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Abstract
1.	 Disease models typically focus on temporal dynamics of infection, while often ne-
glecting environmental processes that determine host movement. In many systems, 
however, temporal disease dynamics may be slow compared to the scale at which 
environmental conditions alter host space-use and accelerate disease 
transmission.

2.	 Using a mechanistic movement modelling approach, we made space-use predic-
tions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucel-
losis) under environmental conditions that change daily and annually (e.g., plant 
phenology, snow depth), and we used these predictions to infer how spring phenol-
ogy influences the risk of brucellosis transmission from elk (through aborted foe-
tuses) to livestock in the Greater Yellowstone Ecosystem.

3.	 Using data from 288 female elk monitored with GPS collars, we fit step selection 
functions (SSFs) during the spring abortion season and then implemented a master 
equation approach to translate SSFs into predictions of daily elk distribution for 
five plausible winter weather scenarios (from a heavy snow, to an extreme winter 
drought year). We predicted abortion events by combining elk distributions with 
empirical estimates of daily abortion rates, spatially varying elk seroprevelance and 
elk population counts.

4.	 Our results reveal strong spatial variation in disease transmission risk at daily and 
annual scales that is strongly governed by variation in host movement in response 
to spring phenology. For example, in comparison with an average snow year, years 
with early snowmelt are predicted to have 64% of the abortions occurring on 
feedgrounds shift to occurring on mainly public lands, and to a lesser extent on 
private lands.

5.	 Synthesis and applications. Linking mechanistic models of host movement with dis-
ease dynamics leads to a novel bridge between movement and disease ecology. 
Our analysis framework offers new avenues for predicting disease spread, while 
providing managers tools to proactively mitigate risks posed by mobile disease 
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1  | INTRODUCTION

Epidemiological models have traditionally focused on temporal as-
pects of disease dynamics (Diekman, Hesterbeak, & Britton, 2012; 
Keeling & Rohani, 2008), with less emphasis on spatial heterogene-
ity. Transmission is often determined by the movements of hosts and 
vectors, which are in turn influenced by environmental conditions. 
Yet, host movement is seldom linked to environmental conditions 
(Altizer, Bartel, & Han, 2011; Ostfeld, Glass, & Keesing, 2005). This 
is likely because of the human focus of much of the disease ecology 
field, and because movement models have been historically difficult to 
translate into mechanistic predictions of animal density (Moorcroft & 
Barnett, 2008) or spatially structured epidemiological systems (Keeling 
& Rohani, 2002). Incorporating host movement into disease models is 
particularly important for disease systems where temporal dynamics 
of infection and transmission act over a longer time-scale than factors 
that affect host movement such as food availability.

When studies do explicitly incorporate spatial heterogeneity, dis-
ease models such as the classic susceptible–infected–recovered (SIR) 
and related models (Diekman et al., 2012) tend to make simple as-
sumptions about homogeneity in the spatial structure of the landscape 
and random movement of hosts and vectors (Keeling & Rohani, 2002). 
Nonetheless, even incorporating a relatively simple spatial component 
into disease models has led to novel predictions of disease dynamics 
(Benavides, Valderrama, & Streicker, 2016; Riley, 2007). For example, 
Smith, Lucey, Waller, Childs, and Real (2002) employed a stochastic 
spatial model to quantify spatial variation in rabies spread and found 
that large rivers act as semi-permeable barriers. In this case, includ-
ing the spatial component illuminated how local transmission based 
on host movement and translocation of hosts by humans influence 
the spread of rabies (Smith et al., 2002). Further, including a dispersal 
kernel, based simply on how infectivity decreases with distance, has 
provided the baseline for spatial models of foot-and-mouth disease to 
identify how control efforts should be applied spatially (Keeling, 2005).

The field of animal ecology has a long history of assessing how 
environmental conditions drive individual movement and population 
spatial distribution (Guisan & Zimmermann, 2000; Manly, McDonald, 
Thomas, McDonald, & Erickson, 2002). Species distribution models 
(Elith & Leathwick, 2009) such as the resource selection function (RSF; 
Manly et al., 2002) are well-established and have been used to answer 
a plethora of applied and fundamental questions. The RSF is typically 
used to predict distributions based on static landscape variables or for 

specific time periods (e.g., Losier et al., 2015), but such models do not 
account for the movement process between habitats as habitat quality 
changes through time (Merkle et al., 2016; van Moorter et al., 2013). 
In response to such constraints, mechanistic movement modelling 
has seen recent methodological advances, where animal space-use is 
now viewed as a pattern that is “scaled-up” mechanistically from the 
movement of individuals (Morales & Ellner, 2002). Advances in mech-
anistic movement modelling have included ecological diffusion models 
(Hefley, Hooten, Russell, Walsh, & Powell, 2017; Williams et al., 2017), 
as well as the step selection function (SSF; Fortin et al., 2005) and its 
translation into a probability density function of space use through 
stochastic simulations (Signer, Fieberg, & Avgar, 2017) or a master 
equation (Merkle, Potts, & Fortin, 2017; Potts, Bastille-Rousseau, 
Murray, Schaefer, & Lewis, 2014). These statistical methods identify 
the mechanisms driving animal movement, allowing a more explicit 
assessment of the influence of host movements on disease dynamics.

Despite the apparent usefulness of mechanistic movement models 
to epidemiological models, the two fields have only recently begun 
to merge (Garlick, Powell, Hooten, & McFarlane, 2011; Hefley et al., 
2017). For instance, Hefley et al. (2017) use an ecological diffusion 
model to predict spatio-temporal dynamics of chronic wasting disease 
in white-tailed deer (Odocoileus virginianus). Yet, their model does not 
include individual-based animal movement data nor temporally vary-
ing variables that affect deer movement. We build on this work by 
fitting a mechanistic movement model of a mobile host monitored 
using GPS collars and then use a master equation approach to predict 
space use under environmental scenarios that change daily and annu-
ally (e.g., plant phenology, snow depth). We use these predictions to 
mechanistically link how weather patterns and forage availability (e.g., 
variability in snow depth and date/rate of spring vegetation green-up) 
influence spatio-temporal variation in disease transmission risk, via 
host movement.

We assessed spatio-temporal variation in brucellosis transmission 
risk from elk (Cervus canadensis) to domestic cattle (Bos taurus) in the 
Greater Yellowstone Ecosystem (GYE). Brucellosis is transmitted by 
contact with infected foetuses, placentas or birthing fluids (Cheville, 
McCullough, & Paulson, 1998); thus, it can be transmitted to cattle via 
comingling with elk between February and June, peaking March to May 
when most abortions occur (Cross et al., 2015). The potential transmis-
sion risk of brucellosis to cattle is a concern for livestock health, the 
sustainability of the ranching industry and tolerance for elk in the GYE 
(Bienen & Tabor, 2006; Kilpatrick, Gillin, & Daszak, 2009). Of particular 

hosts. More broadly, we demonstrate how mechanistic movement models can pro-
vide predictions of ecological conditions that are consistent with climate change but 
may be more extreme than has been observed historically.
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concern is that brucellosis seroprevalence in elk has increased in some 
areas of the GYE over the last 20 years (Cross et al., 2010), resulting 
in localized increased risk of transmission to cattle. To limit comin-
gling of elk and cattle during the brucellosis transmission period in the 
Wyoming component of the GYE, winter supplemental feeding of elk 
is employed and ends between February and May during the abortion 
season (Cross, Edwards, Scurlock, Maichak, & Rogerson, 2007).

In the Mountain West, climate change is contributing to decreased 
snowpack, earlier snowmelt, and an increase in drought frequency and 
the rate of spring green-up (Bates, Kundzewicz, Wu, & Palutikof, 2008; 
Joyce, Haynes, White, & Barbour, 2005). Plant phenology strongly de-
termines wild ungulate habitat use (Aikens et al., 2017) and selection 
(Merkle et al., 2016), including elk in our study area (Jones et al., 2014). 
To evaluate the influence of snow depth and vegetation phenology 
on brucellosis transmission risk, we predicted the spatio-temporal 
distribution of abortion events across five winter weather scenarios: 
observed low, average and heavy snow years; and two extreme early 
snowmelt or winter drought scenarios.

2  | MATERIALS AND METHODS

Our analysis consisted of four steps: (1) fit SSFs of elk movement in 
spring when brucellosis transmission risk is high; (2) derive elk distri-
bution by employing a master equation approach based on the fitted 
SSFs across the aforementioned five weather scenarios; (3) multiply 
elk distribution predictions by adult and yearling female elk abun-
dance, seroprevelance, pregnancy rate and daily probability of an 
abortion event (Cross et al., 2015); and (4) contrast the distribution 
of brucellosis transmission risk across different weather scenarios 
for public and private lands, which vary in the timing of livestock 
use.

2.1 | Study area and GPS collar data

Elevations in the Wyoming component of the GYE range from 
1,700 m to 4,200 m. Land ownership is a mixture of private, state 
and local governments, Bureau of Land Management (BLM), U.S. 
Forest Service (USFS), U.S. Fish and Wildlife Service (USFWS) and 
U.S. National Park Service property (NPS; Figure 1). Sagebrush 
(Artemisia spp.) communities predominate at lower elevations (below 
2,300 m), and transition to herbaceous meadows and lodgepole 
pine (Pinus contorta), Douglas fir (Pseudotsuga menziesii) and aspen 
(Populus tremuloides) forests at mid-elevations (2,300 m to 2,900 m). 
Elevations above 2,900 m are predominated by herbaceous mead-
ows, and spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa) 
and whitebark pine (Pinus albicaulis) forests. The regional climate is 
characterized by long cold winters and relatively short warm sum-
mers (see Jones et al., 2014 for details).

We used GPS collar data from 288 adult and yearling female 
elk captured on 22 feedgrounds (range: 4–64 individual elk per 
feedground) from 2007 to 2014. Each individual elk was monitored 
for one to 2 years. Elk were captured in corral traps or chemically 

immobilized from the ground with a dart containing 0.01 mg/kg 
carfentanil (ZooPharm, Windsor, CO, USA) and 0.1 mg/kg xyla-
zine (Vedco, St. Joseph, MO, USA), and antagonized with 1 mg/kg 
naltrexone (ZooPharm, Windsor, CO, USA) and 2 mg/kg tolazoline 
(Lloyd Laboratories, Shenandoah, IA, USA). Although collars were 
programmed to collect locations every 30, 60 or 120 min, we rar-
efied the data to one location every four hours so that the proba-
bility of moving at least 250 m (the coarsest resolution of our GIS 
data) was >0.5.

2.2 | Derivation of animal distribution from a SSF

The SSF is a modelling approach equivalent to a biased corre-
lated walk for estimating resource selection by mobile organisms 
(Duchesne, Fortin, & Rivest, 2015). The general form of the SSF is 
as follows:

where f(x|y, s, β) is the conditional probability of choosing location x, 
given the animal came from location y, and the 1:K available options 
s, where s = {l0, l1, …, lK}. Φ(x|y) is the probability, in a homogeneous 

(1)f(x|y, s,�)=
Φ(x|y)exp(Z(x) ⋅�)

∫lϵs Φ(l|y)exp(Z(l) ⋅�)dl

F IGURE  1 Study area in western Wyoming, USA, indicating 
the matrix of landownership and the locations of elk supplemental 
feedgrounds. Shading represents hillshade of elevation
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landscape, of moving from y to x. Z is a vector of environmental covar-
iates, and β is a vector of coefficients denoting the strength that each 
of the environmental covariates in Z has on choice of s options. The 
denominator acts as a normalizing constant, ensuring that f(x|y, s, β) is 
a probability density function.

Predicting animal distribution from a SSF can be done through 
a master equation approach, where the population-level probability 
of use is derived using estimated SSF parameters (Potts et al., 2014). 
Given a landscape of grid cells (i.e., habitat patches), the master equa-
tion gives the probability density of a population at some time t + Δt as 
a function of both the probability density at time t, and the movement 
kernel. Denoting the probability that the population is in patch x at 
time t by u(x, t), the master equation is

where f(x|y, Ω, γ, β) is the movement kernel, and Ω is the set of all hab-
itat patches in the landscape.

At every iteration of the master equation, the movement kernel 
is calculated as the probability f(x|y, Ω, γ, β) of moving to location 
x (potential target patch) given being previously at y (the source 
patch),

Here, Φ(x|y, γ) is the step length distribution with γ indicating the func-
tional form of the distribution, f(x, y, Ω, β) is the fitted SSF denoting 
the effect of the environment on the animal’s movement or choice of a 
patch. K is a normalizing constant that ensures f(x|y, Ω, γ, β) integrates 
to 1 with respect to x, and γ is a vector of parameters for the step 
length distribution (e.g., Weibull distribution).

2.3 | SSF development

We developed and fit a SSF for elk movement on and around each 
feedground (i.e., a feedground subpopulation) from the day supple-
mental feeding ended to 15 July (when brucellosis-induced abortion 
risk is predicted to be nearly zero; Cross et al., 2015). We fit SSFs sep-
arately for each feedground because we expected each subpopulation 
to behave differently based on previous analyses (Jones et al., 2014). 
For each four-hour step, we drew 10 potential target points originat-
ing from the known source point by simultaneously sampling step and 
turning angle distributions of all animals in the subpopulation. These 
10 potential target points were identified as available and compared 
to the used target step.

Our SSFs included the following variables hypothesized to in-
fluence elk movement after supplemental feeding has ended: dis-
tance to any road (in km) including highways and jeep trails (30 m 
resolution, U.S. Department of Commerce, Bureau of the Census), 
elevation (30 m, U.S. Geological Survey National Elevation Dataset), 
snow depth (1 km, daily, Snow Data Assimilation System [SNODAS]), 
aspect (30 m, ranging from −1 as southerly to 1 as northerly aspects), 
slope (30 m, in degrees), terrain position index (30 m, ranging from 
−50 as valley bottoms to 50 as ridgetops, calculated as the difference 

between the elevation of a cell and the mean elevation of its near-
est 80 surrounding cells), per cent tree canopy cover (30 m, 2011 
National Land Cover Database), overall productivity or biomass 
of a habitat patch each year calculated as the annual integrated 
Normalized Difference Vegetation Index (NDVI, 250-m resolution, 
MODIS data; Pettorelli et al., 2005), and the phenological stage of 
a habitat patch calculated as the daily NDVI value (scaled between 
0 and 1) of a patch at the time the step was taken (250 m, calcu-
lated following the cleaning and smoothing methods of Merkle et al., 
2016; Bischof et al., 2012).

2.4 | Fitting the SSF

We fit an SSF for each feedground subpopulation using conditional 
logistic regression, with each stratum identified as a used point and 
its paired 10 available target points. To reduce bias in estimated co-
efficients, particularly for variables that are strongly selected for, we 
included distance (in km) between the source and target points as a 
covariate to better represent heterogeneity in the availability domain 
at each step (Forester, Im, & Rathouz, 2009). Because of temporal 
autocorrelation and a lack of independence within an individual’s 
movements, we calculated robust SE and 95% CI of parameters using 
generalized estimating equations (Craiu, Duchesne, & Fortin, 2008). 
All strata for a given individual and year were assigned a unique clus-
ter in the SSFs. There was no collinearity among variables within fit-
ted SSFs—Pearson correlations coefficients were <0.35, and variance 
inflation factors were <2.5. We validated the robustness of SSFs using 
fivefolds cross-validation repeated 100 times, following the frame-
work developed by Fortin et al. (2009) for SSFs.

2.5 | Master equation parameters

We estimated the spatio-temporal distribution of elk around 
feedgrounds every 4 hr (i.e., Δt) on a 500 m grid of the study area by 
translating the SSFs for each feedground subpopulation into a master 
equation of space use. We chose a larger grid than the 250-m grid as-
sociated with NDVI data to reduce computation time for the calcula-
tions. We derived elk distribution from the day supplemental feeding 
ended to 15 July, using feeding end-dates and NDVI (i.e., green-up) 
data for 2010, 2012 and 2014, representing a low, average and heavy 
snowfall year, respectively (see Appendix S1 for details). We also de-
rived elk distribution under two hypothetical climate change scenarios 
where spring green-up started, snow melt occurred, and supplemental 
feeding ended 14 and 28 days earlier than in the low snow year of 
2010 (totalling five scenarios).

The starting distribution of elk was based on a fitted Weibull 
distribution of the distances that all elk GPS locations were from 
feedgrounds during the feeding season (January through April) for 
each feedground separately (Appendix S2). We specified the step 
length distribution Φ(x|y, γ) as a Weibull distribution (shape = 0.88, 
scale = 0.47) fitted from all observed step lengths. The observed 
turning angle distribution was not included in the master equation be-
cause of the computational time and complexity involved. To verify 

(2)u(x, t+Δt)=
∑

y�Ω
f(x|y,Ω, �,�)u(y, t)

(3)f(x|y, ε, �,�)=K−1
Φ(x|y, �)f(x|y,Ω,�).
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this did not alter our results, we refit our SSFs without taking into 
account turning angle distribution when sampling availability and 
found little difference in the estimated coefficients. A separate master 
equation was calculated for each feedground subpopulation using a 
domain Ω of 25,600 pixels, representing a 40 km radius around each 
feedground. We validated predictions of the master equation and 
tested performance by comparing (1) mean predicted probability of 
elk use extracted for each observed elk relocation in 2010, 2012 and 
2014, to mean predicted probability of elk use extracted for random 
points across the domain, (2) frequency of observed GPS collar loca-
tions falling within binned quantiles of predicted probability of elk use 
and (3) the expected per cent of locations (i.e., residuals) falling within 
equal bins of the probability of use broken down into four time periods 
(Appendix S5).

2.6 | Predicting disease transmission risk

To translate probability of elk use to disease transmission risk, we cal-
culated the predicted number of abortion events axt per 500 m pixel x, 
per time step t (in days), for each of our five scenarios as

where u(x, t) is the daily predicted probability of elk use, Nx is the 
number of female adult and yearling elk counted at each feedground 
(Appendix S3), Sx is the average brucellosis seroprevelance estimated 
on each feedground (Appendix S3), y is a mean pregnancy rate of 
86.8% estimated based on ultrasonography of 871 adult and year-
ling female elk in winter across all feedgrounds from 1995 to 2012 
(Wyoming Game and Fish Department, Unpubl. data), and p(at) is the 
predicted daily probability of aborting given an individual is seroposi-
tive and pregnant (empirically estimated from Cross et al., 2015). The 
predicted number of abortion events axt per 500 m pixel was calcu-
lated for each subpopulation separately and then summed together 
across the entire study area.

3  | RESULTS

Mean date when supplemental feeding ended across all feedgrounds 
was 21 March (SD = 22 days) in 2010, 26 March (SD = 21) in 2012 and 
12 April (SD = 25) in 2014, representing >3-week variation from low 
to heavy snowfall years. After elk left feedgrounds, they tended to 
select habitat patches that were on south facing gentle slopes, farther 
away from roads, at higher elevations, with higher annual integrated 
NDVI (i.e., surrogate for patch quality or biomass), with higher daily 
NDVI (i.e., surrogate for phenology stage), with lower canopy cover, 
and with a higher terrain position index (i.e., selecting ridges over 
valleys). Nevertheless, there was variation in parameter estimates 
among feedground subpopulations (Figure 2). Our SSFs were robust 
to k-folds cross-validation, with good-to-excellent predictive ability 
depending on feedground subpopulation (Appendix S4).

Using the SSF for each feedground subpopulation, we pre-
dicted the probability of elk use per 500 m pixel per day across 

the five weather scenarios. Based on three validation procedures, 
our model predicted elk GPS collar relocation data well (Appendix 
S5). The predicted number of abortion events per 500 m pixel, per 
day across the landscape ranged from 0 to a maximum of 0.03. We 
estimated that c. 712 abortion events occurred per year across 
the study area. Due to a combination of elk density and brucello-
sis seroprevelance, the number of cumulative abortions per year 
varied widely among feedground subpopulations. The most abor-
tions occurred on and around the National Elk Refuge, Gros Ventre, 
and Horse Creek feedgrounds (217, 77 and 60, respectively), and 
the least occurred on and around the Finnegan and Fall Creek 
feedgrounds (6 and 7, respectively; Appendix S6). Most abortions 
occurred on USFS lands and there was considerable variation in the 
spatial distribution of brucellosis transmission risk among scenar-
ios (See Figure 3 for an example). In general, during heavy snow 
years, elk used feedgrounds later in the season, concentrating bru-
cellosis transmission risk on feedgrounds. In contrast, during low 
snow years, and scenarios where supplemental feeding ended, and 

(4)axt = u(x, t)×Nx × Sx × y× p(at)

F IGURE  2 Standardized coefficient estimates (with 95% 
CI denoted by lines) for step selection functions fit for elk 
subpopulations (n = 288 individuals) occurring across 22 feedgrounds 
in Wyoming during spring, 2007–2014. Variables included were 
terrain position index (TPI), snow depth (Snow), slope, per cent tree 
cover (% cover), daily NDVI value (NDVI), integrated NDVI (INDVI), 
elevation (Elev), distance to road (distRoad) and aspect
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green-up occurred, up to 4 weeks earlier in the year, elk left the 
feedgrounds earlier, spreading abortions more widely across the 
landscape (Figure 3).

We predicted that during the average snow year of 2012, c. 307 
(43%) abortions occurred on USFS lands, 234 (33%) within 2.5 km of 
feedgrounds, 84 (12%) on private land, 30 (3%) on BLM lands, 49 (7%) 
on USFWS/NPS lands and <9 (1%) occurred across state and local 
government lands (Appendix S7). However, these proportions varied 
among the five weather and supplemental feeding end-date scenar-
ios. From a heavy snow year to a 28-day early snowmelt or winter 
drought year, the number of abortions on feedgrounds decreased by 
64% (from 302 to 108), whereas the number of abortions on USFS 
increased by 85% (from 221 to 411). Abortions on private lands only 
slightly decreased from 97 to 96 and abortions on USFWS/NPS lands 
only slightly increased from 52 to 54. Collectively, these results sug-
gest that as elk leave feedgrounds earlier during early snowmelt or 
winter drought years, abortions occurred more on USFS lands without 
detectible change on other land ownership types (Figure 4).

Changes in the spatial distribution of elk abortions were more pro-
nounced earlier in the abortion season (March and April), where we 
predicted the majority of elk abortions to occur on feedgrounds during 
heavy snow years, and the majority of abortions to occur on USFS lands 
during early snowmelt and winter drought years (Figure 5; Appendix 
S7). Aune, Rhyan, Russell, Roffe, and Corso (2012) reported that bru-
cellosis can persist in the environment around a foetus up to 26 days 
post-abortion. Because most grazing allotments on USFS lands adja-
cent to elk feedgrounds open on 15 June, 19 May can be considered 
the cut-off for abortions with a high risk of brucellosis transmission 
from elk to cattle. After 19 May during the average snow year, c. 64 
abortions (9% of all abortions) were predicted to occur on USFS lands, 
13 (2%) to occur on private lands and 7 (1%) to occur on feedgrounds. 
However, there was less variation in these numbers across the five 
scenarios (e.g., abortions on USFS lands varied from 55 to 70 after 19 
May). Appendix S8 details the spatio-temporal distribution of abor-
tions across the five scenarios by feedground subpopulation.

4  | DISCUSSION

Our work connects variation in weather and plant phenology with 
disease transmission risk via host movement at the landscape scale. 
We found that c. 700 abortion events occur per year in our study 
region and that, as expected, weather and phenology—by influenc-
ing elk movement—alter the spatial distribution of springtime abortion 
events and thus brucellosis transmission risk. During early snowmelt 
or winter drought years, up to 190 more abortions may occur within 
grazing allotments on USFS than in heavy snow years (an increase of 
85%). Meanwhile, the risk of brucellosis transmission on private lands 
was relatively unaffected by annual weather patterns.

Our mechanistic predictions of brucellosis transmission risk make 
three contributions to understanding disease transmission. First, we 
predicted population-level spatial distribution based on individual 
movement rules and environmental variables that vary both spatially 
and temporally. Such predictive capacity is rare (but see Merkle, Potts, 
& Fortin, 2017), yet as rapid environmental change may result in sig-
nificant changes to global ecosystems (Barnosky et al., 2012), it is 

F IGURE  3 Predicted number of abortion events on 10 April 
per 500 m pixel on the south-western slopes of the Wind River 
mountain range, Wyoming, including four feedgrounds (denoted 
by open circles) for 2010 (low snow year), 2012 (average snowfall 
year) and 2014 (heavy snowfall year). Predicted number of abortion 
events derived from multiplying the predicted probability of elk use 
by adult and yearling female abundance, brucellosis seroprevelance, 
pregnancy rate and the daily probability of an abortion event. Shading 
represents hillshade of elevation
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imperative that we employ these mechanistic or process-based mod-
els to predict future ecological states that may diverge from past con-
ditions (Gustafson, 2013). Secondly, we have incorporated a spatially 

explicit model of host behaviour into predictions of disease transmis-
sion, whereby we predicted disease transmission risk based on the un-
derlying factors that influence host movement. Such an explicit bridge 
between movement and disease ecology is rare (Altizer et al., 2011) 
and, based on our results, can result in useful predictions of disease 
dynamics in both space and time. Finally, we provide a comprehensive 
mapping tool for identifying the spatio-temporal risk of brucellosis 
transmission across a large landscape. By projecting where and when 
hundreds of abortion events occur each year across varying snow and 
green-up dynamics, we provide predictions of how spatial brucellosis 
risk will change within and among years.

In this study, we borrow spatial modelling frameworks from animal 
ecology and apply them to a chronic disease of wildlife and livestock. 
Brucellosis transmission occurs during spring when animals leave win-
ter range and migrate to higher elevations (Cross et al., 2015; Jones 
et al., 2014), and our results demonstrate how annual weather variabil-
ity can influence the phenology of host movement and thus the spatial 
dynamics of brucellosis transmission risk (Figures 4 and 5). As climate 
change continues to alter weather patterns, host movements and spa-
tial distribution will inevitably change, resulting in novel disease dy-
namics in the future. Predictive models, such as the SSF (Fortin et al., 
2005) and master equation (Potts et al., 2014) frameworks, represent 
an advancement in how animal distribution is predicted in space and 
time, and helps researchers and managers assess how climate change 
might alter disease dynamics or other ecological dynamics in unpre-
dictable ways.

Our model, however, did not include a temporal transmission 
component, and as a result, does not allow for predictions of disease 
dynamics across consecutive years. For instance, based upon our spa-
tial within-year analyses, we found that c. 300 abortion events could 
occur on feedgrounds during a heavy snow year compared to just 
over 100 in an early snowmelt or winter drought year. This high num-
ber of abortion events occurring on feedgrounds during heavy snow 
years is likely to enhance disease transmission within the elk popu-
lation (Creech et al., 2012; Cross et al., 2010; Maichak et al., 2009), 
which may alter seroprevelance in years following heavy winter snow. 
Coupling mechanistic models of host movement with temporal models 
of transmission is an obvious next step in this system and within the 
broader disease ecology field.

Our modelling framework provides information for researchers 
and managers to prioritize management and conservation actions and 
identify where and when their implementation would be most effec-
tive. In our case, managing brucellosis comingling risk between elk 
and cattle during the abortion season is the main management op-
tion for wildlife and livestock managers (Kilpatrick et al., 2009; Proffitt 
et al., 2011), because other available options to eradicate disease in 
wildlife populations (i.e., test and slaughter, whole-herd culling and 
vaccination) do not appear to work, or are not logistically or politi-
cally possible for brucellosis management in the GYE (Bienen & Tabor, 
2006). Available management actions include hazing elk away from 
cattle feeding areas, abandoning grazing allotments with high risk of 
comingling, and altering cattle turnout dates after risk of brucellosis 
transmission has subsided. Our maps of the number of abortion events 

F IGURE  4 Predicted number of abortion events per year 
occurring on US Forest Service (USFS) lands (a), within 2.5 km of 
feedgrounds (b), and on private lands (c) during the heavy snow year 
of 2014, average snow year of 2012, low snow year of 2010, as 
well as a 14- and 28-day early snowmelt or winter drought year in 
Wyoming. Cumulative abortion events were derived from multiplying 
the predicted probability of elk use by adult and yearling female 
abundance, brucellosis seroprevelance, pregnancy rate and the daily 
probability of an abortion event
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per day provide the metrics to evaluate successful implementation of 
these management actions. For example, cattle grazing allotments 
on USFS lands near feedgrounds currently do not open for grazing 
until 15 June to minimize brucellosis transmission risk. Yet, our work 
suggests that there is still some risk of brucellosis transmission after 
this date (Figure 5). Given how elk movements in spring vary widely 
(up to a month or more) due to spring phenology (Figure 3), livestock 
regulatory health officials and cattle producers can use our risk assess-
ment maps to assess the best turnout date both on an allotment-by-
allotment basis, and on a year-to-year basis as snow conditions vary.

Our results suggest that regional variation in brucellosis trans-
mission risk—due to variation in elk density and brucellosis seropre-
velance across feedground subpopulations (Appendix S6)—is larger 
than that caused by annual weather variability. For instance, general 
trends in brucellosis transmission risk for each weather scenario 
are fairly similar among feedground subpopulations, and weather 

variability does not affect transmission risk differently among 
feedground subpopulations (Appendix S8). Thus, although low snow 
years result in fewer abortions on feedgrounds and more on USFS 
and private lands, it is most important for wildlife and livestock man-
agers to focus on allocating management resources to specific areas 
with the highest brucellosis transmission risk. Further, we found rel-
atively little difference in the predicted number of abortion events 
on private lands across the weather scenarios (Figure 4c). These re-
sults suggest that although cattle on private lands have some risk 
of contacting aborted elk foetuses, adjusting cattle turnout dates 
on USFS lands should result in the largest reductions in brucellosis 
transmission risk.

We assumed that the predictor variables of the SSF, elk population 
size, seroprevelance, abortion timing, and pregnancy rates were all 
measured without error. In addition, we did not assess the estimation 
uncertainty in the space-use predictions. Thus, our inference should 

F IGURE  5 Predicted number of abortion events per day across landownership in Wyoming based on green-up and supplemental feeding 
end-date data for the heavy snow year of 2014 (a), average snow year of 2012 (b), low snow year of 2010 (c), as well as a 14- (d) and 28-day (e) 
early snowmelt or winter drought year. Vertical dotted line represents 19 May—the predominant turnout date on US Forest Service lands (15 
June) minus 26 days to take into account how long brucellosis can persist after an abortion event. Number of abortion events was calculated by 
multiplying the predicted probability of elk use by adult and yearling female abundance, brucellosis seroprevelance, pregnancy rate and the daily 
probability of an abortion event
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be used with caution as our predictions do not include confidence in-
tervals. Quantifying error in our predictions is an important avenue 
for further work (Hefley et al., 2017) as it would highlight to both re-
searchers and managers where research efforts could be targeted to 
minimize the uncertainty in predictions of brucellosis transmission risk 
in the most cost-effective manner. Uncertainty could be estimated by 
drawing different parameter sets given the mean and variance of pa-
rameter estimates from the SSF and then deriving the resulting space 
use. Error estimates could then be compiled on a cell-by-cell basis so 
that prediction error could be assessed in both space and time. Such 
an exercise would be computationally challenging, but is likely to be 
feasible in the foreseeable future. Nonetheless, we examined how well 
the overall mean space-use predictions represent the observed move-
ment patterns of collared elk and found that our space-use predic-
tions accurately forecasted the location of observed elk GPS locations 
(Appendix S5).

In this work, we have bridged the movement and disease ecology 
fields so that spatio-temporal predictions of future ecological states 
are possible. Coupling predictions of host space-use with disease 
dynamics at the individual and population scale provided a new link 
between mechanistic movement models and predictions of disease 
transmission risk. Predicting such variation in host distribution and 
disease transmission risk provides a means to test predictions of how 
small-scale environmental changes can result in large-scale changes 
in animal distribution and disease spread, while enabling managers 
to identify where proactive management can mitigate risks posed by 
mobile disease hosts.
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