Nature through the Seasons

In a Nutshell
Students discover the science of phenology: the observation of nature’s patterns and rhythms. Students learn to measure a variety of weather characteristics and record phenological events they observe during a hike on the refuge. They discover how scientists use phenology to track the impact of even small weather changes on the behavior of plants and animals.

Grades K-6
Seasons Fall, Winter, Spring
Location Refuge-wide

Learning Objectives
After participating in this activity, students will be able to:
• measure temperature with a digital thermometer.
• use the Beaufort Wind Scale to estimate wind speed.
• match the clouds they see to a picture key.
• create a list of at least 3 seasonal nature events they can observe and record.
• give at least one example of how weather changes can affect plants and animals.

Literature Connections
A Child’s Calendar by John Updike (NP)
The Reasons for Seasons by Gail Gibbons (AD620L)
Sunshine Makes the Seasons by Franklyn Branley (AD510L)
My Nature Journal by Adrienne Olmsted
Animals in Winter by Henrietta Bancroft (AD380)
Pre-Visit Suggestions

Younger Students: Phenology Clue Kit
To start students thinking about the connection between weather and changes in plants and animals, assemble a collection of clues (i.e. red leaf, acorn, paper snowflake, etc.) Ask students to first sort the clues into weather, animal and plant categories. Then ask them to organize the same clues into seasons.

Older Students: Project WILD Minnesota activity, Wild Words (page 47)
Students understand phenology by reviewing spring journals and diaries of Minnesota naturalists and by keeping their own journals.

On-site Activities

Students take a short hike to record weather conditions and plant and animal observations on the refuge. Where possible, they compare their data with state or refuge records and then make connections between their observations, the day's weather, and the time of year.

Classroom Connection

Start a Classroom Nature Calendar
Start your own phenology calendar. Record changes in the weather. Record things you hear and smell as well as what you see. Start by creating a class list of events to watch for, organized by the season. Keep your “data” to compare year after year with your class.

Become a Citizen Scientist
A growing number of opportunities exist for the students to participate in biological monitoring surveys. Refuge staff can provide you with a list of local and national programs.
Teacher Resources

- Keeping a Nature Journal by Clare Walker Leslie and Charles Edward Roth
- Jim Gilbert’s Minnesota Nature Notes by Jim Gilbert
- How We Know What We Know About Our Changing Climate by Lynne Cherry and Gary Braasch
- The Down-to-Earth Guide to Global Warming by Laurie David and Cambria Gordon
- Nature’s Calendar, Conservation Volunteer Magazine
- Teacher’s guide www.dnr.state.mn.us/young_naturalists/phenology
Nature Through the Seasons
Pre-visit Activities

Phenology Clue Kit

Materials
- Phenology clues kit
 - Weather clues: mittens, hat, winter jacket, umbrella, laminated paper, snowflake, sunglasses, flip flops/sandals
 - Plant clues: fall leaves, seeds, silk flower, lawn model, nuts/acorns
 - Animal clues: bird nest with eggs, antler, animal pelt, picture of migrating geese, butterfly, bluebird and/or robin Audubon birds
- Paper/Colored Pencils or Crayons
- Laminated blank wall calendar
- Laminated phenology calendar markers appropriate to the season

Introduction

How do you know when the seasons change? Steer students away from answers like “the date on the calendar.” We know that the seasons are changing because of the changes in the weather and in the environment around us. Flowers bloom, trees leaf out and then drop their leaves, animals migrate and hibernate, temperatures shift – all of these are signs of a change in the seasons. Watching for these changes and recording them is the basis of the science of phenology – the study of

April

American Robins sing every morning.
Pasque flowers bloom in the prairie.
Rain showers wake woodland flowers.
Ice melts off the lake.
Look at Saturn in the night sky.
events in nature and how they are affected by the weather. Anybody can take part in phenology, by simply observing changes in the world around them and recording those observations on a chart or in a journal.

Activities

Using the phenology clue kit, help students sort the objects into three categories: weather, plant, or animal. Then have them reorganize the items into seasons: fall, winter and spring.

Ask each student to draw their own picture of the animals they expect see, hear or find evidence of during their upcoming visit to the refuge based on the weather outside and the time of year. What will the plants look like? Or, ask them to write an acrostic poem, using the current month’s name and the things they expect to see at the refuge during their visit. Ask the teacher to bring their pictures / poems along on their field trip.

Wrap-up

Remind students that they will be exploring outside during their field trip. Lead a brief discussion on how students should dress for their refuge field trip and answer student questions. Encourage students to wear closed-toe shoes like sneakers or boots, long pants, and jackets as well as hats and gloves if the weather is cold. Let students know that if they do not have warm outer wear, they can borrow items from the Refuge Borrowing Closet when they arrive.
Nature Through the Seasons
On-site Activities

Materials
- Journal page, clipboard and pencil per student
- Students' “before” field trip pictures or poems.
- One backpack per leader with the following:
 - One jar of bubbles and bubble wand per group
 - One Modified Beaufort Wind Scale per group
 - One Cloud Dichotomous Key per group
 - One digital thermometer per student
 - One Cloud Identification Chart per student
- One Weather Guide Calendar for each teacher (last year and this year to compare information.)
- One laminated phenology wall calendar similar to what refuge staff uses in the refuge classrooms.

Introduction
Inside Visitor Center (30 minutes)
Welcome the students to the National Wildlife Refuge! Review the term phenology with the students. Pass back the pictures students drew predicting what they would see on their field trip. Make a list on the dry erase board of the things they drew in their pictures during their classroom pre-activity. What did they expect to see? What were their predictions? Explain to the students that the class will refer back to this list after the hike to determine whether or not their predictions were correct.

Pass out the journal sheets, clipboards and pencils to each student. Review the day’s date, weather conditions, sunrise, sunset and season with the students. Ask the students to complete this section of the data sheet.

Discuss with the students the most effective way to make good scientific observations: walk slowly and quietly, observe overhead as well as up close, listen, and stay together. Emphasize that there are three sections on their journal sheet for observations: weather, plants, and animals.
Explain to the students that they will be gathering data just like real scientists! Remind them that covering a lot of distance is less important than being good observers.

Hike

Hillside Trail (60 minutes)

Divide students into groups with at least one adult leader. Ask the adult to pack the team’s backpack as you explain how to use each item.

1. **Bubbles and the Modified Beaufort Wind Scale (for leader use)**
 Ask the students if they knew they could guess the speed of the wind by watching the movement of bubbles, leaves, and tree branches. The leader should use the key to guide the students through each observation until they reach consensus on a wind speed estimate.

2. **Digital Thermometers (for students use)**
 Show students and leaders how to turn on the digital thermometers.

3. **Cloud Picture Key (for student use)**
 and
 Cloud Identification Key (for leader use)
 Have students look at and interpret the picture key. Which clouds would be the highest in the sky? Which would be closest to the ground? How does the picture show you that? Ask the leaders to look at the Cloud Identification Key. Suggest they use the questions in the key to guide students through the process of determining what type of clouds they are looking at.

Clarify with the leaders where to hike and when to meet back in the classroom to compare and discuss student observations.

Back in the Classroom

(20 minutes)

Make 3 lists on the dry erase board with the headers: Wildlife Observations, Plant Observations and Weather Observations. Ask each student team to report one observation from each category that they
made from their data sheet to add to the class list. Once each team has contributed their observations compare the lists with the student predictions.

Wrap-up
Classroom (10 minutes)
Explain how refuge staff uses the laminated phenology wall calendars. What observation(s) does the class want to add to the calendar? Refer to the list included in the curriculum unit for ideas. Use the laminated pictures when possible to encourage participation by non-readers or non-English speaking students.

Describe to the students what was observed last year. What is the same or different about the weather? Ask students the question: “What effect does the weather have on the plants and animals?”

Management Connection
Bring out any phenology data available from the state and / or the refuge to compare with what the students collected. How does today’s weather compare to last year? Are today’s wildlife observations similar to what rangers and students were seeing this time last year? Why are dates like the “first” and “last” for things like snowfall, ice over, or the appearance of a migratory species important to scientists? Changes in weather patterns can have startling effects on wildlife. Here are a few examples:

- More rainfall in late summer /early fall leads to a better crop of wild berries. This allows fruit eating birds (robins and bluebirds) to delay migration because they can find food. In winter 2008 staff and birdwatchers were reporting robins and bluebirds on the refuge throughout the winter.

- A colder than average spring slows down plant growth. Hummingbirds go hungry when they arrive back in Minnesota and find few blooming plants to take nectar from.

Tracking patterns in nature can help scientists understand the effects of weather changes on plant and animal communities. Tracking patterns in nature can also help scientists predict potential problems in time to
search for solutions that might lessen negative impacts on plant and wildlife populations.
Nature through the Seasons
Phenology Hike

The Weather Today

The temperature is _____________. The wind is _________________.

Today’s sunrise was at __________ a.m. The sunset will be at _____________ p.m.

The clouds I see are called __ clouds.

How much of the sky is covered with clouds? (Circle the best answer).

More than half (>1/2) Half (1/2) Less than half (<1/2)

Here are 3 things I noticed today about plants.

1. ___

2. ___

3. ___

Here are 3 things I noticed today about animals.

1. ___

2. ___

3. ___
Cloud Identification Guide

A Dichotomous Key
Created by Dr. Tina Cartwright, WV State Climatologist

Look carefully at your cloud. Answer the questions below, and follow the instructions. When you reach a cloud name in **bold**, that is the type of cloud you are observing. Stop at that point.

1. Is it raining?
 - **No**– go to number 2.
 - **Yes**– with thunder, lightning, & heavy rain - your cloud is a **cumulonimbus**.

2. Is it a high wispy cloud, like a horse’s tail?
 - **No**– go to number 3.
 - **Yes**– your cloud is a **cirrus**.

3. Is it flat & layered, puffy & bumpy, or some of both?
 - **Flat & layered**– go to number 4
 - **Puffy & bumpy**– go to number 5
 - **Both**– If your cloud is a nearly solid layer of large puffs (the size of your fist or larger), your cloud is a **stratocumulus**.

Nature through the Seasons
Sept. 2013
Page 8 of 19
4. Determine how high and how thick your flat layered cloud is.
 If your cloud is high, thin, and the sun is shining casting distinct shadows, it is a **cirrostratus**.

 ![Image of cirrostratus cloud]

 If it is thicker, the sun is dimmer, and there are hardly any shadows, it is an **altostratus**.

 ![Image of altostratus cloud]

 If it is a low cloud, so low it’s hard to see the bottom and it covers most of the sky, it is a **stratus**.

 ![Image of stratus cloud]

5. Hold your hand up toward your cloud. Look at the size of the puffs. Compare them to your hand.
 If the puffs are the size of your fingernail (very small), your cloud is a **cirrocumulus**.

 ![Image of cirrocumulus cloud]

 If the puffs are the size of your thumb (medium-sized), your cloud is an **altocumulus**.

 ![Image of altocumulus cloud]

 If the puffs are the size of your fist (large), your cloud is a **cumulus**.

 ![Image of cumulus cloud]
Estimating Wind Speed

Modified Beaufort Scale*

Calculate wind speed at about 10-15 feet off the ground

Start at A.

A. Bubbles drift.
 If true go to B.
 If false, wind speed = 0 m.p.h.

B. Flag moving and needles, leaves rustling.
 If true go to C.
 If false, wind speed = 1-3 m.p.h.

C. Flag fully extended and needles, leaves and small twigs constantly in motion.
 If true go to D.
 If false, wind speed = 4-7 m.p.h.

D. Small branches move.
 If true go to E.
 If false, wind speed = 8-12 m.p.h.

E. Small tree with leaves, needles sway.
 If true go to F.
 If false, wind speed = 13-18 m.p.h.

F. Large branches in motion
 If true go to G.
 If false, wind speed = 19-24 m.p.h.

G. Whole trees in motion and it is hard to walk into the wind
 If true go to H.
 If false, wind speed = 25-31 m.p.h.

H. Twigs break off.
 If true go to I.
 If false, wind speed = 32-38 m.p.h.

I. Some shingles fly off roof
 If true go to J.
 If false, wind speed = 39-46 m.p.h.

J. Uprooting of trees near clearings.
 If true go to K.
 If false, wind speed = 47-54 m.p.h.

*Adapted with permission from Wolf Ridge Environmental Learning Center
Nature Through the Seasons
Rainy day Alternatives

Materials
- Data sheet, clipboard and pencil per student team or team leader as decided by the teacher
- Large sections of butcher paper
- Crayons

Inside Observation
Visitor Center (10 min)
Divide students into four groups each with at least one adult leader. Assign each group to a designated area in the Visitor Center to observe outside. Ask the adult to record student observations on the data sheet. Meet back in the classroom to compare observation and discuss the results.

Season Mural
From the student’s observations today and during the season have them draw pictures of what changes they have witnessed outside. In their groups, give them a piece of butcher paper and crayons.

May provide extra paper to teacher for students to draw the other seasons and make a large mural of the seasons for their classroom.

Visit a Refuge
Using one of the videos, *America's Wildest Places volume 1-3*, students explore another Refuge in the United States. Compare the selected refuge with Minnesota Valley.

- What are some similarities? Differences?
- Does the selected refuge have seasonal changes like Minnesota?
Nature Through the Seasons
Post Activities

Phenology Pictures
Pass out the students’ original refuge drawings or acrostic poems. Ask them to look carefully at what they expected they might see on their field trip. Were they accurate? What did they see or hear on their refuge field trip that they did not put in their first picture or include in their poem? Pass out crayons and colored pencils. Ask students to continue working on their pictures / poems to make them more accurate or more detailed. Select one student from each team to share how they changed their drawing.

Classroom Nature Calendar
• Start your own phenology calendar. Record changes in the weather. Record things you hear and smell as well as what you see. Start by creating a class list of events to watch for, organized by the season, or use the Refuge Phenology Checklist provided. Encourage students to include dates especially fun for kids: the first day they need a jacket…or can wear sandals; the first day they can catch a snowflake on their tongue or can go sledding; the first day they come to school in the dark or leave school in the dark.

Other ideas include:

• **Winter**: The date ice first appears on the edges of nearby lakes. The last day you can comfortably wear shorts and sandals. The first snowflake big enough to catch on your tongue. The first Goldfinch you see wearing its dull yellow and black winter feathers.

• **Spring**: First sightings of returning robins, monarchs, hummingbirds and orioles. First hibernating turtles and groundhogs seen enjoying the sunshine. Day the last bit of ice melts on nearby lakes. First time you hear frog calls. The date you spot the first nest of goslings paddling behind mom.

• **Summer**: The first goldenrod and aster blooms on the prairie. The first day the grasshoppers, katydids, and crickets start calling to each other.
• **Fall:** The day the first flock of geese fly overhead. The day the first maple leaves start changing color. The date the last leaf falls of a nearby maple tree.

Keep your “data” to compare year after year with your classes. Students may choose to record their observation with drawings, words, or a combination of both. For more ideas and examples on keeping a phenology calendar:

- download the Young Naturalists article *Nature’s Calendar* from the DNR website at www.dnr.state.mn.us/young_naturalists/phenology. On “E-nature” create and store your class’s phenology data and compare with data collected worldwide www.enature.com/wildlifelists/wildlifelist_home.asp
- download the Minnesota Weather Guide Environment Calendar Curriculum for additional observation checklists at www.freshwater.org
Refuge Phenology Checklist

(Compiled using a variety of sources including Three River’s Park District “Phenology Notes”, Jim Gilbert’s Year Phenology Notes in the Freshwater Society Weatherguide Environment Calendar, Wild Bird Store Newsletters)

January
- Black capped chickadees & hairy & downy woodpeckers began their territorial sounds
- Forest moss begins to turn green
- Male wild turkeys are starting to call “gobble, gobble, gobble” as they fan their tails in display
- Lake ice can be heard groaning, booming, & cracking
- Red oak leaves finally fall off the trees
- Flocks of snow buntings appear in the open countryside
- Great horned owls, first birds to nest in MN, are hooting in duets to signal setting up territory.
- Raccoons retreat to underground dens or hollow trees until it gets above freezing

February
- Black bear cubs are born
- Northern cardinals and eastern cottontail rabbits arrive at feeders about 15 minutes before sunset
- Gray squirrels begin their mating season
- Great horned owls are incubating their eggs
- Red-tailed hawks return
- Red foxes are out in pairs, signaling their mating season
- Timber wolves are out searching for mates
- First eastern chipmunks are out and about
- Garter snakes come out to sun themselves on warm days

March
- Silver maple and elderberry buds are swollen and easy to spot
- Ponds and lakes begin to show rings of open water
- Fuzzy catkins burst on aspen trees
- Canada geese pairs stand on ice in wetlands to stake their nesting territories
- Painted turtles are lined up on logs
- Skunk cabbage is blooming in the floodplain forests
American robins return very vocal.
Maple trees begin to produce sap for maple syrup
Migration is flushing song sparrows, great blue herons, killdeers, eastern bluebirds, hooded mergansers, and wood ducks into Minnesota

April
Wood ducks and eastern bluebirds examine nesting boxes
Red-winged blackbirds start returning to the wetlands
Mourning doves begin cooing at the crack of dawn
Honey bees start visiting flowers of silver maple trees
Pasque flowers and prairie smoke bloom in the prairies
Chorus frogs can be heard calling from wetlands
Spring ephemerals start blooming on the forest floor
Barn swallows, chipping swallows, house wrens, and yellow-rumped warblers return
Large numbers of waterfowl are seen on lakes

May
Deciduous trees are leafing out
Baltimore orioles, rose-breasted grosbeaks, and ruby-throated hummingbirds return
Eastern bluebird and Canada geese eggs begin to hatch
Red fox kits are out of their dens
American woodcocks are displaying
Mushrooms are popping up in the forests
Warbler migration is at its peak
Moose calves are being born up north
New growth on evergreen trees is bright and tender
Female wild turkeys can be observed with newly-hatched young

June
Monarch butterflies return and are laying eggs on milkweed
Snapping and painted turtles are laying eggs
Striped skunks are out traveling
Canada geese start shedding their flight wings and are flightless
Wood duck ducklings are seen on ponds with the hens
Deer flies are abundant near swamps and ponds
Offspring of the American toad are up on land
- Prairie forbs start displaying a wheel of colors
- Cattails are shedding pollen
- Juvenile 13-lined ground squirrels are above ground and exploring

July
- Lightning bugs come out at night
- Mosquitoes and deer flies become annoying
- Young raccoons are roaming about with their mothers
- Prairies forbs are in full color
- Canada geese are ready to fly again
- Tree crickets, cone-headed grasshoppers, katydids, and black field crickets fill the night air with their songs
- Second generation of eastern tiger swallowtail butterflies are on the wing
- Lake temperatures reach the mid to upper 70s
- Wild raspberries are ripe for eating
- Gartner snake young are born

August
- American goldfinches, barn swallows, and mourning doves start nesting
- Cicadas buzz loudly on hot, humid, hazy days
- American lotus plants are blooming in the backwaters and quiet bays along the lower Minnesota River Valley
- Mud dauber wasps are creating tubular nests of mud
- Ruby-throated hummingbirds and shorebirds are seen migrating in flocks around the metro area
- Wild cucumber vines display their showy clusters of white flowers
- Joe-Pye-weed, boneset, broad-leaved arrowhead, and spotted touch-me-not are blooming in the wetlands
- Wild grapes are available as a food source for wildlife
- Prairie grasses are shedding pollen from their seed heads
- Spider webs are filled with dewdrops in early morning light

September
- Monarch butterflies are heading south
- Warblers, vireos, and thrushes migrate at night to protect themselves from predators
- Acorns, walnuts, and butternuts begin to fall
Deciduous plants begin to change into their autumn colors
Snapping turtle eggs are hatching
Common milkweeds shed their seeds
Staghorn and smooth sumac are displaying red colors
Wild rice is ready to eat for migrating waterfowl

October
- Trees along the lower Minnesota River Valley are exploding with fall foliage colors
- Dark-eyed juncos start arriving at feeders
- White-tailed deer bucks can be seen and heard head-butting defending breeding territories
- American coots occupy many wetlands
- Short-tailed weasels are turning from brown to white
- Black bears are heading towards their den
- Flocks of tundra swans and American white pelicans are migrating
- Muskrats continue to add plant materials to their huts
- Surface water temperatures fall into the lower 50s

November
- Snowshoe hares are changing from brown to their white winter coats
- Red squirrels gather dried mushrooms to store for winter food
- Downy woodpeckers make holes in goldenrod galls and feed on the fly larva inside
- Daylight retreats to just over nine hours by end of the month
- Bald eagles patrol the shorelines of rivers and open lakes
- Raccoons are sleeping in sheltered places
- Ice starts forming on lakes, ponds, and rivers
- Growing season ends as first snows arrive
- Coyotes are heard howling in the night

December
- White-tailed deer switch the diet from grasses and leaves to twigs from shrubs and trees
- Lake ice cracks and booms as it contracts with increasingly cold temperatures
- Pileated woodpeckers become more common at suet feeders
Eastern cottontail rabbits venture out shortly after sundown to forage on twigs and bark of small shrubs

- White-tailed deer start shedding their antlers
- Gray squirrels excavate their stores of acorn for winter feeding
- Muskrats climb out of the ice to eat water plants they gathered
- Flying squirrels that sleep during the day are active at night
- Ice fishing season starts with pan fish and walleye biting

Become a Citizen Scientist

A growing number of opportunities exist for the students to participate in biological monitoring surveys. Especially student friendly programs include:

- Project Budburst http://www.windows.ucar.edu/citizen_science/budburst/
- Feeder Watch http://www.birds.cornell.edu/pfw/