a system (Magurran 1988). Under this premise, 
taxon richness is often used as an indicator in environmental assessment studies 
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(e.g. Bechtel and Copeland 1970; Egloff and Brakel 1973; Wu 1982; Roth et al. 
1994; Karr and Kimberling 2003).

Objectives

Our first objective was an initial inventory of the arthropod fauna of the 
KENWR. Our second objective was to develop methods for monitoring arthropod 
distributions over the long-term.  Our third objective was to document landscape-
scale patterns of arthropod biodiversity on the KENWR. 

Methods

Sampling Methods

Study Area and Sampling Frame: Located in south-central Alaska, the 
805,000 ha KENWR covers much of the western Kenai Peninsula (Figure 1) and 
consists mainly of boreal forest, lowland wetlands, and alpine habitats. The FIA 
program imposed a rectangular grid of sampling sites across the Kenai Peninsula 
with 4.8 km spacing between the sites.  Of the sites within KENWR, 255 sites that 
did not fall on water or ice were included in the sampling frame of  LTEMP. 
Sampling design and methods are described in more detail in Morton et al. 
(2009).

Plot Design and Field Methods: FIA crews established four circular, 5.64 m 
radius (100 m2) sub-plots at each sampling site, with one central sub-plot centered 
on the site coordinates and three additional circular plots arranged in a triangle 
around the central sub-plot (Burkman 2005). LTEMP methods were focused on 
the central plots and excluded the three auxiliary plots.  

Over the field seasons of 1999–2002, FIA field crews surveyed all of the 176 
sites that had been determined to be forested.  In 2004 and 2006, KENWR field 
crews sampled vegetation on the remaining 80 sites. Common to both FIA and 
KENWR field methods was collection of presence/absence data for all vascular 
plant species on the central 5.64m radius, circular plots.

Sampling of terrestrial arthropods was conducted by KENWR field crews over 
the field seasons of 2004 (152 sites) and 2006 (103 sites). Concurrent sampling of 
birds determined the seasonal (June 7–30) and daily (04:40 to 10:54 hours) 
sampling windows. A single sweep net sample was taken at each plot. For each 
sample, the collector swept a 30 cm diameter aerial insect net quickly back and 
forth over all vegetation and other substrates within reach over the entire circular 
plot. The contents of the net were then emptied into a vial of 80–90% ethanol. 
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Sorting and Identification: Arthropod specimens were processed and 
archived using appropriate curation methods. All arthropods present in the 
samples were sorted into orders and most were sorted to families.  Species 
identifications were made whenever possible and many specimens were shipped 
to over 30 specialists for expert determinations. With the exception of small 
amounts of material lent to various systematists, all specimens remain in the 
arthropod collection of the KENWR (international collection coden: KNWR).

Occupancy Modeling of Species Distributions

Proposed Sampling Design: The proposed long-term sampling design for 
LTEMP is a rotating panel (interpenetrating panel) design where 51 sites (20%) 
would be sampled every other year so that each site would be visited once every 
ten years.  Each panel would be representative of the KENWR as a whole.

Detection histories suitable for correcting for imperfect detection are most 
often obtained by visiting each site multiple times within a season.  Because 
surveying all sites multiple times in one season would be cost-prohibitive, 
increase damage to the sites through trampling, and increase the likelihood of 
inadvertently introducing exotic species to the sites, we propose to modify 
arthropod collecting methods so that detection probabilities can be estimated from 
spatial subsamples taken on a single visit to a site.  In the place of a single sweep 
net sample over the 100 m2 circular plot, the plot would be split into two 
semicircles along a north-south axis and a separate sweep net sample would be 
taken from each 50m2 semicircle. These spatial subsamples would provide a 
detection history suitable for occupancy modeling.

Monte-Carlo Simulations: Our general approach for evaluating LTEMP 
sampling regimes was to assess the performance of the proposed designs through 
Monte-Carlo simulation. These simulations were designed to answer the question 
of whether or not occupancy metrics could be estimated well; they were not 
designed to actually model species distributions. In the same way that a mean can 
be considered a special case of linear regression where there is only an intercept 
and an error term, the simple occupancy models we used estimated only 
occupancy metrics (occupancy, detection probability, and, in multi-season cases, 
rates of colonization and extinction) without considering additional variables (e.g. 
possible covariates) that would normally be included to produce species 
distribution models. These simulations were designed to answer the questions of 
interest without unnecessary complexity.

For each scenario considered, we (1) generated large numbers of simulated 
datasets that conformed to the proposed LTEMP monitoring design and had 
known parameter values, (2) fitted occupancy models using program PRESENCE 
(Hines 2007), and (3) compared the estimates obtained to the known parameter 
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values. We wrote scripts in the R programming language (R core development 
team 2008) scripts to generate datasets, write input files, fit occupancy models 
using PRESENCE, and extract results. 

We generated datasets suitable for occupancy modeling in the following way. 
For a given set of scalar values of occupancy (Ψ, the proportion of the area 
occupied by a species) and detection probability (p), we first generated a list of 
occupancy states at n sites by specifying that the occupancy states at all sites were 
independently and identically distributed realizations of a Bernoulli process with a 
rate of Ψ using the rbern function in the Rlab add-on library (Boos et al. 2006). 
Similarly, we specified that detection events in each of the two sweep net samples 
from each site were independently and identically distributed realizations of a 
Bernoulli process with a rate of p. Multiplying the detection states by the 
occupancy states yielded detection histories with the specified parameter values of 
Ψ and p.

For single-season scenarios, we considered nine values of occupancy (0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) and the same nine values of detection 
probability. For each combination of parameters, we generated 100 datasets (a 
total of 9 × 9 × 100 = 8,100 datasets). Using the same simulated datasets, we 
obtained estimates from program PRESENCE and naïve estimates of occupancy, 
where naïve estimates are simply the proportion of sites where a species is 
observed in any survey.  

In order to assess how well rates of extinction and colonization could be 
monitored over the long-term by the proposed sampling design, we intentionally 
selected parameter values that were realistic. We set initial occupancy to 0.7, 
detection probability to 0.8, the local rate of extinction (ε) to 0.1, and the local 
rate of colonization (γ) to 0.05. Multi-season data were generated by simulating 
the Markovian processes of colonization and extinction over a specified number 
of seasons. For each site that was occupied at season t, there was a probability ε 
(the local rate of extinction) that it would become unoccupied by season t + 1; 
sites unoccupied in season t had a probability γ (the local rate of colonization) of 
becoming colonized by season t + 1. One hundred datasets were generated 
conforming to a population with the specified parameter values over 20 years. 
For each simulated population, estimates of the local rates of colonization were 
obtained using program PRESENCE every time the population would be sampled 
by the proposed LTEMP rotating panel design.  Bowser (2009) provided a more 
detailed explanation of the methods used for generating datasets and fitting 
occupancy models using program PRESENCE, including the R scripts used.
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Table 1: Families included in analyses.

Acanthosomatidae Culicidae Nabidae
Achilidae Curculionidae Otitidae
Acrididae Delphacidae Phlaeothripidae
Agromyzidae Diapriidae Phoridae
Anisopodidae Dolichopodidae Pipunculidae
Anobiidae Drosophilidae Platygasteridae
Anthocoridae Dryinidae Psilidae
Anthomyiidae Dryomyzidae Psyllidae
Anthomyzidae Elateridae Pteromalidae
Aphelinidae Empididae Pythidae
Aphididae Encyrtidae Rhagionidae
Apidae Entomobryidae Scarabaeidae
Argidae Ephydridae Scathophagidae
Asteiidae Eulophidae Scelionidae
Bethylidae Eurytomidae Sciomyzidae
Bibionidae Formicidae Scirtidae
Braconidae Heleomyzidae Sclerosomatidae
Cantharidae Hemerobiidae Sepsidae
Carabidae Hypogastruridae Simuliidae
Ceraphronidae Ichneumonidae Sminthuridae
Chamaemyiidae Isotomidae Sphaeroceridae
Chloroperlidae Lathridiidae Staphylinidae
Chloropidae Lauxaniidae Stratiomyidae
Chrysomelidae Leiodidae Syrphidae
Chrysopidae Lithobiidae Tabanidae
Cicadellidae Lycidae Tachinidae
Clusiidae Lygaeidae Tenthredinidae
Coccinellidae Micropezidae Tephritidae
Coenagrionidae Miridae Thripidae
Coniopterygidae Muscidae Torymidae

Throughout the simulation analyses, program PRESENCE often yielded fitted 
values of zero or one for at least one of the parameters estimated. When this 
occurred, it appeared as if one parameter was fixed at either zero or one while 
fitting was performed on the remaining variable(s), leading to erroneous results. 
In these situations, program PRESENCE issuing the warning, “numerical 
convergence was not reached,” in its output. The failure rate of a set of 
simulations was calculated by dividing the number of failed simulations by the 
total number of simulations and was expressed as a percentage. All other 

8

USDA Forest Service Proceedings – RMRS-P-56 6.



summaries presented below exclude results from simulations where PRESENCE 
failed to converge, summarizing only simulations where PRESENCE converged 
successfully.

Random Forest Regression of Arthropod Family Richness

In order to create a continuous raster of arthropod family richness over the 
KENWR, predictions were made by random forest regression, a machine learning 
algorithm with high predictive accuracy (Breiman, 2001). For this exercise, 
taxonomic breadth was kept as broad as possible, although some groups were 
excluded due to practical constraints. Ninety families (Table 1) were included in 
analyses. Of the 255 sweep net samples available, two were rejected for the 
purposes of this regression analysis.  In one case, a logistical error had caused 
spatial misalignment of the arthropod sample with other data and in another case, 
an avalanche dramatically altered a plot immediately before arthropods were 
sampled.

Table 2: Variables included in Random Forest regression.

Variable Name Number of 
Variables

Description 

Spatial
latitude 1
longitude 1
Topographic
elevation 1 Elevation from the Digital Elevation Model (DEM). 
slope 1 Derived from DEM.
aspect 1 Derived from DEM.
curvature 1 Derived from DEM.
distance_ocean 1 Distance to the ocean.
Climate
precipitation 13 Annual (precipitation_annual) and monthly 

(precipitation01-12) precipitation from the PRISM 
model.

temperature 13 Annual (temperature_annual) and monthly 
(temperature01-12) temperature from the PRISM 
model. 

accumulation 1 Accumulated surface runoff based on PRISM annual 
precipitation data and DEM.

Vegetation
NDVI 1 Normalized difference Vegetation Index calculated 

from 2002 LandSat 7 imagery.
land cover 1 Vegetation cover classes (Figure 2).
Temporal
day 1 Julian day. 
hour 1 Hours since midnight. 
Historic
years_post_fire 1 Years since last fire.
Total 39
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Extraction of Covariates: A 100 m × 100 m resolution prediction grid was 
imposed over the KENWR. Values of covariates that were available as raster 
datasets were extracted by resampling (bilinear interpolation) using ArcMap 
(Table 2). Covariates available as vector datasets were converted to raster datasets 
conforming to the prediction grid. For all covariates, values from pixels in which 
LTEMP sampling locations fell were extracted for use in fitting of random forest 
regression models. 

Elevation data were extracted from a USGS digital elevation model (DEM) 
resampled from 30 m × 60 m to 30 m × 30 m resolution. Topographic variables 
were calculated from the DEM.  The normalized difference vegetation index 
(NDVI) was calculated from a  30m × 30m resolution mosaic of LandSat 7 
imagery taken in 2002 and made available through the Multi-Resolution Land 
Characteristics Consortium. Climate parameters were extracted from the 2 km 
resolution PRISM (Parameter-elevation Regressions on Independent Slopes 
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Model) raster datasets produced by the Spatial Climate Analysis Service at 
Oregon State University (SCAS/OSU). This dataset is currently the best climate 
coverage available for Alaska (Simpson et al. 2005).  Vegetation types were 
extracted from a recent vegetation classification of the Kenai Peninsula 
(KENWR, unpublished data).

Random forest regressions were fitted using the randomForest package (Liaw 
and Wiener 2002) for R. For all random forest regressions, 5,000 trees were built. 
To select an optimal value of the ‘mtry’ parameter (the number of predictors 
randomly selected for consideration at each node), we ran random forest 
regressions for all values of mtry between 1 and 50 and selected the value of mtry 
that yielded the highest value of pseudo-R-squared and the lowest mean squared 
error. A random forest regression model was then fitted using this optimal value 
of the mtry parameter. We used this model to make predictions at all 100 m × 100 
m pixels over the KENWR. For prediction, the time was set at median observed 
values from observed LTEMP data (June 18 at 8:00 am).

Results

Material Collected

The 255 sweep net samples yielded a total of 15,136 specimens, of which 
9,961 were of the 90 families included in analyses.  Over half of the arthropods 
collected (56%) were Diptera.  Hemiptera (26%),  Collembola (11%), and 
Hymenoptera (7%) also comprised substantial fractions of the specimens 
considered.

The abundance and frequency of specimens from each family varied greatly. 
Culicidae, with a total of 3,697 individuals collected and a frequency of 0.76 (i.e., 
collected at 76% of sites), was the most abundant and frequently collected family. 
Aphididae, Sminthuridae, Cicadellidae, Muscidae, Delphacidae, Empididae, 
Ichneumonidae, Simuliidae, Braconidae, Lauxaniidae, Phoridae, Biobionidae, 
Anthomyiidae, and Cantharidae were also relatively abundant and frequently 
collected. Ephydridae were abundant locally, one site on the margin of 
Chickaloon Flats yielding 133 of the 135 Ephydrid specimens collected, but they 
were generally infrequent, collected at only three sites. In contrast, Diapriidae 
were relatively common but were usually represented by few individuals at each 
site. Many taxa were rarely encountered and were represented by few specimens. 
Seventeen families (Isotomidae, Chloroperlidae, Achilidae, Nabidae, 
Phlaeothripidae, Anobiidae, Carabidae, Lathridiidae, Lycidae, Pythidae, 
Scarabaeidae, Scirtidae, Clusiidae, Dryomyzidae, Sepsidae, Aphelinidae, and 
Bethylidae) were represented by singletons.
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Monte-Carlo Simulations

Short-Term Results: Using data from sampling of a single panel (a single 
sampling season), program PRESENCE had a high failure rate, especially when 
detection probability was low (Figure 3).  The average failure rate was 24 failures 
out of every 100 simulations, with a high of 98 failures out of 100 simulations 
when both occupancy (Ψ) and detection probability (p) were 0.1.  Program 
PRESENCE was most reliable when Ψ was between 0.3 and 0.7 and p was 
between 0.6 and 0.8.

Figure 3: Failure rate of Program PRESENCE over a range of values of Ψ and p for the 
rotating panel design. Values are the percentage of simulations in which PRESENCE 
failed. Failures were defined as fitting of either Ψ or p with a value of 1 or 0. The colors of 
the pixels are graduated so that white represents a value of 0 and saturated red 
represents a value of 100%.

Naïve estimates of occupancy were nearly always biased low, with the 
magnitude of the bias increasing as p decreased and as Ψ increased (Figure 4(a)), 
with a maximum magnitude of average bias of -0.725. Only when detection 
probability was highest (0.9) were naïve estimates essentially unbiased. Program 
PRESENCE nearly always yielded less biased estimates of occupancy than the 
naïve estimates when it did not have convergence failures (Figure 4(b)).  It 
produced generally unbiased estimates of occupancy as long as detection 
probability was greater than 0.3; when p was less than 0.3, estimates of Ψ tended 
to be biased low. The magnitude of bias was greatest when p was at its minimum 
value (0.1). Near this extreme of the parameter space, estimates of Ψ were highly 
variable. 
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Naïve estimates of occupancy were more precise, even if less accurate, than 
estimates obtained by program PRESENCE (Figure 4(c) and (d)).  Standard 
deviation of naïve estimates was generally less than 0.05; standard deviation of 
estimates obtained from program PRESENCE were generally greater than 0.1 
when detection probability was less than about 0.6.

(a) Bias, naïve estimates

(c) Standard deviation, 

naïve estimates

(b) Bias, PRESENCE estimates

(d) Standard deviation, 

PRESENCE estimates

Figure 4: Bias and standard deviation of naïve estimates and PRESENCE estimates of 
occupancy over a range of values of occupancy (Ψ) and detection probability (p) for a 
single-season estimate (i.e., a survey of one panel). The colors of the pixels are 
graduated so that white represents a value of 0, saturated red represents a value of 1, 
and saturated green represents a value of -1.
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Long-Term Results: In these simulations, the rotating panel design did not 
yield reasonable estimates of local rates of colonization and extinction until some 
sites were visited twice, ten years into the sampling program. After this point, 
estimates of these change parameters were generally quite good. Estimates of 
occupancy were consistently unbiased (mean bias = 0.004), but not quite as 
precise as the desired maximum standard deviation of about 0.05 (SD = 0.062). 
Over time, the failure rate of program PRESENCE first rose dramatically from 0 
at the second year to 67% at the fourth year, then remained high until the tenth 
year, when some sites were sampled a second time (Figure 5). After this point, the 
failure rate became negligible.  Estimates of the change parameters ε and γ were 
initially biased high (Figures 6 and 7). Mean bias at the second year was 0.25 for 
ε and 0.61 for γ. This bias diminished slowly until the tenth year, when bias 
dropped quickly as some sites were sampled a second time. By the twelfth year 
and thereafter, estimates of these change parameters were essentially unbiased. 
After year twelve, precision was still not as good as is desirable, with standard 
deviations of about 0.1, but this large standard deviation was mostly due to a 
small number (2-9) of simulations each season where estimates of program 
PRESENCE were biased extremely high.  When these outliers were removed, 
standard deviation of estimates of ε and γ were less than 0.02.

Figure 5: Failure rate of program PRESENCE over 20 years of simulations.  Values are 
the percentage of simulations in which PRESENCE failed.

14

USDA Forest Service Proceedings – RMRS-P-56 6.



Figure 6: Estimates of the local rate of extinction over 20 years of simulations. Dashed 
line: true value (0.1). Circles and solid line: median of estimates with bars spanning from 
25% to 75% quantiles.

Figure 7: Estimates of the local rate of colonization over 20 years of simulations. Dashed 
line: true value (0.05). Circles and solid line: median of estimates with bars spanning from 
25% to 75% quantiles.
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Regression Results

Random forest regressions incorporating only information that was available as 
continuous raster data explained only 22% of the variation of family richness, but 
produced a reasonable map of predicted family richness (Figure 8). The land 
cover classification was the variable most often used by the decision trees for 
predicting arthropod diversity, followed by NDVI. The regression predicted 
lowest arthropod family richness at barren alpine sites. Highest richness was 
predicted in coastal wetlands and productive hardwood and mixed forests the 
KENWR (Table 3).

Figure 8: Expected family richness of terrestrial arthropods predicted by random forest 
regression.
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Figure 9: Importance of variables included in final random forest regression model. 
Variable names were defined in Table 2. IncNodePurity is the mean decrease in node 
purity, also known as the Gini splitting criterion (Breiman 2002).

Discussion

Utility of LTEMP for Monitoring Distributions

The proposed field methods of taking two spatial subsamples at each plot will 
allow for efficient monitoring of arthropod distributions on the KENWR while 
explicitly accounting for imperfect detection.  Because precision was poor when 
detection probability was less than 0.6, the proposed methods would be most 
useful for species with detection probabilities of about 0.6 or greater. Although 
sampling of a single panel (51 sites) did not provide a large enough sample size 
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for modeling species distributions with good precision, the frequent sampling of 
this design would provide up-to-date information on a frequent basis while 
allowing a larger overall sampling frame than would be possible by sampling the 
same sites every season. Over the long term, the proposed methods would allow 
accurate estimation of species distributions and local rates of extinction and 
colonization.

Table 3: Predicted arthropod family richness by land cover type.

Land Cover Type Mean S.D.
Wetland - halophytic 9.03 0.90
Black cottonwood 8.88 1.17
Mixed forest 8.31 1.19
Paper birch 8.24 1.13
Wetland - shrub 8.15 1.44
Alder/Willow 8.05 1.54
Mixed deciduous 8.01 1.23
White/Lutz/Sitka spruce 7.99 1.33
Black spruce 7.79 1.09
Wetland - graminoid 7.76 1.24
Herbaceous 7.68 1.30
Urban/Cultural 7.54 1.34
Aspen 7.51 1.00
Willow 7.43 1.86
Mixed conifer 6.57 1.38
Alder 6.26 1.41
Other shrub 6.18 1.84
Mountain hemlock 6.06 1.16
Barren - wet 5.70 2.40
Alpine 4.76 1.26
Sparsely vegetated 3.69 1.48
Barren/Rock 3.33 0.85

In order to monitor distributions of arthropod less likely to be collected in 
individual sweep net samples (i.e., with detection probabilities < ~0.6), more than 
two sweep net samples should be taken at each site. Increasing the number of 
surveys at each site is generally the most efficient way to improve precision of 
occupancy estimates, especially for species with low detection probabilities 
(MacKenzie and Royle 2005).  In the case of the proposed LTEMP design, where 
sample size is already large (~254 sites) and the number of samples taken at each 
site is at its minimum value (2), increasing the number of sweep net samples is 
certainly the best way to improve precision and enable monitoring of a larger 

18

USDA Forest Service Proceedings – RMRS-P-56 6.



number of arthropod species.  Since the sweep net sampling method yielded 
information on relative abundance of arthropod species, estimates of occupancy 
metrics may also be improved by incorporating this information  as was done by 
Royle and Nichols (2003).

The reason that rates of local colonization and extinction could not be 
estimated well over the first eight years of simulations was that the rotating panel 
design provided little information pertaining to these parameters until some sites 
were sampled a second time, ten years into the proposed sampling program. 
Precision and accuracy of estimates of these change parameters would best be 
improved by addition of a number of sites that would be sampled in consecutive 
seasons to furnish information about changes in occupancy states over the short-
term.

Patterns of Diversity

The good spatial coverage of the LTEMP sampling framework provided ample 
data for modeling arthropod family richness. This exercise yielded a map of 
coarse, landscape-scale patterns of arthropod diversity that will serve as a baseline 
for comparison with future arthropod diversity on the KENWR.  It is also useful 
for putting small-area samples of arthropod diversity in the context of the 
KENWR as a whole.

Bowser (2009), using the same arthropod diversity data from LTEMP, found 
that temporal variable, productivity, and climate were the most important 
determinants of arthropod diversity on the KENWR. His analysis and the current 
analysis by random forest were consistent with McCoy (1990) in that, at about 
60° latitude, maximum arthropod diversity occurred near sea level. The margins 
of coastal salt marshes and productive deciduous and mixed forest habitat types 
where random forest regression predicted highest arthropod diversity were 
relatively warm, productive sites; the alpine and barren habitat types where lowest 
arthropod diversity was predicted are relatively cold, unproductive sites. This 
apparent positive relationship between arthropod diversity and vegetative 
productivity is consistent with the species-energy theory of Wright (1983). He 
posited that, as the amount of energy moving through a system increases, the 
population sizes of living things supported by that system increase, reducing 
extinction rates.  

Conclusions

The excellent spatial representation of the LTEMP sampling framework 
provided ample spatial data for modeling over the landscape of the KENWR.  By 
correcting for imperfect detection in the future, we will be poised to monitor for 
changes in the distributions of species over time. Although monitoring was mostly 
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discussed in the context of the responses of species to climate, these same 
monitoring methods should serve well for monitoring the spread of exotic species 
and the subsequent responses of native biota in terms of distribution shifts.  
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