COMPUTER ANALYSIS OF LANDSAT DATA FOR EVALUATING WILDFIRE ON THE SENEY NATIONAL WILDLIFE REFUGE

CASEY R. SZPAK
DMAAC, ST. LOUIS, MISSOURI, AND
GRADUATE STUDENT, REMOTE SENSING PROGRAM
UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN

ROGER M. REINHOLD
GRADUATE STUDENT, REMOTE SENSING PROGRAM
UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN

MICHAEL J. KUKAN
UNDERGRADUATE, DEPARTMENT OF GEOGRAPHY
EASTERN MICHIGAN UNIVERSITY, YPSILANTI, MICHIGAN

BIOGRAPHICAL SKETCHES

CASEY R. SZPAK IS A TWELVE-YEAR CARTOGRAPHER AND PHOTOGRAMMETRIST EMPLOYED BY THE DEFENSE MAPPING AGENCY, ST. LOUIS, MISSOURI, AND PRESENTLY IS ASSIGNED TO THE UNIVERSITY OF MICHIGAN GRADUATE SCHOOL IN THE REMOTE SENSING PROGRAM. ROGER M. REINHOLD IS A GRADUATE STUDENT IN THE REMOTE SENSING PROGRAM AT THE UNIVERSITY OF MICHIGAN. HE RECEIVED HIS B.S. IN BIOLOGY FROM BUCKNELL UNIVERSITY. MICHAEL J. KUKAN IS A SENIOR AT EASTERN MICHIGAN UNIVERSITY WHERE HE WILL RECEIVE A B.S. DEGREE IN GEOGRAPHY AND A MINOR DEGREE IN MATHEMATICS.
ABSTRACT

Post-fire LANDSAT Multispectral Scanner imagery of the fall, 1976, Seney National Wildlife Refuge wildfire was analyzed with the computer-assisted techniques of the Earth Resources Data Center, Environmental Research Institute of Michigan. Evaluation of image categorization revealed the following: 1) fire boundaries could be mapped in all but those areas where fire existed solely as a light surface fire under the forest canopy, 2) similar spectral signatures from burned areas and marshes prevented their separation in the categorization, and 3) degree of burn could not be determined. Classification area tabulations are presented for the Seney Refuge.

PROBLEM STATEMENT

LANDSAT MULTISPECTRAL SCANNER IMAGERY POTENTIALLY SERVES AS A VALUABLE DATA SOURCE FOR THE EVALUATION OF WILDFIRE. Extensive remote sensor coverage of the Seney National Wildlife Refuge wildfire of 1976, including multiday color infrared photography and LANDSAT MSS imagery, in conjunction with thorough ground surveys, made possible an assessment of the utility of the LANDSAT data for wildfire evaluation.

OBJECTIVES

The objectives of the study were:

1. To determine the accuracy of LANDSAT imagery to evaluate the area burned in the Walsh Ditch Fire, Seney National Wildlife Refuge, using computer-assisted analysis.

2. To determine the total area of burn, the area within the fire perimeter left unburned, and the area
WITHIN THE WILDLIFE REFUGE THAT WAS BURNED.

3. TO CLASSIFY THE BURN AREA INTO SUB-CATEGORIES OF THE DEGREE OF BURN.

BACKGROUND

A LIGHTNING STRIKE RESULTED IN FIRE IN THE SENEY NATIONAL WILDLIFE REFUGE, LOCATED IN MICHIGAN'S UPPER PENINSULA, ON 30 JULY, 1976. REFUGE POLICY DICTATED THAT THE FIRE BE ALLOWED TO BURN AS LONG AS IT REMAINED WITHIN THE REFUGE BOUNDARY. BY 11 AUGUST, THE FIRE NO LONGER WAS CONFINED TO THE REFUGE, AND FIRE SUPPRESSION WAS INITIATED. NOT UNTIL 21 SEPTEMBER WAS THE FIRE FINALLY BROUGHT UNDER CONTROL, BY WHICH TIME AN ESTIMATED 74,000 ACRES HAD BEEN BURNED (SUGARBAKER, 1979). A MAP OF THE REFUGE AND FIRE BOUNDARY IS PRESENTED IN FIGURE 1.

IN A PREVIOUS STUDY, SUGARBAKER (1978, 1979) CONSTRUCTED FIRE BOUNDARY, POST-FIRE VEGETATION, AND PRE-FIRE TO POST-FIRE VEGETATION CHANGE MAPS FROM COLOR IR AERIAL PHOTOGRAPHY AND GROUND SURVEYS. MANUAL INTERPRETATION OF LANDSAT IMAGERY BY SUGARBAKER REVEALED THE POTENTIAL OF THIS DATA SOURCE FOR ACCURATELY MAPPING FIRE BOUNDARIES FOR ALL BUT LIGHT SURFACE FIRES WHICH OCCUR UNDER FOREST CANOPIES. AN ASSESSMENT OF BURN SEVERITY FROM THE LANDSAT IMAGERY WAS INCONCLUSIVE.

THE WORK OF SUGARBAKER SERVED AS THE BASIS FOR THIS PROJECT. THE RESULTS AND EXTENSIVE DATA SET DERIVED FROM THAT STUDY PROVIDED A UNIQUE OPPORTUNITY TO DEMONSTRATE THE UTILITY OF COMPUTER-ASSISTED ANALYSIS OF LANDSAT MSS DATA FOR EVALUATING THE EFFECTS OF WILDFIRE.
DESCRIPTION OF STUDY AREA

IN THE SOUTHERN PART OF THE BURN AREA THE BOGS AND BOG FORESTS ARE REPLACED BY SAND KNOLLS SURROUNDED BY MEADOWS OF SEDGES (CAREX SPP.) AND COTTONGRASSES (ERIOPHORUM SPP.).

TO THE NORTH, THE AREA OF BURN IS COMPOSED OF STRING GRASS MEADOWS, WHICH ARE WATERWAYS, AND VARIOUS FOREST TYPES SURROUNDING THE MEADOWS. MAJOR FOREST TYPES INCLUDE TAG ALDER LOWLANDS, SPRUCE-FIR, ASPEN, AND UPLAND PINE FORESTS.

METHODOLOGY

THE ANALYSIS PROCEEDED WITH A SUPERVISED CATEGORIZAION OF THE LANDSAT SCENE IN THE AREA OF THE SENEY FIRE. TRAINING SETS OF VARIOUS LAND COVER TYPES WERE SELECTED ON THE MOVING WINDOW DISPLAY (MWD) AND ANALYZED BY MULTIVARIATE CATEGORICAL PROCESSING. FOLLOWING SATISFACTORY CLASSIFICATION, A CATEGORIZED LANDSAT SCENE WAS GENERATED AND PLACED ON DISK FILE FOR SUBSEQUENT FILMING. SOME MANUAL INTERPRETATION AND EDITING OF THE CATEGORIZED SCENE WAS PERFORMED ON THE MWD PRIOR TO FILMING.

IN ORDER TO ASSESS THE ACCURACY OF THE LANDSAT CATEGORIZATION, A COMPARISON OF THE COMPUTER CLASSIFIED BURN AREA AND THE GROUND TRUTH BURN AREA WAS UNDERTAKEN. FOLLOWING GEOMETRIC PROCESSING, ERDC DIGITAL POLYGON FILES FROM DIGITIZED GRAPHICAL DATA CAN BE CONVERTED TO LANDSAT SCAN LINE AND PIXEL ELEMENT COORDINATES AND THEN OVERLAYERED WITH A CLASSIFIED
LANDSAT scene for comparison. For this analysis, unburned areas within the fire boundary (including ponds) and an unburned "window" exterior to the fire perimeter were digitized on the U.S.G.S. 1:24,000 sheets and placed in a polygon file to be merged with the LANDSAT classified scene.

The boundary of the Seney Refuge was also digitized and placed on file in order to create burn area tabulations for the refuge. After geometric processing, the refuge boundary was overlayed with the classified LANDSAT scene and the pixels within the boundary tabulated according to the classification.

Two film products were generated to assist in the analysis. A computer enhanced false-color image (bands 4, 5, and 7), recorded at a scale of 1:312,000, served as a reference to the Seney area and helped to identify certain ground features on the MWD. A color-coded image of the categorized scene was recorded at a scale of 1:374,500 and assisted in the final evaluation.

A flow chart of the methodology is presented in Figure 2.

RESULTS

A total of fourteen training sets and associated groups were used in the final categorical analysis of the Seney LANDSAT image (Figures 3a and 3b). For several land cover types, burn, water, and agricultural land, it was necessary to select two or three training sets to fully represent those cover types. In particular, at points where the fire crossed the Walsh Ditch, several spectral signatures were visible on the imagery. Two training sets were chosen as burn in this area. Training sets of the same cover type were kept separate in the categorical analysis, but each cover type was
represented by only one color in the color-coded categorized image (Figure 4; the color key is located in the Table). The categorized land cover types are presented in the Table. The Michigan Land Cover/Use Classification System (MLUCRC, 1976) was used to describe the categories as they were identified from Sugarbaker’s post-fire vegetation map.

Evaluation of initial training set histograms revealed that various degrees of burn could not be separated based on spectral characteristics. Training sets were selected in areas of homogeneous burn, but selected so as to be representative of different zones of relative burn as manually interpreted by Sugarbaker (1979) from the Landsat imagery (Figure 5). All training sets exhibited similar spectral signatures, and the attempt to classify burn severity was abandoned. It is probable that Sugarbaker’s classification reflected changes in percent of cover burned rather than the potential differences in spectral reflectances from areas of burn.

Training set selection was successful in differentiating burn from water. Figure 3a reveals that counts in band 7 for water were significantly lower than those for burn and thus permitted separation of these two cover types. Classification in areas of very shallow water and/or non-forested wetlands (MLUCRC classifications 6230/6240) proved to be not so successful. The spectral signature of these areas was similar to that of the burn training sets, resulting in the misclassification of these marshes as burn. Attempts to designate a marsh training set proved fruitless due to the lack of a homogeneous area of marsh large enough to be enclosed by the cursor. The results of the final categorical analysis displayed the perimeters of most ponds as a ring of "burn" one or two pixels deep and "burn" was found to run parallel to all the waterways in the study area. The prob-
LEM was reconciled by manual editing of the categorized scene. Based on the mapped ground truth, pixels showing "burn" outside the fire perimeter were surrounded with the cursor on the MWD and their group number altered to that of a category designated as Non-forested (non-wooded) wetlands. It is unknown how many pixels were altered by the manual interpretation.

Sugarbaker (1979) found the May LANDSAT image permitted mapping of the fire boundary from manual interpretation in all but those areas where the fire existed solely as a light surface fire under forest overstories. The results of this study support this conclusion. In those areas of healthy forest canopy, the LANDSAT MSS is unable to detect the presence of surface phenomenon, with the result that some areas of recorded burn (based on mapped ground truth) were categorized as non-burn by the computer analysis.

It was originally intended to derive an estimate of this error by merging the digitized non-burn area file with the LANDSAT categorized scene. Time limitations precluded this analysis as it would have been necessary to convert the entire digitized non-burn polygon file to LANDSAT scan line and pixel element coordinates. Completion of this error analysis in a future study would be most beneficial for assessing the utility of LANDSAT MSS imagery for evaluating wildfire.

The extent of this error, evaluated by visual review, was estimated to be greatest in the area directly south of Route 28 and in the area directly west of Driggs River along the eastern boundary of the fire. These areas generally were mapped as coniferous or mixed conifer-broadleaved forest (ML/UCRC classification 4200/4300) by Sugarbaker (1979).

-8-
WHERE THE CANOPY WAS CLOSED AND UNBURNED, SURFACE FIRE DETECTION WAS POSSIBLE ONLY FROM THE AERIAL CIR PHOTOGRAPHY.

CONCLUSIONS

THE TOTAL AREA OF BURN AND THE AREAS OF OTHER LAND COVER TYPES WITHIN THE SENEE NATIONAL WILDLIFE REFUGE WERE DETERMINED BY COMPUTER TABULATION OF PIXELS WITHIN THE REFUGE BOUNDARY. WITHOUT THE INCORPORATION OF THE DIGITIZED NON-BURN POLYGON FILE, A COMPARATIVE ANALYSIS OF LANDSAT BURN CATEGORIZATION AND GROUND SURVEY WAS NOT DETERMINED. MANUAL REVIEW OF BOTH DATA SETS INDICATED THAT THIS ASSESSMENT WOULD BE POSSIBLE WITH ADDITIONAL STUDY.

SHOULD PROVIDE THE BASIS FOR MAPPING THESE AREAS. LAUER AND
KRUMPE (1973), IN A NASA STUDY OF WILDLAND RESOURCES OF NORTH-
ERN CALIFORNIA, CONCLUDED THAT LANDSAT EVALUATION OF POST-
FIRE AREAS WAS SUPERIOR TO GROUND SURVEY, WITH A TEN TO ONE
COST ADVANTAGE. EQUALLY IMPORTANT IN THEIR STUDY, A MUCH
HIGHER ACCURACY OF ACTUAL DAMAGED AREA WAS OBTAINED FROM
LANDSAT IMAGERY ANALYSIS. THE SENEY DIGITAL SCENE INDICATED
SMALL BURN EXTRUSIONS BEYOND THE MANUALLY INTERPRETED PERI-
METER, AND THUS MAY HAVE REVEALED FIRE-JUMP AREAS OVERLOOKED
IN THE ORIGINAL EVALUATION BY THE GROUND CREW SURVEY. VERI-
FICATION WOULD REQUIRE FURTHER ANALYSIS WITH GROUND TRUTH.

IN FINAL CONCLUSION, OBJECTIVE EVALUATION OF THE FIRE PERI-
METER IS AVAILABLE THROUGH THE UTILIZATION OF DIGITAL LANDSAT
ANALYSIS, ESPECIALLY IN DOMINATE FOREST STANDS WITH HOMO-
GENEOUS GROUND COVER. A CRITICAL REVIEW OF LANDSAT SCENE
AND APPROPRIATE SCENE DATE MUST BE UNDERTAKEN FOR OPTIMUM
EVALUATION OF FIRE IN MIXED VEGETATIVE CANOPIES AND IN AREAS
OF WETLAND.

FUTURE STUDIES SHOULD INVESTIGATE BAND RATIOING METHODS TO
SEPARATE WETLAND AND BURN SIGNATURES.

RECOMMENDATIONS

THE COMPUTER ASSISTED ANALYSIS OF THE SENEY WILDFIRE SUPPORTS
SEVERAL RECOMMENDATIONS FOR FUTURE STUDIES OF POST-FIRE E-
VALUATION IN AREAS OF MIXED CANOPY AND WETLAND. FIRST, AC-
QUISITION OF APPROPRIATE LANDSAT SCENE(S) IS A DEFINITE RE-
QUIREMENT. INCORPORATION OF MULTIPLE SCENE DATES MIGHT BE
ADVANTAGEOUS SINCE CROWN FOLIAGE MAY REMAIN FOR MANY WEEKS
BEFORE DROPPING, AND GREEN-UP, PARTICULARLY IN WETLANDS, IS
HIGHLY VARIABLE. SECOND, THE ACQUISITION OF THE MAXIMUM
AMOUNT OF SUPPORTIVE DATA SUCH AS GROUND TRUTH OF VEGETATIVE
COVER TYPES AND SOIL TYPES AND CLIMATOLOGICAL RECORDS IS IM-
PERATIVE. LAST, UTILIZATION OF BAND RATIOING METHODS COULD
PROVIDE DEFINITIVE ANALYSIS IN BURN AND WETLAND AREAS.

WITH THESE RECOMMENDATIONS, THE RESULTS OF FUTURE FIRE STUDIES
WITH LANDSAT DATA WOULD FURNISH A PRODUCT OF ENORMOUS COST
SAVINGS AND GREATER ACCURACY THAN THAT OF CONVENTIONAL GROUND
SURVEY TECHNIQUES.

ACKNOWLEDGEMENT

THE AUTHORS ARE MOST GRATEFUL FOR THE EFFORTS EXTENDED BY
LARRY J. SUGARBAKER IN ORDER TO MAKE THIS STUDY POSSIBLE.
LARRY INITIATED THIS PROJECT AND PROVIDED ALL DATA SOURCES
PRIOR TO HIS DEPARTURE TO WASHINGTON STATE AND THAT STATE'S
DEPARTMENT OF NATURAL RESOURCES. WE WISH HIM WELL IN THAT
ENDEAVOR. WE ALSO APOLOGIZE, LARRY, FOR THE HOURS YOU SPENT
AT THE DIGITIZER THAT WENT FOR NAUGHT.

REFERENCES

HEINSELMAN, M.L. 1965. STRING BOGS AND OTHER PATTERNED OR-
GANIC TERRAIN NEAR SENEY, UPPER MICHIGAN. ECOLOGY
46: 185-188.

OF ERTS-1 IMAGERY FOR INVENTORYING WILDLAND RESOURCES
IN NORTHERN CALIFORNIA: OBTAINED FROM ERTS-1 1A, P.

SUGARBAKER, L.J. 1978. ANALYSIS OF VEGETATION CHANGE FOL-
LOWING WILDFIRE AND ITS EFFECTS UPON WILDLIFE HABITAT.
PROC. PECORA IV SYMPOSIUM, SIOUX FALLS, SOUTH DAKOTA.
6P.

SUGARBAKER, L.J. 1979. ANALYSIS OF VEGETATION CHANGE FOL-
LOWING WILDFIRE. FINAL REPORT: DOI-U.S. FISH AND WILD-
LIFE SERVICE CONTRACT NO. 14-16-0009-78-044, UNIVERSITY
OF MICHIGAN, SCHOOL OF NATURAL RESOURCES, ANN
ARBOR, MICHIGAN.
FIGURE 1. SENERY NATIONAL WILDLIFE REFUGE, UPPER MICHIGAN
(From Sugarbaker, 1979)
Figure 2. Seney National Wildlife Refuge Wildfire Project

- Project Definition and Planning
- Definition of Test Area and Categories
 - Acquisition of Ground Reference
 - Digitize Area Boundaries
 - Geometric Correction and Merging of Files
 - Area Tabulations
 - Production of Output Analysis
 - Production of Film Products
 - Categorical Machine Processing
 - Production of Landsat CCT
 - Categorical Accuracy Evaluation
 - Final Report
<table>
<thead>
<tr>
<th>Category</th>
<th>MLUCRC Classification</th>
<th>Color Assignment</th>
<th>Percent of Total</th>
<th>Acres</th>
<th>Sq. Km.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn</td>
<td>7500</td>
<td>BRIGHT RED</td>
<td>27.32</td>
<td>25829</td>
<td>104.52</td>
</tr>
<tr>
<td>Lowland/Upland Conifer/Shrub Swamp</td>
<td>4220/4210/6120</td>
<td>BRIGHT GREEN</td>
<td>19.66</td>
<td>18582</td>
<td>75.20</td>
</tr>
<tr>
<td>Upland/Lowland Herbaceous Rangeland</td>
<td>3110/3120</td>
<td>CYAN</td>
<td>13.09</td>
<td>12371</td>
<td>50.06</td>
</tr>
<tr>
<td>Non-forested (non-wooded) Wetlands</td>
<td>6200</td>
<td>BLUE GREEN</td>
<td>4.19</td>
<td>3190</td>
<td>12.91</td>
</tr>
<tr>
<td>Barren, Cutover</td>
<td>7900</td>
<td>MEDIUM GRAY</td>
<td>3.38</td>
<td>2997</td>
<td>12.13</td>
</tr>
<tr>
<td>Upland Conifer</td>
<td>4210</td>
<td>MEDIUM GREEN</td>
<td>3.17</td>
<td>2451</td>
<td>9.92</td>
</tr>
<tr>
<td>Agricultural Land</td>
<td>2100</td>
<td>PINK</td>
<td>2.59</td>
<td>2219</td>
<td>8.98</td>
</tr>
<tr>
<td>Water</td>
<td>5000</td>
<td>BRIGHT BLUE</td>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowland Conifer</td>
<td>4200</td>
<td>BROWN</td>
<td>1.72</td>
<td>1629</td>
<td>6.59</td>
</tr>
<tr>
<td>Sand, Ditch</td>
<td>7390</td>
<td>YELLOW</td>
<td>0.38</td>
<td>361</td>
<td>1.46</td>
</tr>
<tr>
<td>Sand, Beach</td>
<td>7210</td>
<td>WHITE</td>
<td>0.01</td>
<td>12</td>
<td>0.05</td>
</tr>
<tr>
<td>Uncategorized</td>
<td>-</td>
<td>BLACK</td>
<td>22.13</td>
<td>20921</td>
<td>84.67</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100.00</td>
<td></td>
<td>94520</td>
<td>382.51</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5. INTERPRETATION OF LANDSAT SCENE (11 MAY 1977) FOR DEGREE OF BURN. ON A RELATIVE SCALE, A ZERO INDICATES A COMPLETE BURN AND FOUR INDICATES A LIGHT BURN (FROM SUGARBAKER, 1979).