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Abstract.   Robust models of wildlife population size, spatial distribution, and habitat relationships 
are needed to more effectively monitor endangered species and prioritize habitat conservation efforts. 
Remotely sensed data such as airborne laser altimetry (LiDAR) and digital color infrared (CIR) aerial 
photography combined with well- designed field studies can help fill these information voids. We used 
point count- based distance sampling survey data and LiDAR- fused CIR aerial photography to model 
density of the Golden- cheeked Warbler (Setophaga chrysoparia), an endangered songbird, on the 10 000- 
ha Balcones Canyonlands National Wildlife Refuge (BCNWR). We developed a novel set of candidate 
models to explain Golden- cheeked Warbler detection probability and density using habitat covariates 
characterizing vegetation structure, composition, and complexity as well as habitat fragmentation, to-
pography, and human infrastructure. We had the most model support for covariates calculated using 
focal means representing a 3.2 ha territory size (100 m radius) vs. 1.8 and 7.0 ha territory sizes. Detection 
probability decreased with canopy cover and increased with topographic roughness. Golden- cheeked 
Warbler density increased with canopy cover, was highest at a 7:3 ratio of Ashe juniper (Juniperus ashei) 
to broadleaf tree canopy cover, and decreased with global solar radiation. Predicted warbler densities 
using 3 min point counts were similar to six estimates from independently collected warbler territory 
mapping on BCNWR with a mean difference of 6% and a Root Mean Squared Error of 1.88 males/40 ha. 
The total population size for BCNWR was estimated at 884 Golden- cheeked Warbler males (95% CI 662, 
1206) and predicted densities across the refuge ranged from 0.0 to 0.50 male warblers per ha. On the 
basis of observed habitat relationships, we defined high quality habitat as having at least 60% canopy 
cover with Ashe juniper comprising 50–90% of the canopy. We estimated 48% of the area at BCNWR 
managed for Golden- cheeked Warblers was in high quality habitat conditions and identified patches 
within the lower habitat quality areas (14% of warbler management areas) that had the greatest potential 
to become high quality habitat with management. Our approach combined robust wildlife surveys with 
highly scalable remotely sensed data to examine habitat relationships, estimate population size, and 
identify existing areas of high quality habitat. This method can be applied to other species of conserva-
tion interest and can be used with multiple years of remotely sensed data to assess changes in habitat at 
local to regional scales.

Key words:   density models; distance sampling; endangered species; LiDAR; NAIP imagery; point-count surveys; 
remote sensing.
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IntroductIon

A frequent goal and sometimes legal requirement 
of wildlife managers is monitoring population 
 size and responses to management for priority 
species (MacKenzie et al. 2006). Yet, estimates of 
population size and species- specific habitat re-
lationships are typically unavailable at the spa-
tial grain and extent to sufficiently inform land 
management decisions (Scott et al. 2002). This is 
particularly true for the National Wildlife Refuge 
System (NWRS), a network of >600 000 km2 of 
lands specifically managed for conservation of 
plant and animal species (National Wildlife Ref-
uge System Improvement Act of 1997). Recent 
US Fish and Wildlife Service (USFWS) initia-
tives further outline science- based strategies for 
conservation, emphasizing the role of modeling 
priority species habitat relationships to formu-
late land management objectives (Johnson et al. 
2009). This presents a significant challenge for 
refuge and other land managers who must prior-
itize conservation activities with limited knowl-
edge of existing landscape conditions and areas 
best suited for sustaining or recovering animal 
populations (Gregory et al. 2013).

Conversely, the potential for developing de-
tailed information from which to model spatially 
explicit habitat relationships at a spatial scale and 
extent desired by land managers has increased 
substantially in recent years (Craighead and 
Convis 2013). Remotely sensed data are increas-
ingly available at high spatial resolutions which 
can be readily combined with wildlife field sur-
veys to examine habitat relationships and gener-
ate spatial predictions of density and occurrence 
(Kerr and Ostrovsky 2003, Seavy et al. 2009). A 
significant advancement in remote sensing tech-
nology has been the development of airborne 
laser altimetry, also known as discrete return 
light detection and ranging (LiDAR). As an air-
borne system, LiDAR has achieved operational 
use for a variety of natural resource applications, 

much the same as commercial aerial photogra-
phy during the post- World War II period (Jensen 
2007, Hudak et al. 2009). Over one- half of the 47 
National Wildlife Refuges in the USFWS South-
west Region (AZ, NM, OK, TX) currently have Li-
DAR data available and all are covered by NAIP 
high spatial resolution (1- m pixels) multispectral 
aerial photography flown at 3 to 4 yr intervals.

The LiDAR provides an intuitive three- 
dimensional data source (i.e., multiple x, y, and 
z coordinates in space or a “point cloud”) that 
can be readily converted to vegetation cano-
py height, cover, density, and other metrics de-
scribing habitat conditions and complexity at a 
desired species- specific spatial scale (Kane et al. 
2010, White et al. 2013). Less common are appli-
cations aimed at fusing LiDAR data with high 
spatial resolution aerial photography for char-
acterizing habitat composition. Inaccurate co- 
location of aerial image pixels with LiDAR point 
clouds can hinder cross- sensor applications to 
estimate parameters such as tree species compo-
sition. However, modern digital aerial photogra-
phy acquired by high geometric quality scanning 
technology greatly enhances habitat information 
derived from both sensor types (Hartfield et al. 
2011, Chen et al. 2012).

Within the United States, the US Department 
of Agriculture (USDA) Farm Service Agency 
National Agriculture Imagery Program (NAIP) 
collects high- resolution (1- m pixels) statewide 
multispectral and color infrared (CIR) digital ae-
rial photography at 2-  and 3- yr intervals that can 
be paired with LiDAR data to develop wildlife 
habitat metrics (Chen et al. 2012). A number of 
recent studies have related woodland composi-
tion and structure to Golden- cheeked Warbler 
(Setophaga chrysoparia) density (Collier et al. 2013, 
Peak and Thompson 2013, Reidy et al. 2015) and 
occupancy (Collier et al. 2010, Farrell et al. 2013, 
Warren et al. 2013a). Thus far, only two studies 
have used LiDAR data to describe habitat char-
acteristics important to warblers and both found 
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strong support for LiDAR- derived canopy height 
and cover metrics as predictors of warbler oc-
cupancy (Farrell et al. 2013) and density (Reidy 
et al. 2015).

The LiDAR and high spatial resolution mul-
tispectral imagery also provide synoptic habitat 
and natural resource information at a landscape 
scale that is helpful for prioritizing land man-
agement activities (Hudak et al. 2009). Reducing 
hazardous fuels and susceptibility to drought- 
induced tree mortality are increasingly important 
for maintaining areas of late- successional juniper 
and oak woodland habitat (Murray et al. 2013, 
Andruk et al. 2014). Mechanical tree thinning 
and prescribed burning of understory vegetation 
are the primary silvicultural practices currently 
used; however, relatively few treatments have 
been applied in warbler habitat because of uncer-
tainty regarding post- treatment effects on habitat 
quality. LiDAR and high spatial resolution multi-
spectral imagery are useful tools for prioritizing 
land management activities at a landscape scale 
because fuel and habitat parameters such as can-
opy cover, base height, and bulk density often 
collected from extensive field inventories can 
be accurately estimated from LiDAR (Andersen 
et al. 2005).

We evaluated NAIP CIR image and LiDAR- 
derived habitat metrics as predictors of density 
for the endangered Golden- cheeked Warbler 
(hereafter “warbler”) on Balcones Canyonlands 
National Wildlife Refuge (BCNWR) in central 
Texas. We estimated warbler density using a 
novel set of covariates including remote sensing- 
based metrics of vegetation structure, composi-
tion, and complexity as well as other spatial data 
in a geographic information system (GIS) de-
scribing fragmentation, topography, and human 
infrastructure to help determine potential human 
development and land management impacts on 
warbler habitat. We developed model covariates 
based on previously published studies in addi-
tion to those related to management activities po-
tentially impacting habitat conditions important 
to warblers. Our objectives were to: (1) evaluate 
models comprised of habitat metrics created by 
integrating NAIP CIR imagery with LiDAR for 
predicting warbler density, (2) validate the most 
supported model by comparing predicted war-
bler density to density estimated from field plots 
with color- banded birds, and (3) demonstrate 

how our model can be used to prioritize conser-
vation, monitoring, and management activities 
to locations with high potential for increasing the 
amount of warbler habitat. In addition, we as-
sessed the potential for using high spatial resolu-
tion and validated remotely sensed habitat data 
for predicting warbler population size through-
out its breeding range in central Texas.

Methods

Study species
The warbler is an insectivorous songbird that 

nests in mature wooded habitat co- dominated 
by Ashe juniper (Juniperus ashei) (Ladd and 
Gass 1999, DeBoer and Diamond 2006). The 
warbler’s narrow breeding range, confined to 
the Cross Timbers and Edwards Plateau ecore-
gions of central Texas (Ladd and Gass 1999, 
Groce et al. 2010), combined with extensive 
habitat loss and fragmentation has contributed 
to concern over population status and trends. 
Central Texas has experienced one of the highest 
human population growth rates in the United 
States (4.5% yr−1; United States Census Bureau, 
http://www.census.gov/), resulting in a loss of 
~29% of total potential habitat between 2000 
and 2010 (Duarte et al. 2013). Other potentially 
significant threats to warbler populations are 
increased nest predation by edge- adapted spe-
cies, which may be more abundant in highly 
fragmented woodland landscapes (Reidy et al. 
2009, Sperry et al. 2009).

Study area
We conducted our study on 47 400 ha in the 

Edwards Plateau of central Texas, encompassing 
the 10 000- ha Balcones Canyonlands National 
Wildlife Refuge (BCNWR) and possible refuge 
acquisition lands (Fig. 1). This area straddles the 
division between the Lampasas Cut Plain and 
Balcones Canyonlands sub- regions (Riskind and 
Diamond 1988). Elevations range from 210 to 
420 m. Topography is greatly influenced by the 
Balcones Escarpment which creates an area of 
limestone canyons dissecting flat upland ridges. 
Mean annual rainfall from 1998 through 2012 
was 76 cm (C. Schwope, BCNWR, unpublished 
data). Only 21 cm of precipitation fell from October 
2010 through September 2011, a period of ex-
treme drought for the region. The study area 

http://www.census.gov/
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included a mixture of grasslands, shrublands, 
and woodlands, with woodlands consisting pri-
marily of mixed age stands of Ashe juniper, 
Spanish oak (Quercus buckleyi), and plateau live 
oak (Quercus fusiformis). All woodlands were 
cleared or thinned prior to refuge establishment 
in 1992, with the oldest stands in the study area 
>50 yr old at the time of the study. Since BCNWR 
establishment, many non- wooded areas have 
been managed by juniper clearing and prescribed 
burning to encourage a diversity of plant suc-
cessional stages and habitat conditions.

Avian surveys
We conducted point- count surveys across the 

study area using a simple random sample of 
250 locations separated by ≥250 m. Survey points 
intersected all dominant vegetation types on 
BCNWR, including areas with a low probability 
of being used by warblers, to characterize war-
bler habitat relationships across the range of 
biotic and abiotic conditions in this region.

We rotated six observers among points with each 
point surveyed for 10 min approximately once ev-
ery 2 weeks for a total of four surveys per point 
between 2 April 2012 and 21 May 2012 (with the 
exception of two points that were only surveyed 
three times). We conducted surveys from 15 min 
before sunrise to 5 h after sunrise when air tem-
perature was ≥10 °C, wind was ≤19 km per hr, and 
there was no rain. We only recorded detections of 
singing warblers and six other bird species to fo-
cus effort on a small number of target species. For 
warblers, we only recorded males that were sing-

ing either of the two most common songs used by 
this species, described as A and B songs (Spector 
1992, Bolsinger 2000, Leonard et al. 2010). These 
songs are typically loud (mean of 55 dB at 6 m 
[Warren et al. 2013b], although they may also be 
“whispered” [Bolsinger 2000]), with the peak in-
tensity at approximately 5000 Hz (Bolsinger 2000). 
Hearing of all but one surveyor was measured us-
ing an audiogram to confirm no significant hear-
ing loss at 4000 and 6000 Hz. All surveyors were 
trained in distance sampling techniques for 1 week 
prior to surveying, including several days practic-
ing distance estimation to singing warblers in the 
field. To assist in determining distances to singing 
birds, the presumed location of each bird detected 
was marked in the field on a printed aerial image 
(1:2000 scale) with point distance bands printed at 
25, 50, and 100 m. We also used a laser rangefinder 
to measure distances to presumed bird locations. 
This was particularly useful in open and canyon 
areas where birds could be heard from trees unob-
structed from sight. When feasible, we measured 
distances to singing birds using a global position-
ing system (GPS) by walking to the bird’s location 
if it was still singing at the end of the 10- min sur-
vey. We recorded to the nearest second the time 
each warbler was first detected to allow the data to 
be parsed to any survey length and facilitate com-
parisons with other surveys.

Vegetation surveys
We used georeferenced tree measurements 

taken in the field to train and validate models 
used for developing remotely sensed habitat 

Fig. 1. Study area and point- count survey locations on Balcones Canyonlands National Wildlife Refuge 
(BCNWR), Texas, 2012.
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layers such as canopy cover and tree height. We 
measured vertical canopy cover (sensu Fiala et al. 
2006) on 100 × 100- m plots (n = 122) by recording 
the species of tree canopy intercepted at 10- m 
intervals (i.e., 100 intercepts/plot) from 1 m above 
the ground with a densitometer (Geographic 
Resource Solutions, Arcata, California, USA). We 
used tree species data recorded on plots to de-
velop model training data sets to classify Ashe 
juniper and broadleaf canopy from remotely 
sensed data described in the sections below. We 
measured mean tree heights on 11.3- m fixed 
circular radius plots (n = 192) using visual height 
estimates for trees ≤5 m, accurate to within 0.5 m, 
to reduce measurement time in excessively dense 
woodlands and a clinometer for trees >5 m to 
derive an overall estimate of mean tree height. 
Summarized field data provided a measure of 
total, broadleaf, and juniper tree cover and mean 
tree height at the plot scale. We compared field 
measurements to remote sensing- based estimates 
using linear regression and Pearson correlation 
coefficients for validation of canopy cover and 
vegetation height data layers. We also used in-
dependent image validation pixels to assess clas-
sification accuracy for broadleaf and Ashe juniper 
canopy cover.

Remotely sensed data
We developed spatially explicit habitat metrics 

to model warbler density from airborne LiDAR 
altimetry and NAIP CIR aerial photography. 
We obtained LiDAR data from the Texas Natural 
Resource Information System (TNRIS) and the 
Texas Capital Area Council of Governments 
(CAPCOG). These LiDAR data were collected 
for the study area during leaf- on periods in 
2006, 2007 (Travis and Williamson Counties), 
and 2011 (Burnet County). LiDAR data collection 
followed Federal Emergency Management 
Agency (FEMA) specifications for flood hazard 
mapping to meet minimum standards for map-
ping 61- cm (2- foot) contour intervals (FEMA 
2010). LiDAR contractors used an Optech ALTM 
2050 system for the 2006 and 2007 acquisitions 
to obtain point cloud data at a 0.7- m (riparian 
areas) to 1.4- m point spacing and 32° maximum 
scan angle and an Optech ALTM Gemini system 
for the 2011 acquisition, that had a lower max-
imum scan angle (16º) and average point spacing 
of ≤0.5 m. LiDAR pre- processing steps are 

described in Appendix A and Fig. A1. We also 
obtained NAIP CIR orthorectified aerial pho-
tography (June/July 2012) from TNRIS. Four 
band (blue, green, red, and near infrared) NAIP 
2012 photographs of high geometric and ra-
diometric quality were acquired using a Leica 
ADS80 linear array sensor at a 1- m pixel 
resolution.

Remote sensing- based habitat variables
We hypothesized that variables from remotely 

sensed data (detailed below) were related to 
warbler habitat structure and composition based 
on previous studies (Diamond 2007, Collier 
et al. 2013, Farrell et al. 2013, Warren et al. 
2013a) with the addition of woodland structure 
and complexity variables potentially altered by 
management activities (Andruk et al. 2014). We 
also used LiDAR to map urban development 
that has been linked to warbler declines (Reidy 
et al. 2008). We derived all habitat covariate 
layers (except canopy cover, see below) at a 
10- m pixel size. We then calculated focal means 
of surrounding pixel values at three scales (75, 
100, and 150- m radius) corresponding to 1.8, 
3.2, and 7 ha, respectively, which spans the 
range of territory sizes reported for the warbler 
(Davis et al. 2010, J. Reidy, University of 
Missouri, unpublished data).

We developed a digital terrain model (DTM) 
derived from LiDAR (explained in Appendix A) 
to create topographic variables for global solar 
radiation (W/m2), slope, and elevation rough-
ness using Spatial Analyst Tools in ArcGIS v. 10.1 
(ESRI 2012). Global solar radiation is a measure of 
the annual amount of radiant energy incident on 
a site and is important to a number of biophysical 
processes such as evaporation, transpiration, and 
photosynthesis affecting woodland composition 
and structure (Breshears et al. 1997). We calculat-
ed elevation roughness as the standard deviation 
of elevation; higher values indicated steep and 
irregular terrain.

We used rumple, mean and maximum height, 
and standard deviation of height as a way to char-
acterize late- successional patterns and woodland 
habitat heterogeneity potentially associated with 
warbler densities (Goetz et al. 2007, Farrell et al. 
2013, Vogeler et al. 2013). Rumple is a three di-
mensional measure of tree canopy heterogene-
ity and a metric that has shown to be correlated 
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with vegetation structure and successional stage 
(Kane et al. 2010). We derived these metrics using 
FUSION software v. 3.3 (McGaughey 2013) from 
LiDAR point- cloud data classified as vegetation 
(Table 1).

To evaluate the potential impacts of woodland  
management activities such as tree thinning 
and fuels mitigation, we calculated several  
variables to examine effects of amount and dis-
tribution of over-  and understory vegetation 
on warbler density. We took relative vegeta-
tion density measurements at four height strata 
(1–3 m, 3–5 m, 5–10 m, and 10–15 m) to char-
acterize vegetation understory and overstory 
conditions. To calculate relative density at the 
10- m grid cell scale, we divided the number of 
LiDAR point returns within each height strata 
by the total number of returns and multiplied 

by 100. We also characterized relative density of 
the overstory as point returns >3 m divided by 
the total number of returns multiplied by 100. 
Understory density (point returns ≤3 m) could 
not reliably be compared between the 2006 and 
2007 and the 2011 LiDAR data given differenc-
es in the mean number of returns per square 
meter (<2.0) and scan angles (16º and 32º) be-
tween acquisition dates. Instead, we calculated 
understory distribution at the warbler territory 
scale by classifying the presence or absence of 
vegetation with ≤3 m height for each 10- m grid 
cell; a cell could only be classified as having un-
derstory when overstory trees (vegetation ≥3 m) 
were present.

We used 1- m NAIP 2012 CIR aerial photogra-
phy to distinguish between broadleaf and juni-
per canopy cover in combination with LiDAR 

Table 1. Remote sensing and field derived habitat variables used to estimate Golden- cheeked Warbler densities 
and detection probabilities on Balcones Canyonlands National Wildlife Refuge, Texas USA, 2012.

Variables Abbreviation Units Source† Detection Density Description

%CV of relative  
 density

cv_vert Index LiDAR x CV of relative density for  
  height strata (1–3 m, 

3–5 m, 5–10 m, 10–15 m)
Broadleaf cover bcc % NAIP/LiDAR x % broadleaf canopy cover
Canopy cover cc % LiDAR/NAIP x x % vegetation canopy cover  

  >1 m height
Canopy height ht m LiDAR x x Canopy height
Juniper cover jcc % NAIP/LiDAR x % juniper cover
Juniper as % of  
 canopy

jcc_comp % NAIP/LiDAR x % of canopy cover comprised  
  of juniper

%CV canopy height cv_horiz Index LiDAR x CV of canopy height at  
  territory radius

Distance to habitat  
 edge

edist m NAIP/LiDAR x Distance to edge of  
  woodland vegetation

Edge density edens m NAIP/LiDAR x Woodland edge density at  
  territory radius

Relative canopy  
 density

rd_overstory % LiDAR x Relative vegetation density  
  for trees ≥3 m

Roughness ruf Index LiDAR x Square root of standard  
  deviation in elevation in 

3 × 3 pixel window
Solar radiation srad W/m2 LiDAR x Global solar radiation
Understory  
 distribution

undst % NAIP/LiDAR x x Proportion of territory with  
  understory

Stdev of height ht_sd SD LiDAR x Vegetation height standard  
  deviation

Maximum height ht_max m LiDAR x Maximum vegetation height
Rumple index ht_rumple Index LiDAR x Rumple index of vegetation  

  height rugosity
Building distance bdist m LiDAR x Distance from the closest  

  building centroid
Building density bdens Building/

km2
LiDAR x Density of building  

  centroids
† Data were derived from NAIP 2012 digital CIR aerial photography and/or LiDAR.
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vegetation height to improve tree canopy classi-
fication. NAIP image processing, classification, 
and validation steps are detailed in Appendix A. 
We used pixels classified as broadleaf or juniper 
trees to estimate percent total, broadleaf, and ju-
niper tree cover using the focal sum/total pixels 
within each focal radius and multiplied by 100. 
We then resampled canopy cover estimates to a 
10- m pixel size to match all other covariate lay-
ers.

We calculated distance from woodland edge 
and edge density developed from our remotely 
sensed canopy cover data to estimate potential 
habitat fragmentation effects on warbler den-
sity. To remove individual or diffuse trees pri-
marily distributed across pasture lands from 
edge calculations, we removed less continuous 
areas smaller than 2 ha with less than 20% tree 
canopy from the edge calculations. This was be-
low the minimum threshold patch size (15 ha) 
required by warblers for attaining reproductive 
success (Butcher et al. 2010), but smaller areas 
may still be utilized by warblers depending on 
landscape structure and composition (Collier 
et al. 2012). We converted the remaining patches 
to a polyline layer to calculate line density and 
Euclidean distance using Spatial Analyst tools in 
ArcGIS v. 10.1. We adjusted edge density values 
to account for the amount of potential edge. For 
example, areas that were primarily grassland 
or woodland had much lower amounts of edge 
habitat than areas with an even mixture of the 
two habitats. We calculated an adjusted edge 
density as:

(1)

where, minimum cover was the percentage of 
woodland or open habitat, whichever was small-
er (e.g., minimum cover would be 20 for canopy 
cover = 20% or canopy cover = 80%). The adjust-
ed edge density represented the level of habitat 
fragmentation for a given amount of canopy cov-
er (See Appendix B for additional details).

We used building footprints extracted from 
the LiDAR point cloud data to estimate housing 
density for areas inside the study area. A point 
location for every building polygon centroid was 
used to calculate building density at each of the 
three spatial scales used above.

Warbler density models
We evaluated candidate models to predict 

warbler density using variables scaled to three 
warbler territory sizes (i.e., 1.8, 3.2, and 7 ha) 
and then compared the models using Akaike’s 
Information Criterion (AIC; Akaike 1974) to 
determine the scale with the most model sup-
port. In addition, a previous study on warblers 
demonstrated that distance- based models can 
overestimate the number of warblers present 
and overestimation increases with point- count 
duration (Peak 2011). Peak (2011) found that 
counts limited to 2- min produced the most 
accurate density estimates. Therefore, we de-
termined the optimal point- count duration for 
our study by comparing predicted density es-
timates to independently collected territory 
mapping data that is described below. We de-
termined the survey duration (between 2 and 
6 min) that minimized the overall bias without 
overestimating density using the Root Mean 
Squared Error (RMSE).

We developed models for each survey dura-
tion, sequentially, by first determining the most 
supported detection function, and then the most 
supported covariate model for detection, and 
lastly the most supported covariate model for 
bird density. We used AIC to determine model 
support and only the most supported models 
from the first and second steps were used in 
subsequent models. We initially ran our analy-
ses using the “gdistsamp” function in the “un-
marked” package v. 0.10- 4 (Fiske and Chandler 
2011) in program R v. 3.1.0 (R Core Team 2014). 
The “gdistsamp” function allowed us to model 
visit- level covariates (e.g., time of day, observer) 
in the detection function. However, these visit- 
level covariates received considerably lower 
support than site- level habitat covariates such as 
topography and canopy cover and models with 
both site- level and visit- level covariates did not 
converge. Therefore, we simplified analyses by 
running the models using the “distsamp” func-
tion, which only allows for site- level covariates. 
For “distsamp”, we pooled observations from 
all visits to a point and included the log of the 
number of visits as an offset term in the density 
component of the model. Prior to model build-
ing, we assessed covariates for normality and, 
when necessary, transformed covariates using 
the power transformation recommended by 

Adjusted edge density=

edge density

minimum cover+1
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the “powerTransform” function from the “car” 
package v. 2.0- 21 (Fox and Weisberg 2011). We 
scaled all covariates to facilitate model conver-
gence (μ = 0, σ = 1; see Appendix C: Table C1 for 
covariate summaries). To select the most sup-
ported detection function, we first ran the global 
model (density = vegetation height (ht) + juni-
per canopy cover (jcc) + broadleaf canopy cover 
(bcc) + broadleaf canopy cover squared (bcc2) and 
detection = total canopy cover (cc)) to compare 
the hazard, uniform, and half- normal functions. 
We next ran competing models of habitat covari-
ates hypothesized to affect detection. We predict-
ed that vegetation density (e.g., canopy cover, 
vegetation height) might reduce the distance at 
which an observer could hear a bird whereas an 
observer may be able to detect birds from farther 
away on hillsides vs. plateaus. Therefore, we ran 
four models containing different metrics related 
to vegetation density (canopy cover, vegetation 
height, overstory density, and understory dis-

tribution) and two models containing terrain 
features (topographic roughness and slope). We 
then combined the most supported vegetation 
and topographic covariates into one model and, 
of these seven models, we used the detection 
model with the most support in all subsequent 
models.

We developed 23 a priori candidate models 
representing variation in vegetation structure, 
tree composition, topography, and woodland 
fragmentation to evaluate support for habitat 
factors influencing warbler density (Table 2). 
We included building density in the candidate 
set to determine potential impacts of human de-
velopment on warbler density, although human 
infrastructure was concentrated in a few minor 
subdivisions to the east of BCNWR. Explanatory 
variables were checked for correlations and only 
variables that were not strongly correlated (<0.7) 
were included in the same model. To prevent un-
informative parameters from being included in 

Table 2. Candidate models evaluated for predicting density of Golden- cheeked Warbler males on Balcones 
Canyonlands National Wildlife Refuge from n = 250 point- count surveys collected in 2012.

Model Description

jcc + bcc + bcc2 + edist + edist2 + ruf Fragmentation, composition, and terrain model
cc + bcc + bcc2 Succession and composition model 
rd_overstory Overstory density only model
Rumple Compete with ht_std for succession relationship with  

 warbler densities
ht_std Compete with rumple for succession relationship with  

 warbler densities 
ht_max + srad Indicator of successional woodlands and canyon  

 topography
ht Indicator of woodland successional status
ht_max Succession only
cc Indicator of woodland successional status
cc + edens + cc*edens Indicator of woodland fragmentation effects on warbler  

 density (interaction between CC and edge density)
cv_vert + jcc + bcc + bcc2 Mixed composition and structure model (Structure and  

 composition heterogeneity)
cv_horz + jcc + bcc + bcc2 Succession heterogeneity and composition model
ht + jcc + bcc + bcc2 Succession and composition 
undst Importance of understory model 
jcc + bcc + bcc2 Composition only model 
cc + jcc_comp + jcc_comp2 + cc*jcc_comp + cc*jcc_comp2 Succession and composition 
edist + edist2 + bdist Fragmentation and anthropogenic change
edist + edist2 + bdens Fragmentation and anthropogenic change
cc + jcc_comp + edens + srad2 + cc*jcc_comp + cc*edens Structure, composition, fragmentation, physiography  

 (microclimate)
cc + jcc_comp + jcc_comp2+ cc*jcc_comp + cc*jcc_comp2 + ruf Succession, composition, and terrain. 
cc + ruf Succession and terrain. 
cc + bcc + bcc2 + ruf Succession, composition, and terrain. 
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the most supported models when using AIC for 
model selection (Arnold 2010), we sequentially 
removed the term with the least support for each 
model (as identified by smallest z- value; absolute 
value of beta/SE) until removing terms no longer 
reduced the AIC score (Pagano and Arnold 2009). 
Although Burnham and Anderson (2002) have 
criticized this approach because of the potential 
for model selection bias, we chose this method 
because our primary objective was to identify the 
most parsimonious model (Devries et al. 2008, 
Pagano and Arnold 2009) and because of the lack 
of a perfect solution to addressing the issue of 
uninformative parameters when using AIC for 
model selection (Arnold 2010). Therefore, the 
models in the final set contained simplifications 
that were a variation in those initially developed 
in Table 2. The most supported model for each 
analysis was examined for fit using three boot-
strapped goodness- of- fit metrics: sum- of- squares 
error (SSE), chi- square, and Freeman- Tukey.

We developed five spatial predictions of male 
warbler density using the first 2–6 min of point- 
count survey data split into 1 min intervals at the 
spatial scale with the most model support. We 
then compared warbler abundance from these 
five spatial predictions with known abundance 
from independently collected territory mapping 
data (see “Territory mapping” below; Robbins 
1970, Dobkin and Rich 1998) to determine which 
minute interval had the smallest error.

Territory mapping
As part of a separate project, three surveyors 

mapped territories and monitored productivity 
of male warbler populations on six, 40- ha plots 
from March through June, 2012–2014 (Fig. 1). We 
captured male warblers using playback of pre- 
recorded warbler vocalizations and banded in-
dividuals with a unique color combination. 
Surveyors visited each plot two to three times 
per week to locate and record locations of banded 
and un- banded male and female warblers, locate 
and monitor nests, re- sight color- banded birds, 
and determine the number of young fledged per 
territory. Surveyors updated field maps each week 
with general locations of territories and traversed 
each plot at least once a week to identify pre-
viously missed males. We used cumulative ob-
servations of banded and un- banded males prior 
to the date each was observed tending fledglings 

to delineate territories and create minimum con-
vex polygons in ArcMap. For this analysis, we 
used only data gathered in 2012 and excluded 
males detected outside the point- count survey 
dates (e.g., a territory from a male detected during 
all of March, but not again in April or May 
would not be included). Surveyors used a com-
bination of band re- sights, contemporaneous 
singing, plumage or song characteristics, nest 
locations, breeding activity, and fledgling age to 
differentiate unique territories. We excluded ob-
servations of unidentified males. Each surveyor 
interpreted their own observations and all data 
were reviewed and finalized by the lead inves-
tigator. We calculated the number of territories 
in each plot as all of the territories fully in the 
plot plus half of the partial territories.

We determined broad- scale management im-
plications using density model outputs and 
habitat layers to identify (1) the extent of exist-
ing high quality warbler habitat as defined by 
modeled habitat relationships and density and, 
(2) woodland areas with high potential for be-
coming high quality habitat with the appropriate 
management action.

results

Warbler surveys
Overall, we detected 487 singing male war-

blers during the 998 10- min point counts with 
warblers detected at least once at 104 of the 
250 points. Detections of unique warblers ac-
cumulated throughout the 10- min survey with 
47%, 58%, 66%, 72%, and 78% occurring during 
the first 2, 3, 4, 5, and 6 min, respectively. 
Subsequent analyses were based only on de-
tections that occurred within the first 2–6 min, 
depending on the analysis (Fig. 2a). The median 
distance of detected warblers from the observer 
was 85 m (Fig. 2b). Detections were right trun-
cated to eliminate outliers, with 10% of the 
farthest observations being discarded following 
Buckland et al. (2001). Truncation distance dif-
fered slightly by point- count duration and 
ranged from 171 to 180 m.

Remotely sensed habitat variables
We found a high positive correlation between 

field measurements for LiDAR- derived vegetation 
height (r = 0.84) and NAIP and LiDAR- derived 
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canopy cover (r = 0.96). Field and LiDAR heights 
likely showed lower correlation because observers 
estimated heights in the field for trees <5 m tall. 
Combined NAIP imagery and LiDAR- based es-
timates of broadleaf and evergreen canopy cover 
were also highly correlated with field measure-
ments (r = 0.91 and r = 0.90, respectively; also 
see Appendix A: Figs. A2, A3). In addition, 
validation pixels independent of classification 
model training showed 89% accuracy for broad-
leaf and 95% accuracy for Ashe juniper canopy 
cover. Broadleaf class accuracy improved from 
84% to 89% with the addition of LiDAR canopy 
height, which aided in discriminating broadleaf 
canopy from bright green cultivated land 
(Appendix A: Fig. A2).

Territory mapping
We monitored 63 territories (range: 4.5–11.5 

territories on a plot) across 6 plots in 2012, 
of which 30 males were banded (average of 
50% per plot; range: 38–60%). We additionally 
banded 2 females, of which one was paired 
with an un- banded male and one with a banded 

male. Territory density averaged 0.22 males 
per ha across all plots (range: 0.11–0.29 males 
per ha). The majority of un- banded males was 
separated spatially or had banded neighbors.

Habitat modeling results
The models developed at the 3.2 ha (100- m 

radius) scale had the most support for both 
warbler detection (wi = 0.83) and density 
(wi = 1.00). We calculated the mean estimates 
from the 2 to 6 min intervals as 83 to 110% of 
the territory mapping results, with the smallest 
RMSE observed using the first 3 min of the 
point- count survey (estimated mean number of 
male warblers for the six plots was 94% of the 
number of mapped territories; RMSE = 1.88 
birds/40 ha). Model estimates for four of the 
40- ha plots were within one male of the territory 
mapping results whereas model results from two 
plots underestimated by about three males/40 ha 
(Fig. 3). Therefore, we limit reporting to the 
3.2 ha (100- m radius) scale and the 3- min point- 
count duration. Results obtained at each spatial 
scale can be found in Appendix C, Table C2.

Fig. 2. Number of detections for 10 min point- count surveys of male Golden- cheeked Warblers conducted at 
Balcones Canyonlands National Wildlife Refuge, Texas, during the breeding season of 2012. Histogram (a) is the 
number of initial warbler detections by minute, and (b) is the distance from observer using only the first 3 min 
and right truncating at 176 m.
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We found the most support for the half- normal 
detection function (wi = 1.00). For detection co-
variates, we found more support for terrain 
variables than vegetation characteristics, but 
the combined model, comprised of topographic 
roughness and canopy cover, had the most sup-
port (wi = 0.98; Table 3. Detection probability in-
creased with surface roughness and decreased 
with canopy cover (Fig. 4a,b).

Our most supported density model included 
canopy cover, proportion of canopy composed 
of juniper, an interaction between canopy cover 
and the proportion of juniper cover, and solar 
radiation (cc + jcc_comp2 + cc*jcc_comp2 + srad2, 
Table 3). This model received overwhelming 
support over our other models (wi = 1.00) and fit 

the data well based on the three goodness- of- fit 
tests conducted (all P > 0.19). Warbler density in-
creased with canopy cover, decreased with global 
solar radiation, and had a non- linear relationship 
with percent juniper composition (Fig. 5a–c). 
Although models containing measures of frag-
mentation were not in the most supported model 
set, beta estimates for edge density and distance 
to edge indicated a preference for habitats with 
lower edge density that were farther from edges 
(see Appendix C: Table C2).

On the basis of the mapped model- averaged 
predictions of warbler density across BCNWR, we 
estimated there were 884 (95% CI 662, 1,206) male 
warblers on BCNWR during the breeding season 
of 2012. The highest warbler densities were pre-
dicted in a relatively contiguous block of wood-
land habitat covering the central to southeastern 
portion of the study area (Fig. 6). Estimates of 
standard error around these density predictions 
generally increased with density, but there was 
more uncertainty on the steeper slopes than on the 
plateaus for similar density estimates (Fig. 7a,b).

dIscussIon

We were able to estimate warbler density 
consistent with field observations using our 
novel set of variables created by integrating 
aerial imagery and LiDAR. Our results suggest 
that both CIR aerial photography and LiDAR 
have high potential for developing large- scale 
or breeding range- wide warbler density esti-
mates. While LiDAR data were an important 
component to our study, LiDAR acquisitions 
are less frequent than CIR aerial imagery and 
currently cover only about one- third of the 
breeding range for warblers in Central Texas. 
However, widely available NAIP CIR photog-
raphy was, by itself, effective (84% class accuracy 
for broadleaf trees in this study) for mapping 

Fig. 3. Comparison of spatial model and territory 
mapping derived estimates for the number of male 
Golden- cheeked Warbler territories. Territory mapping 
data were collected independently from six plots at 
Balcones Canyonlands National Wildlife Refuges, 
Texas. Error bars represent 95% CIs, dashed line is 1:1 
correlation, and solid line is actual fit.

Table 3. Model selection results for estimating detection probability and density of singing male Golden- 
cheeked Warblers at the 100- m (3.2 ha) spatial scale from 3- min point- count surveys conducted on Balcones 
Canyonlands National Wildlife Refuge, TX, 2012. Only models with ≥0.01 of model weight are shown.

Analysis Detection Model Density Model K AIC ΔAIC wi

Detection ruf + cc ruf + cc 8 1344.99 0.00 0.98
ruf ruf 7 1352.67 7.69 0.02

Density ruf + cc cc + jcc_comp2 + cc*jcc_comp2 + srad2 8 1332.09 0.00 1.00
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general tree cover categories. In the absence of 
LiDAR coverage, CIR imagery may be a suitable 
data source to determine range- wide warbler 
density and document temporal habitat changes. 
Misclassification errors we observed such as 
commissions errors [see Appendix A] can po-
tentially be removed using national or state- wide 
land cover data sources to mask other vegetation 
types from woodlands. Spectral and spatial fil-
tering of CIR imagery may also improve clas-
sification accuracy of tree species composition 
(Sesnie et al. 2010) in the absence of LiDAR.

A primary focus of this study was to develop 
high- resolution digital data layers to better char-
acterize vegetation structure and composition im-

portant for maintaining high quality warbler breed-
ing habitat. From validated habitat data, we were 
able to estimate warbler density and population 

Fig. 4. The effect of (a) topographic roughness and, 
(b) canopy cover on the probability of detection of 
male Golden- cheeked Warblers on Balcones 
Canyonlands National Wildlife Refuge, Texas, 2012. 
Shaded areas represent 95% CIs.

Fig. 5. The relationship between (a) canopy cover, 
(b) global solar radiation, and (c) juniper as percent of 
canopy cover and density of male Golden- cheeked 
Warblers on Balcones Canyonlands National Wildlife 
Refuge, Texas, 2012. The ratio represents the mixture 
of juniper to broadleaf at which predicted warbler 
densities peaked. Shaded areas represent 95% CIs.
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numbers that compared well with intensive terri-
tory mapping surveys. Warbler locations recorded 
during the surveys frequently fell within predicted 
high density areas (Fig. 7a). These results suggest 

that using the focal means to scale model covari-
ate layers to warbler territory size were robust 
against potential bias. We found that LiDAR and 
CIR aerial photography were complementary data 

Fig. 6. Spatial model predictions of male Golden- cheeked Warbler densities on Balcones Canyonlands 
National Wildlife Refuge, Texas, 2012 and adjacent lands. The refuge boundaries are outlined in black.

Fig. 7. Estimated Golden- cheeked Warbler (a) density and (b) SE for a portion of Balcones Canyonlands 
National Wildlife Refuge, Texas, 2012. Black circles indicate point- count locations and white circles indicate 
estimated locations of unique males detected from four surveys at each point.
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sources, particularly for accurately distinguishing 
tree canopy  composition and thresholds important 
to warbler density. We were also able to examine 
habitat complexity not previously explored for this 
species and found that total canopy cover and the 
ratio of Ashe juniper to broadleaf tree cover were 
more important for predicting warbler density 
than all other variables considered. These findings 
were consistent with other habitat studies for this 
species (Collier et al. 2013, Farrell et al. 2013, War-
ren et al. 2013a, Reidy et al. 2015).

From our models, we further determined that 
warbler detection increased in rough terrain (Fig. 4). 
We termed this the “amphitheater effect”, where 
birds may be heard from farther away when the 
observer is surveying canyon slopes, much the way 
an amphitheater aids in sound transmission. Con-
versely, total canopy cover had a negative relation-
ship with warbler detection likely because dense 
trees were a barrier to song transmission (Fig. 4). 
Using simulation studies, Pacifici et al. (2008) also 
found songbird detection rates decreased with 
increased vegetation density in deciduous forest. 
Reidy et al. (2015) did not find this type of effect 
when restricting their evaluation to the amount of 
area classified as juniper woodland within a 100- m 
radius of points rather than using a total tree cover 
estimate. We may have detected warblers at greater 
distances than other warbler studies such as Peak 
(2011), because 58% (n = 146) of our points were 
located in terrain with <10% canopy cover rather 
than high canopy cover areas typically surveyed 
for this species. Terrain conditions in combination 
with vegetation have only been examined in a few 
studies to determine their influence on warbler de-
tections (Watson et al. 2008, Warren et al. 2013a). 
Warren et al. (2013a) found that degree slope was 
positively associated with warbler detection with-
in a 100- m survey radius for occupancy models 
on Balcones Canyonlands Preserve (BCP). Watson 
et al. (2008) did not find that slope affected warbler 
detections and surmised that the effects were small 
relative to the effects they found due to study areas 
and season. However, factors affecting detection 
during occupancy surveys can do so through mul-
tiple drivers. For example, if bird density is higher 
on steeper slopes, bird detection probability may 
also increase with slope. We found lower support 
for detection models including percent slope than 
for topographic roughness (Table 3). Although 
slope and topographic roughness were highly 

correlated (Pearson’s r = 0.97), models with topo-
graphic roughness had two- to- five times greater 
support than models with slope.

We found the most support for density mod-
els that included an interaction between canopy 
cover and proportion of canopy cover comprised 
of Ashe juniper. Our characterization of wood-
land composition using LiDAR and NAIP CIR 
derived canopy data indicated that peak warbler 
densities occurred when canopy cover exceeded 
80% and supported a ratio of 7:3 of Ashe juniper 
to broadleaf cover (Fig. 5c). Similarly, Peak and 
Thompson (2013) and Reidy et al. (2015) reported 
higher densities of warblers in mixed juniper- oak 
woodlands than juniper- dominated woodlands 
and in areas with high canopy cover. Important-
ly, our results suggest densities fluctuate within 
woodlands co- dominated by juniper. In general, 
diverse habitat conditions associated with mixed 
woodland tree composition have been shown 
important for meeting warbler life requirements. 
For example, the interaction between juniper and 
oak tree species composition has previously been 
related to greater arthropod abundance and pos-
sibly warbler pairing success (Klassen et al. 2012, 
Marshall et al. 2013). Other model covariates 
such as tree height and broadleaf canopy cover 
did not appear in the most supported models be-
cause metrics characterizing vegetation structure 
were often highly correlated with one another 
(e.g., canopy cover vs. tree height, r = 0.87). As in 
other woodland habitats, height and canopy cov-
er were also correlated with vegetation density, 
because vegetation density often increases with 
the age and successional status, in the absence of 
major disturbance factors such as wildfire (Miller 
and Tausch 2001).

Global solar radiation was also included in 
the most supported density model. The amount 
of annual solar radiation within our study area 
varied greatly depending on aspect and adjacent 
terrain (Appendix C, Table C1). Solar radiation 
values have been integrated into breeding range- 
wide models of warbler occurrence (Diamond 
2007), but have not previously included in mod-
els for predicting warbler density. Lower solar 
radiation environments likely have higher site 
moisture content and lower transpiration rates 
increasing oak regeneration and development 
(Russell and Fowler 2004, Murray et al. 2013) and 
arthropod abundance (Marshall et al. 2013).
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No covariates specifically developed to charac-
terize vertical or horizontal woodland complex-
ity, such as canopy height standard deviation, 
were included in the most supported warbler 
density models. LiDAR complexity metrics may 
not be directly applicable to woodland tree can-
opy architecture in this study area. Kane et al. 
(2010) noted that LiDAR complexity metrics de-
veloped for Pacific Northwest forests required 
further testing in other vegetation types. While 
not within the scope of this study, we found low 
correlation between LiDAR and complexity indi-
cators measured from vegetation plots such as the 
standard deviation of tree diameters and LiDAR 
height rumple (r = 0.05) and standard deviation of 
vegetation height (r = 0.28). Other LiDAR metrics 
such as understory distribution and coefficients 
of variation for relative density within height 
strata were poorly correlated with mean and stan-
dard deviation of tree diameters from plots (data 
not shown). More generally, for this study area 
mean vegetation height obtained from LiDAR 
was more positively correlated with the mean 
(r = 0.48) and standard deviation (r = 0.40) of tree 
diameters measured on plots. Mixed juniper- oak 
woodlands with taller, more mature trees that are 
preferred by the warbler (Pulich 1976, Reidy et al. 
2015) likely have greater structural complexity.

Candidate models including fragmentation 
variables such as distance from woodland edge 
and edge density were not among the most sup-
ported models (Table 3). Warbler density may 
be more influenced by woodland patch compo-
sition and height structure than fragmentation 
in our study area. Reidy et al. (2015) similarly 
found that woodland composition and canopy 
height were better predictors of warbler density; 
however, densities were negatively affected by 
increasingly open edge.

Overall, warbler density estimates compared 
well to territorial mapping from a separate field 
study on BCNWR (Fig. 3). Density estimates were 
94% of mean territory map density estimates, 
with high correlation on four plots and under-
estimation on two plots. Although some studies 
have found no statistical difference in abundance 
estimates between point count and territory map-
ping (Dobkin and Rich 1998), many studies using 
5 or 10 min point counts have found that point 
counts overestimate true density (Buckland 2006, 
O’Donnell et al. in press). This overestimation has 

been documented for warblers in other studies 
(Peak 2011, Warren et al. 2013b), even when using 
2 min point counts (Peak 2011). An essential as-
sumption of distance sampling is that animals are 
detected at their initial locations (Buckland et al. 
2001). Movement during the point count, even 
random movement, violates this assumption and 
results in overestimation (Buckland 2006). Con-
versely, incomplete availability during the point 
count, that is, not all males present in the point 
count area sing during the point count, results 
in underestimation of density. By comparing es-
timates from different point- count durations to 
territory mapping results, we attempted to find 
the duration that balances these opposing biases.

Management implications
We determined woodland composition and 

structural conditions important for maintaining 
and managing warbler habitat on BCNWR and 
identified areas of high quality warbler habitat 
and woodland areas suitable for developing 
future habitat. On the basis of observed habitat 
relationships (Fig. 5a–c), we defined high quality 
habitat as having at least 60% canopy cover 
with Ashe juniper comprising 50–90% of the 
canopy. Within the BCNWR warbler manage-
ment units, 48% of the area met this definition. 
As broadleaf cover can be promoted through 
management activities such as thinning or un-
derstory burning (Andruk et al. 2014), we defined 
potential future high quality habitat on BCNWR 
as woodlands having close to or greater than 
60% canopy cover, but that are currently dom-
inated by juniper (≥90%), with at least some 
broadleaf species present (≥1%). These conditions 
occur on 14% of BCNWR warbler management 
units (1060 ha). These juniper- dominated habitats 
can potentially maintain successful breeding pairs 
of warblers (Klassen et al. 2012), but low levels 
of disturbance favoring broadleaf tree species 
may increase warbler densities and prevent that 
habitat from transitioning into pure juniper cover 
(Murray et al. 2013). Future avian surveys, dis-
turbance, and habitat change information from 
remotely sensed data will likely help to refine 
density models and management approaches 
used to enhance warble habitat conditions.

Mitigating fire hazard and risk is also a con-
cern for Ashe juniper woodlands and warbler 
habitat areas (Andruk et al. 2014). In many cases, 
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understory thinning and burning in woodlands 
and forest are promoted to reduce ladder fuels 
and the potential for a surface fire to transition 
to a crown fire (Stephens et al. 2012, Huffman 
et al. 2013). From our candidate models, we did 
not find the presence and distribution of under-
story vegetation within a warbler territory to be 
important to warbler density. However, repro-
ductive success should be evaluated under vary-
ing levels of understory vegetation to determine 
its relationship with habitat quality. Understo-
ry thinning and burning in woodlands can also 
increase the amount of fine fuels on the ground 
due to creation of canopy gaps and potential tree 
mortality. Thus, proposed treatments warrant 
careful scrutiny to ensure that fire hazard is not 
exacerbated in these vegetation types.

Although this study focused primarily on de-
termining warbler habitat and populations size 
on BCNWR, we found that high quality habitat 
also exists on private land proximate to BCNWR 
boundaries (Fig. 6). Landscape- scale models in 
conjunction with other field survey data and as-
sessments may help target state and federal con-
servation programs (e.g., mitigation lands and 
conservation banks) designed to protect warbler 
habitat (USFWS 2013).

conclusIons

We developed robust survey methods to es-
timate warbler density on BCNWR while iden-
tifying a repeatable and transferable methodology 
for monitoring songbirds. Our sampling design 
using randomly distributed and repeated point- 
count surveys produced comparable warbler 
population estimates when matched to those 
from intensive territory mapping methods. We 
successfully combined LiDAR with CIR imagery 
to develop predictors of warbler density that 
can be used for managing habitat for this spe-
cies. Low- cost and high resolution remotely 
sensed data are increasingly available at the 
county, state, and national level through a va-
riety of programs (e.g., USGS 3D Elevation 
Program (3DEP) and USDA Farm Service Agency 
National Agri culture Imagery Program). 
Airborne LiDAR will be acquired for all of the 
conterminous United States, Hawaii, and US 
Territories within the next 8 yrs through 3DEP. 
The population monitoring and remote sensing 

applications developed in this study can help 
with USWFS- wide efforts to implement strategic 
habitat conservation planning and meet species 
recovery goals.
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APPENDIX A: LiDAR and NAIP 2012 CIR image processing and validation steps used to develop covariate data 

layers important to Golden-cheeked Warbler density. LiDAR data were processed to remove sampling artifacts 

associated with non-vegetated surfaces. LiDAR point cloud anomalies (e.g. points from birds or airborne 

debris) were removed from each tile using an automated high- and low-point noise filter. We used a semi-

automated routine to classify LiDAR points into vegetated and non-vegetated surfaces such as houses, 

buildings, and water towers. To create a 10-m bare earth digital terrain model (DTM), we used a triangular 

irregular network (TIN) algorithm to interpolate bare earth elevation from vendor-classified ground points. We 

applied hydro-flattening to estimate average elevation values for water bodies ≥2 ha using the National 

Hydrography Dataset (NHD; http://nhd.usgs.gov/) and digitized polygons taken from 2012 aerial photographs. 

We reshaped all NHD polygons using 2012 aerial photographs to conform to the most recent water body 

perimeters. For the LiDAR data pre-processing, we used LP360 software v. 2.24 (QCoherent 2013). 

We estimated broadleaf and juniper canopy cover using 1-m NAIP 2012 aerial photography combined with 

LiDAR vegetation height data. To enhance canopy cover classification, we derived the normalized difference 

vegetation index (NDVI; NIR–Red/NIR+Red) and a modified normalized difference water index (NDWI; 

Green –NIR/Green+NIR). We then used a tuned support vector machine (SVM) classifier (Sesnie et al. 2010) to 

discriminate tree canopy types using training (n = 2,738 pixels) and validation data (n = 1,369 pixels) developed 

from 100 × 100-m field plots and point intercept locations. Because of potential error between point intercepts, 

GPS locations and 1-m image pixels, we used point intercept data from field plots as reference locations to 

visually select broadleaf and juniper model training pixels. We then used a band combination of Red (3), NIR 

(4), Green (2) and standard deviation stretch to further enhance individual NAIP image pixel brightness values 

showing high contrast between juniper and broadleaf tree species. For further validation, we compared 

broadleaf and juniper canopy cover estimates from the NAIP image and LiDAR height classification to field-

based canopy cover estimates from the 100 × 100-m plots at a 1-ha spatial scale (n = 95). We used disturbance 

data including GIS polygons identifying mechanical vegetation treatments and prescribed or wildland fires from 

BCNWR to eliminate validation plots with disturbance post-dating 2006 LiDAR height data. 

 



 

FIG. A1. LiDAR 3D point cloud classification to distinguish ground (orange), vegetation (green), water (blue), 

and buildings (red) and develop vegetation height, bare earth elevation, and building data layers.  

 

 

 

 

 

 

 

 

 

 

 

 



 

FIG. A2. Panels indicate a) NAIP imagery and farm fields (bright green), b) associated areas of image 

classification commission and omission error, c) LiDAR vegetation height (increasing from blue (min 0 m) to 

red (max 16 m)), d) NAIP image fused with LiDAR  height correcting error, and covariate data layers 

developed from NAIP/LiDAR classification for juniper (e) and broadleaf woodlands (f).  

 

 



 

FIG. A3.  Scatter plots comparing percent canopy cover estimates from 1 ha point intercept plots (Observed) 

measured in the field to NAIP/LiDAR derived canopy cover estimates (Predicted) for a) total, b) Ashe juniper, 

and c) broadleaf canopy cover. The least squares regression line indicating a 1:1 relationship is in black and 

Lowess curve in blue. Coefficients of determination in each plot are from simple linear regression. 
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APPENDIX B. Explanation of edge density scaling.  

A limitation of commonly used edge density values is that by definition there is little or no edge habitat when 

tree cover is extremely high or low across at the landscape scale. This resulted in a strong, non-linear 

relationship between edge density and canopy cover (Fig A1). To rescale edge density so that it was 

independent of canopy cover, we recalculated edge density as edge density/(cover +1) where cover was the 

value of canopy cover or open habitat, whichever was smaller (e.g. cover would be 20 for an canopy cover = 20 

and canopy cover = 80). The +1 was to avoid dividing by zero. 

 

 

 

 

FIG. B1. From our study area, a strong non-linear relationship exists between edge density and canopy cover at 

the 100 m scale. Edge density values approaching zero are close to either maximum or minimum canopy cover 

values.  

 

 



 

 

 

FIG. B2. Rescaled edge density values lack the strong non-linear relationship with canopy cover. 

 



APPENDIX C: Model selection results, summary statistics for covariate data and density model parameter 

estimates from n = 250 point-count surveys collected in 2012. 

TABLE C1. Mean, standard deviation (SD), minimum (Min), and maximum (Max) values of habitat covariates 

used in models estimating density of male Golden-cheeked Warblers at Balcones Canyonlands National 

Wildlife Refuge, Texas, 2012. Habitat covariates were derived from 2007 and 2011 LiDAR data and 2012 

NAIP imagery. Some covariates were transformed for normality and all covariates were standardized (μ = 0, σ 

= 1) for use in the models. 

 75 m 

 

100 m 

   

Covariate Name Power Mean SD Min Max  Power Mean SD Min Max  

bcc1 0.22 17.7 18.0 0.0 90.9  0.28 17.3 16.0 0.0 84.7  

bdens1 0.06 2.0 2.7 0.0 17.2  0.06 2.0 2.7 0.0 17.2  

bdis1 0.16 905.4 664.6 73.3 3271.2  0.13 905.2 663.9 86.4 3260.7  

cc NA 57.8 27.3 0.0 99.8  NA 57.7 26.0 0.0 99.6  

edens NA 13.0 5.4 0.0 22.1  NA 13.0 4.6 0.0 20.7  

edist1 0.15 6.2 7.9 0.0 54.9  0.16 2.7 2.8 0.0 17.7  

ht NA 5.5 2.2 0.2 12.0  NA 5.5 2.0 0.3 10.8  

ht_cv_horiz NA 48.2 37.3 11.4 200.9  NA 51.9 39.9 15.0 335.0  

ht_max NA 6.1 2.5 0.0 13.0  NA 6.1 2.2 0.0 12.2  

ht_rumple1 -2.58 1.2 0.1 1.0 2.0  1.81 0.6 0.2 0.0 0.9  

ht_std NA 1.2 0.5 0.0 3.7  NA 1.2 0.4 0.0 3.3  

jcc1 0.75 40.1 23.6 0.0 90.5  0.80 40.4 22.9 0.0 88.4  

jcc_prop1 1.32 67.1 27.0 0.1 100.0  1.54 67.5 25.4 1.2 98.7  

rd_cv_vert1 1.54 3.9 1.3 0.0 7.1  1.68 3.9 1.2 0.0 7.0  

rd_overstry1 0.60 38.9 25.3 0.0 90.9  0.64 38.7 23.6 0.0 87.3  

ruf NA 2.0 0.7 0.5 3.7  NA 2.3 0.8 0.6 4.3  

slope NA 7.7 5.0 0.6 20.7  NA 7.8 4.6 0.6 19.6  

srad NA 1459.5 51.6 1246.6 1556.0  NA 1459.0 47.2 1270.0 1557.2  

undst NA 37.8 25.9 0.0 84.1  NA 45.4 29.6 0.0 100.3  



1Power from the Box-Cox power family ((covariatepower)-1)/power) used for the transformation is provided in the 

“Power” column for each scale. 

Table C1 cont. 

 

 

150 m 

 

Covariate Name  Power Mean SD Min Max 

bcc1  0.27 17.2 13.6 0.4 70.3 

bdens1  0.06 2.0 2.7 0.0 17.2 

bdis1  0.09 904.9 662.4 106.1 3242.2 

cc  NA 57.5 23.8 1.0 98.8 

edens  NA 12.7 4.0 1.4 20.2 

edist1  0.30 2.7 2.5 0.0 14.9 

ht  NA 5.5 1.7 0.4 9.5 

ht_cv_horiz  NA 54.5 35.7 17.2 239.6 

ht_max  NA 6.0 1.9 0.0 10.5 

ht_rumple1  1.49 0.6 0.2 0.0 0.8 

ht_std  NA 1.2 0.4 0.0 2.7 

jcc1  0.90 40.3 21.6 0.0 84.6 

jcc_prop1  1.70 67.0 23.8 3.1 98.4 

rd_cv_vert1  1.85 3.9 1.1 0.0 6.4 

rd_overstry1  0.67 38.6 21.5 0.0 83.6 

ruf  NA 2.7 0.9 0.8 5.0 

slope  NA 7.7 4.1 0.7 17.2 

srad  NA 1459.6 39.4 1310.5 1546.6 

undst  NA 45.1 27.8 0.0 97.5 

1Power from the Box-Cox power family ((covariatepower)-1)/power) 

used for the transformation is provided in the “Power” column for each 

scale. 



TABLE C2. Parameter estimates (  ±SE) from models within 10? ΔAIC of highest ranking models for Golden-

cheeked Warbler density (males ha-1) at Balcones Canyonlands National Wildlife Refuge, Texas 2012.  

 

Scale   
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75 m  -1.65 1.37 -0.57 0.32 0.07        

 SE ±0.21 ±0.19 ±0.18 ±0.15 ±0.02        

  -2.30        1.16 0.62 0.22 0.63 

 SE ±0.23        ±0.24 ±0.17 ±0.12 ±0.24 

100 m  -1.91 1.38 -0.50 0.29 0.08        

 SE ±0.22 ±0.20 ±0.17 ±0.14 ±0.02        

150 m  -1.41 1.08 -0.57 0.31 0.07        

 SE ±0.18 ±0.15 ±0.17 ±0.14 ±0.03        

  -2.00     0.76   0.82 0.59   

 SE ±0.17     ±0.21   ±0.13 ±0.14   

  -1.92 1.44   0.08  -0.32 0.25     

  SE ±0.17 ±0.14     ±0.03   ±0.10 ±0.09         



TABLE C3. Model selection results for estimating density of singing male Golden-cheeked Warblers at 75m and 

150m spatial scales from n = 250 point-count surveys collected on Balcones Canyonlands National Wildlife 

Refuge in 2012. Only models with ≥0.01 of model weight are shown.  

 

Analysis Scale Model K AIC ΔAIC wi 

Detection 75m ruf + cc 8 1360.86 0.00 0.99 

  ruf 7 1339.72 886 0.01 

 150m ruf +ht 8 1343.86 0.00 0.90 

  ruf 7 1348.80 4.95 0.08 

  slope 7 1351.39 7.54 0.02 

Density 75 m  cc + jcc_comp2 + cc*jcc_comp2  + srad2 8 1345.60 0.00 0.98 

  jcc + bcc + bcc2 + edist  8 1353.99 8.39 0.02 

 150 m ht + jcc + bcc 7 1341.87 0.00 0.78 

  cc + jcc_comp2 + cc*jcc_comp2  + srad2 8 1344.56 2.69 0.20 

  cc + edens + cc*edens + srad2 8 1350.85 8.98 0.01 
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