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Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected
along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method
of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance,
thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface
(0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence
decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and
the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface
(0–2.6m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar
to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be
thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats.
The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling
hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw
processes. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
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INTRODUCTION

Recent observations of increasing permafrost degradation
(Jorgenson et al., 2001a, 2006) reinforce the need for accu-
rately mapping the spatial extent of active-layer thickness
(ALT) and permafrost in order to improve ecological mon-
itoring and land management. In the past, only generalised
maps have been available on regional scales, while site-scale
maps have been limited to areas of intensive infrastructure
development (Kreig, 1977). The regional maps are often
associated with broad mapping units (e.g. discontinuous,
continuous permafrost zones), and lack horizontal and vertical
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detail about permafrost extent and ALT (Anderson et al., 1973;
Ferrians, 1965; Jorgenson et al., 2008; Hachem et al., 2009).
Higher-resolution permafrost information is essential for
monitoring change, land management, ecological model-
ling, and predicting future hydrologic, geomorphic and
ecological impacts.

Mapping the spatial distribution of permafrost over large
areas is challenging because of the need to associate surface
characteristics with subsurface permafrost properties (Duguay
et al., 2005; Panda et al., 2010, 2012). Traditional manual
interpretation of aerial photographs and high-resolution satellite
imagery has relied on the spatial extrapolation of permafrost
from ground measurements and boreholes, based on changes
in topography, surficial geology, hydrography, vegetation and
conceptual models based on the field experience of the mapper
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(Kreig, 1977; Reger et al., 2012), while some progress has been
made in automated pattern detection techniques (Roth et al.,
2005). Such techniques for high-resolutionmapping are limited
to local scales, however, due to the high cost of data collection,
time constraints and the difficulties of accessing remote areas.
For broader regions, automated image-processing tech-

niques have been used to map permafrost, employing
remotely sensed data (e.g. Landsat Thematic Mapper (TM),
SPOT High Resolution Visible and topography) and spatial
statistical techniques, including logistic discriminant func-
tions (Morrissey et al., 1986; Panda et al., 2010, 2012), neural
network classifiers (Peddle et al., 1991), classification and
regression tree analyses, and basal temperature of snow
(BTS) methods. The BTS method has proved useful
(Lewkowicz and Ednie, 2004) for determining the probability
of permafrost occurrence, but requires extensive field data
collection in winter. The classification and regression tree
analyses have also proved useful for mapping and modelling
the probability of permafrost occurrence in mountainous
regions (Kremer et al., 2011). These efforts, however, have
been limited in spatial scale or use relatively few input
variables, inhibiting the ability of models to represent complex
biophysical relations across diverse environmental conditions.
Electromagnetic resistivity techniques have long been

used to map subsurface characteristics (Joesting, 1941;
Hoekstra et al., 1975), and recent advances in airborne elec-
tromagnetic (AEM) instrumentation and data processing
have improved the effectiveness of the techniques for imag-
ing permafrost and subsurface hydrogeological features
(Kneisel et al., 2008; Siemon et al., 2009; Minsley et al.,
2012). In Alaska, hundreds of AEM surveys have been
conducted from 1999 to 2011 to investigate mineral resources
and to aid permafrost mapping along the Alaska Highway
road corridor (Burns et al., 2006), but rigorous data
processing for permafrost mapping has been limited. The
resistivity data are useful for differentiating frozen and unfro-
zen soils because frozen materials are more resistive than their
unfrozen counterparts, although this relationship is compli-
cated by the effects of material type and water content
(Hoekstra et al., 1975; Daniels et al., 1976; Kawaski and
Osterkamp, 1989). While AEM surveys typically are used
to infer subsurface properties at intermediate depths
(10–100m) (Siemon et al., 2009), they are limited by
the spatial extent of the linear survey flight lines. In this
study, we used resistivity models derived from AEM data
(Ball et al., 2011) and focused on results from the upper few
metres, which serve as a proxy for the presence/absence of
shallow permafrost.
The goal of this study was to map ALT and the presence or

absence of near-surface permafrost at 30-m resolution
throughout the Yukon Flats Ecoregion (YFE) of central
Alaska. To achieve this goal, we: (1) compiled AEM and field
active-layer measurements for model inputs; (2) developed
maps of terrain characteristics of the YFE derived from satel-
lite imagery and ancillary data related to topography, surficial
Published 2013. This article is a U.S. Government work and is in the public
geology, soil moisture, surface temperature, vegetation and
spectral characteristics; (3) spatially modelled near-surface
(0–2.6-m depth) resistivity (NSR) across the YFE at 30-m
resolution using piecewise regression; and (4) spatially
modelled ALT and near-surface permafrost from field data,
predicted resistivity, and satellite and ancillary data using
piecewise regression trees and decision tree classification.
STUDY AREA

The YFE is located approximately 160 km north of Fair-
banks, Alaska, and encompasses an area of 33 400 km2

(Nowacki et al., 2002). The YFE comprises relatively
low-lying active and abandoned floodplains, surrounded
by steeper hillslopes (Figure 1). The study area contains
two main surficial deposits: (1) alluvial sediments in the
low-lying and northern portion of the YFE; and (2) aeolian
loess in the higher elevated southern and eastern portion of
the YFE. Dominant forest vegetation types within the YFE
(these data from the Fish and Wildlife Service are available
at http://alaska.fws.gov/nwr/yukonflats/) are primarily black
spruce (Picea mariana), paper birch (Betula papyrifera),
quaking aspen (Populus tremuloides), balsam poplar
(Populus balsamifera) and white spruce (Picea glauca).
Permafrost has been mapped as continuous (> 90% of
the area) north of the Yukon River and discontinuous
(50–90%) south of the river (Williams, 1962; Jorgenson
et al., 2008). Mean daily maximum and minimum tempera-
tures at Fort Yukon (1899 to 1990) are �1�C and �12.6�C,
respectively (these data from the National Climate Data Center
available at http://www.ncdc.noaa.gov/cdo-web/). Mean annual
snowfall for this region is 1.06m while monthly snowfall
ranges from no snow in July and August to 0.17m in October
(these data from the Fish and Wildlife Service are available at
http://alaska.fws.gov/nwr/yukonflats/weather.htm).
METHODS

Field Data

Field measurements of ALT were collected during mid-
August to early September in 2009 and 2010. Data from
both years were combined because there had only been
a documented yearly average increase in ALT of 10 cm
(~ 11% of the total ALT) and 6 cm (~ 8% of the total ALT)
at the Fort Yukon and Circle CALM sites, respectively.
Coinciding measurements were made at additional locations
to examine the variation in ALT over this time period
(Figure 1). Observed values of four sites, located near
Canvasback Lake on the Yukon Flats, indicated an average
increase in ALT of approximately 3 cm, representing 4 per
cent of the total ALT.

We collected one set of observations (n = 137) using a
122-cm long probe to quantify ALT (n = 5/site) within each
predefined homogenous transect site (2m� 14m). This
probing method was appropriate because mineral soil
domain in the USA. Permafrost and Periglac. Process., (2013)
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Figure 1 The Yukon Flats Ecoregion overlaid with the 2001 National Land Cover Dataset (water), averaged inverted airborne electromagnetic (AEM) flight
line-gridded resistivity (0�2.6m), active-layer thickness (ALT) sample sites (n = 369), re-sampled alt sites (n = 6) and a re-sampled 30-m digital elevation
model (DEM). The elevation is relative to the outlet point of the Yukon River from the ecoregion (in the southwest corner of the image). The AEM survey
was conducted in a contiguous block area and along widely spaced reconnaissance lines.
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textures were predominately fine-grained. However, if
probe refusal was met because rock was encountered
instead of permafrost, it was designated accordingly. Multi-
ple measurements within each transect were conducted in
order to represent a single Landsat pixel. Subsequently,
ALT measurements within each transect were averaged to
provide an estimate of the overall transect ALT. Transects
in which the observation of the presence/absence of perma-
frost differed were designated to the majority class, within
the appropriate database. ALT measurements were sampled
from relatively homogenous plots and represented a range
of conditions present within the YFE, which allows for the
development of unbiased and equally weighted models.
A second set of observations (n = 232) was developed

primarily from point data collected by the Natural Resources
Conservation Service soil survey programme, which used a
200-cm long hand soil auger and soil pits to quantify ALT
during 2009 and 2010. All field observations were combined
into two spatial databases to: (1) estimate ALT< 101 cm; and
(2) predict the presence and absence of near-surface perma-
frost and the associated probability of permafrost occurrence,
where 122 cm served as the threshold value for the presence/
absence. A value of 101 cm was given to ALT measurements
greater than 101 cm and a value of 0 (i.e. unfrozen to a depth
of 122 cm) was given to ALT measurements greater than
122 cm for the two distinct spatial databases, respectively.
By constraining ALT to this depth, we were able to utilize
more field observations. For example, if gravel or compacted
Published 2013. This article is a U.S. Government work and is in the public
sand impeded probe investigations below the 122 cm mark,
the measurements would need be discarded because we
couldn’t guarantee the absence of permafrost within the first
122 cm. The different databases were used for the ALT and
permafrost modelling, in order to: (1) establish two end mem-
bers for depths of observation that were most appropriate for
their distinct purposes of modelling and mapping ALT and
the presence/absence of permafrost; (2) quantify uncertainty
when comparing models and maps; and (3) assess the overall
utility of two separate modelling techniques and maps. Field
observations used within each database represent the same lo-
cation, but different subsurface properties (i.e. ALT vs the
presence/absence of permafrost). These observations (Fig-
ure 1) served as dependent variables within the regression tree
and decision tree models.

AEM Survey

TheAEM surveywas flown in June 2010 over a portion of the
YFE (Figure 1), with measurements taken along both widely
spaced reconnaissance lines and a contiguous block area
(~ 300 km2) with 350-m line spacing near Fort Yukon. This
survey was acquired with the Fugro Resolve (Mississauga,
Ontario Canada) frequency domain electromagnetic system
(Siemon, 2006), which has six transmitter-receiver coil pairs
that operate between 0.4 and 140 kHz (see Ball et al., 2011,
for details). Data were acquired from~ 30m above the ground
surface, at a ground speed of 80–100 km/h and a sampling
domain in the USA. Permafrost and Periglac. Process., (2013)
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rate of 10Hz. This generated approximately one data point
every 3m along the flight line. AEM data were inverted using
a one-dimensional algorithm that solves for the distribution of
resistivity as a function of depth given the measured data and
system elevation, treating each data location independently
(Farquharson et al., 2003).
For our analysis, results of the AEM inversions presented

by Minsley et al. (2012) were interpolated to a 30 x 30-m
grid to coincide with the horizontal resolution of our
other datasets (e.g. Landsat imagery). This resulted in a
number of interpolated cells between flight lines that
were less constrained by the data because they were
farther from the flight lines. To reduce error, only resis-
tivity values obtained within 30m of the flight lines were
used during model development. While the primary
focus of the AEM survey was to image broad lithologic
and permafrost features at depths up to 100m, this study
used only NSR values reflective of 0 to 2.6-m depths.
Although vertical resolution of NSR is limited because
of the physical characteristics of the AEM system,
Table 1 Model input variables and descriptions.

Variable

NDII* Normalised difference infrared index
Band 5 Landsat TM band 5 at-sensor reflectance
NDII7* Normalised difference infrared index
NDWI* Normalised difference water index
Band 4 Landsat TM band 4 at-sensor reflectance
NDVI* Normalised difference vegetation index
NDWI7* Normalised difference water index
Band 7 Landsat TM band 7 at-sensor reflectance
GNDVI* Green normalised difference vegetation index
Band 3 Landsat TM band 3 at-sensor reflectance
Biomass 30-m resolution above-ground biomass dataset (
SAVI* Soil-adjusted vegetation index
EVI* Enhanced vegetation index
LST Land surface temperature
DEM A USGS digital elevation model that was re-sam
Per cent slope Percentage slope as derived from DEM
Band 2 Landsat TM band 2 at-sensor reflectance
Spatial texture The averaged coefficient of variation (3 x 3 pixe

Landsat imagery (bands 3, 4 and 5)
CTI Steady-state wetness index that is correlated with

organic matter content (Moore et al., 1993). This
Heat load Reflects heat load differences where southwest-f

highest and northeast-facing slopes (45�) are the
Potential
incident radiation

Reflects potential incident radiation differences w
slopes are the lowest (i.e. 180� - |Aspect - 180�|)

Land cover and
fire data

See Land Cover and Fire Data section

Surficial
geology

General surficial geology (Williams, 1962) whic
digitised. Some boundaries, particularly floodpla

Field data See Field Data section for active-layer measurem
AEM survey See AEM Survey section
Extrapolated
resistivity
(0–2.6m)

Estimated near-surface electrical resistivity (ohm

*Source: Ji et al. (2012, Table 4). See text for other abbreviations.

Published 2013. This article is a U.S. Government work and is in the public
Jepsen et al. (2012) found a relationship between shal-
low resistivity values and the presence or absence of
permafrost indicated by frost probes, thus providing
support for the utility of shallow AEM resistivity for
near-surface permafrost characterisation.

Remote Sensing and Map Data Compilation

A diverse set of dependent variables and independent
variables were selected for model development because of
their expected relations with permafrost and ALT (Table 1).
Specifically, surface vegetation features, captured by remote
sensing (i.e. Landsat imagery, spectral indices, biomass),
were used to help estimate NSR and ALT because of their
likely associations with permafrost. Surficial deposit infor-
mation was included because lithology and water affect soil
thermal properties and NSR. As both vegetation and ALT
are impacted by wildfire, it was important to highlight areas
of disturbance (e.g. fire perimeters) within the ecoregion.
Digital elevation model and derivatives affect permafrost
Description

Ji et al., 2012)

pled to 30m from 60m using bilinear interpolation

l-moving window), as derived from

several soil attributes: horizon depth, silt percentage,
was re-sampled from 60m to 30m using bilinear interpolation
acing slopes (225� clockwise from north) are the
lowest (McCune and Keon, 2002)
here south-facing slopes are the highest and north-facing
(McCune and Keon, 2002)

h was scanned, georectified and manually
ins, were revised to better align with Landsat images
ents

-m) (r = 0.86)

domain in the USA. Permafrost and Periglac. Process., (2013)
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distribution not only by elevation, incident radiation, slope
and aspect, but also by proxies of potential run-on moisture
(i.e. compound topographic index, CTI; Moore et al., 1993).
Some effort was made during ALT model development to
limit the number of input variables while maintaining pre-
diction accuracy. For example, surficial deposits were not
used during ALT modelling because of the coarse resolution
of the dataset, which resulted in ALT maps containing arte-
facts and a lack of improvement in model accuracies. How-
ever, surficial deposits were used within the resistivity
portion of this study, as electrical resistivity was primarily
controlled by lithology and the dependent variable (i.e.
NSR) dataset was large and spatially exhaustive. These
datasets are described in more detail below.
Land Cover and Fire Data.
Land cover data were obtained from the 2001 National

Land Cover Dataset produced by the US Geological Survey
(USGS) (Homer et al., 2007). Fire perimeter data were
obtained through Monitoring Trends in Burn Severity
(http://www.mtbs.gov/) for the years 2000 to 2010. Areas
containing recent fires, or fires still burning (June 2008 to
June 2010), were excluded from the NSR and ALT data-
bases, while fires that occurred from 2000 to April 2008
were given a unique value. This was done because areas
of recent fires were more likely to have stand replacement
land cover and thicker active layers (Brown, 1983), and
there was a need for post-fire spectral values to better
spatially coincide with those depicted by Landsat imagery.

Landsat TM Data.
A Landsat TM image mosaic of the YFE at 30-m

resolution was developed from six Landsat scenes taken
from late August 2008 through early September 2008
(Ji et al., 2012). Level 1 T digital numbers (DN) data
of the reflective bands (bands 1 to 5 and 7) for each
image were converted to at-sensor radiances and then at-
sensor reflectance (Chander and Markham, 2003). The inverse
Plank function was used to convert land surface temperature
into Kelvin degrees after the DN data of band 6 were converted
to at-sensor radiance. Spatial texture products were derived
from the mosaic using the ERDAS Imagine focal scan function
(ERDAS Field Guide, 2008) to calculate the average coeffi-
cient of variation in Landsat bands 3, 4 and 5, within a 3� 3
pixel window. These products served as continuous
independent variables for model development because of their
ability to differentiate areas of heterogeneity, and they have
proven useful in past permafrost analysis to help delineate
vegetation communities and associated canopy covers (Panda
et al., 2012). Areas of high heterogeneity appeared to be
associated with lake water edges, drained basins, areas of
abrupt change and uncommon land cover types (e.g. moss,
barren land). The late-summer Landsat TM mosaic was used
because minimal seasonal frost is present in late summer, pro-
viding a higher degree of temporal consistency with field
ALT measurements. The late-summer season allows
surface vegetation, moisture and surface temperature
Published 2013. This article is a U.S. Government work and is in the public
conditions, quantified by Landsat, to better represent
late-season ALT. However, it is important to note the
difference in dates of data acquisition between Landsat
imagery in 2008 and field data in 2009 and 2010. We
assumed that this difference had little effect on model-
ling. Further, by using only observations not affected
by recent fires from June 2008 to June 2010, major
disturbances between these time periods are accounted
for, and only minor changes in ALT should occur.
Statistical Spatial Modelling

Piecewise Regression and Decision Tree Techniques.
Piecewise regressions generalised from a regression

tree (RuleQuest, 2004) were used to predict and map
NSR and ALT values (< 101 cm). Regression tree anal-
yses are useful for identifying and predicting complex
hierarchical relationships in multivariate datasets (Michaelsen
et al., 2004). This approach optimises prediction by stratifica-
tion, allowing representation of non-linear relationships, and
mapping of carbon fluxes (Wylie et al., 2007) and continuous
fields in land cover (Homer et al., 2009).

Decision tree classification (RuleQuest, 2004) was used to
predict the presence and absence of permafrost and the asso-
ciated probability of permafrost occurrence, where 122 cm
below the land surface served as a threshold value for pres-
ence/absence. A boosting technique was also used to generate
and combine multiple classifiers. This technique has been
known to reduce misclassification rates by 20–50 per cent
(Friedl et al., 1999) and slightly increased the accuracy of
the near-surface permafrost decision tree model.

Validation of the models for NSR, ALT and the pres-
ence/absence of permafrost was done using tenfold
cross-validations. This validation was employed to uti-
lise all measurements available during model development
(field plots were limited and represented a small area of the
YFE) and to assess model accuracies on unseen data. The
tenfold cross-validations took observations from ten random
and equally sized groups. For each random group, a model
was constructed from observations in the remaining groups
and tested on the observations in the validation group. In this
way, each observation was used just once as a test observation.

Additional independent tests were conducted for the ALT
modelling, but were relatively limited due to data availabil-
ity. All models were evaluated using an overall mean
absolute error (MAE),

MAE ¼ 1
n

Xn

i¼1

Yi � Ŷ i

�� ��

and mean bias error (MBE),

MBE ¼ 1
n

Xn

i¼1

Yi � Ŷ i

� �

for final model selection purposes, where Yi and Ŷ i are
observed measurements and predicted measurements,
respectively, for sample i.
domain in the USA. Permafrost and Periglac. Process., (2013)
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Relative MAE and MBE (rMAE and rMBE) were also
calculated and used to assess the ratio of error magnitude
(MAE and MBE) to the average error magnitude that
would result in predicting the mean value. A relative er-
ror close to 1 indicates that there is little improvement on
the mean, and the independent variables have little pre-
dictive capacity. Generally, useful models will have
smaller relative errors. Figure 2 provides a schematic
layout of the input variables and analytical methods.
Resistivity.
Three depth intervals (0–1m, 1–2.6m and 0–2.6m)

were selected initially from the AEM survey to serve
as the dependent variable in separate regression tree
models. The NSR values from these depths were selected
as the dependent variable because independent variables
were generally related to surface features. Natural loga-
rithms of NSR were defined as the dependent variable
within the singular NSR piecewise regression model.
The combined depth interval of 0–2.6m was also included
to develop a model and estimates that better correspond with
field measurement depths.
The model only used NSR values within 30m of the

survey flight lines and in areas not affected by recent
fires or burning fires. These measurements (n = 110 372)
represented a wide range of environmental conditions
throughout the ecoregion. Although many independent
variables (Table 1) were introduced during model development
because of their expected relations with permafrost distribution,
actual independent variable usage was much lower (Table 2).
Such usage is defined as the per cent of the number of times that
a variable was used during model development, relative to the
total observations in the model development database.
To assess the effects of fire on NSR, measurements

not represented by the 2008 spectral information
Figure 2 Schematic layout of input variables and

Published 2013. This article is a U.S. Government work and is in the public
(i.e. areas of 2009–10 disturbance) (n = 1534) were later
used to compare NSR predicted by the model with actual
NSR from the inverted resistivity images.
ALT and the Presence/Absence of
Near-surface Permafrost.

ALT measurements (n = 369) taken during August and
September 2009 and 2010 served as the dependent variable
within the ALT piecewise regression model. A single
regression tree model was generated from ALT measure-
ments, a portion of the independent variables (Table 2) used
in the resistivity extrapolation, and the newly generated
NSR map to predict and map ALT< 101 cm.

A boosted decision tree model was then used to clas-
sify the presence/absence of permafrost, where 122 cm
served as the threshold value above which permafrost
was absent. This model was developed for a deeper
range than that of the singular ALT piecewise regression
tree model because we needed to create more distinctive
end members for near-surface and deeper permafrost.
Also, by using two different depths during model devel-
opment and different modelling techniques, we were able
to assess and compare spatial estimates and model accu-
racies. We also assessed the accuracy of the ALT model
by comparing mean ALTs calculated by land cover class
(Table 3) with ALT for various vegetation types reported
in other studies.

The overall representativeness of field data was
assessed by calculating an absolute difference map of
the singular piecewise regression ALT model, based
on varying levels of model extrapolation. This method
of extrapolation to quantify uncertainty has been used,
for example, to help select optimal locations for future
carbon flux towers (Gu et al., 2011). Areas of high
analytical methods used within this study.

domain in the USA. Permafrost and Periglac. Process., (2013)



Table 2 Model input variable usage expressed as a per cent of the total number of times an independent variable was used to predict
or stratify, relative to the total number of observations in the model development database: the top five variables used in the model
are shown in bold.

Input variable

Near-surface resistivity
(0–2.6m)

Active-layer thickness
(< 101 cm)

Presence/absence of
permafrost (< 122 cm)

% Predictors % Stratifiers % Predictors % Stratifiers % Predictors

NDII 0.90 0.06 0.39 (blank) 0.43
Band 5 0.91 0.07 0.36 0.56
NDII7 0.95 0.08 0.45 1
NDWI 0.89 0.1 0.49 1
Band 4 0.85 0.35 0.37 0.83
NDVI 0.95 0.04 0.54 0.04 0.36
NDWI7 0.96 0.17 0.39 0.07
Band 7 0.68 0.46 0.37 0.18 0.82
GNDVI 0.90 0.07 0.51 0.04 0.47
Band 3 0.90 0.09 0.38 0.88
Biomass 0.86 0.14 0.56 0.11
SAVI 0.93 0.29 0.59 0.13
EVI 0.89 0.02 0.63 0.42
LST 0.86 0.06 0.1 0.55
DEM 0.83 0.88 0.1 0.81 0.89
Per cent slope 0.62 0.42 0.07 0.92
Band 2 0.83 0.25 0.38 0.14
Spatial texture 0.7 0.14 0.03 0.33 1
CTI 0.53 0.12 0.1 0.17 0.52
Heat load 0.47 0.1 0.78
Potential incident radiation 0.36 0.11 0.01 0.79
Land cover (NLCD) and fire data (MTBS) 0.73 0.28 1
Surficial geology 0.58
Final resistivity (0–2.6m)-extrapolated map 0.27 0.24 1

NLCD=National Land Cover Dataset; MTBS =Monitoring Trends in Burn Severity. See Table 1 for other abbreviations.

Table 3 Permafrost probability (within 122 cm) and mean active-layer thickness (ALT) by land cover type.

Land cover in Yukon Flats
Area
(km2)

Field observations
(n)

Mean probability of near-surface
permafrost (%)

Mean est. ALT
(> 101 cm excluded)

Mixed forest 2635 52 85.15 84.86
Sedge/Herbaceous 19 1 82.39 71.16
Evergreen forest 9990 139 66.33 86.64
Woody wetlands 4077 25 64.2 85.77
Deciduous forest 6036 67 45.53 89.41
Shrub/Scrub 2702 6 44.75 76.8
Fires (2001–April 2008) 4419 15 37.89 85.4
Emergent herbaceous wetlands 587 28 28.34 93.47
Grassland/Herbaceous 17 N/A Masked Masked
Dwarf shrub 19 N/A Masked Masked
Developed 4 N/A Masked Masked
Barren land 56 2 Masked Masked
Open water 2212 34 Masked Masked

Remote Sensing and Mapping of Permafrost and Active-layer Thickness
extrapolation are more likely to be associated with
uncertainty, as these areas are not represented within
model and map development. In order to quantify
uncertainty of predicted ALTs, a MAE map was devel-
oped. Pixel values of this map represent the MAE of
the rule used to predict the estimate.
Published 2013. This article is a U.S. Government work and is in the public
RESULTS

NSR

A single piecewise regression model developed for mapping
NSR in the Yukon Flats, which was based on 23
domain in the USA. Permafrost and Periglac. Process., (2013)



Figure 3 Actual versus predicted (Natural Logarithms (LN) (0�2.6m)
*10) resistivity (ohm-m) values.

N. J. Pastick et al.
independent variables (Table 2), had a high correlation
(r = 0.86) between actual and predicted natural logarithms
of NSR (Figure 3). A tenfold cross-validation indicated
model accuracies were high (r = 0.85) and significant (p
0.001). Error metric calculations, as calculated in linear
space, suggest that MBE (174 ohm-m) and MAE (470
ohm-m) were relatively low (rMBE= 0.17; rMAE= 0.44)
when compared to the actual mean (1048 ohm-m).
Figure 4 Modelled map of near-surface resistivity (0�2.6m) surrounded by an
class is predominantly water, but includes negligible amounts of other masked area

Published 2013. This article is a U.S. Government work and is in the public
The strongest predictor and stratifier variables used in
model development are provided in Table 2. The predictors
determined the magnitude of the predicted value, and the
stratifiers determined which model was to be used for a
given pixel in order to optimise the multiple linear regres-
sion prediction. For example,

if: Landsat band 7> a, land cover = (b, c), and surficial
deposit = (d),

then: NSR= c1 * biomass + c2 * elevation,

where a is a continuous variable, b, c and d denote categor-
ical variables of land cover and surficial deposit, and c1and
c2 are coefficients of the linear model. Very influential
variables are highlighted in Table 2 and show strong
relationships for several vegetation greenness/productivity
indices and for topography, land cover and surficial deposit
information. The map of NSR developed from the model is
provided in Figure 4.

Mean-estimated NSR varied by nearly tenfold among
land cover types and nearly threefold for surficial geology
within some land cover types (Figure 5). NSRs were highest
for mid- to late-successional forest types and lowest for
water, emergent herbaceous wetlands and barrens. Differ-
ences among surficial deposits were greater within forested
cover types than within shrub and herbaceous cover types,
with the exception of dwarf shrub. Within forest cover
types, alluvial fan and floodplain deposits, typically under-
lain by gravel, had mean NSRs that were two to three times
Landsat image mosaic. Fires (purple) are from 2000 to April 2008. Water*
s (i.e. grassland/herbaceous, dwarf shrub, barren land, and developed areas)

domain in the USA. Permafrost and Periglac. Process., (2013)



Figure 5 Mean near-surface resistivity by land cover and surficial deposit.

Figure 6 Correlation of near-surface resistivity estimated for pre-fire con-
ditions with measured post-fire inverted resistivity within pre-fire evergreen
forest communities.
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greater than silty loess deposits. In contrast, for woody,
sedge/herbaceous and emergent herbaceous wetlands,
which typically have thick surface peat, mean NSRs were
similar among surficial deposits.
Recent fires during 2000–08 affected 13 per cent of the

area and are likely to have a large effect on ALT and perma-
frost. A comparison of estimated NSR for pre-fire condi-
tions with actual post-fire inverted resistivity within 30m
of the flight lines showed some divergent trends in NSR
among three large fires (Sheenjek, Rock Slough and Big
Creek) (Figure 6), which occurred in 2009 and affected
4 per cent of the area. Only evergreen forests were included
in this analysis because this restricted changes to a narrow
set of environmental conditions where permafrost is nearly
always present in pre-fire conditions in this region. While
these areas were not implicitly represented within the data-
base, the spatial application of our models allowed us to
assess what estimated NSR would have been if these areas
had not been affected by fires, based on unburned measure-
ments and relationships elsewhere. Analysis showed that
estimated NSR (i.e. pre-fire) and inverted NSR (i.e. post-fire)
were significantly correlated (r = 0.61, p< 0.001) across all
fires. Table 4 depicts the assessment of three separate regres-
sions, generated for various fires, where independent data were
available across the region. Overall, post-fire inverted
NSR tended to be greater (slope = 1.32) than pre-fire
estimated NSR, possibly related to the loss of surface
organic matter, a temporary increase in soil moisture
after the fire, or consequences of estimation algorithms.
Table 4 Error metric calculations on withheld tests of pre- and post

MTBS fire name # of test points Area (km2) MAE

Sheenjek 359 228 159
Rock Slough 134 282 305
Big Creek 1041 708 175

Note: Pearson correlation of coefficient (r), slope and p-value were a
on pre-fire resistivity. MTBS =Monitoring Trends in Burn Severity.

Published 2013. This article is a U.S. Government work and is in the public
Error metric calculations show that the MBE (126 ohm-m)
is relatively low (rMBE=0.23) when compared to the actual
mean (553 ohm-m). TheMAE (183 ohm-m) was higher when
compared to the mean (rMAE=0.40). While estimated NSR
was overestimated, the Sheenjek fire displayed an insignifi-
cant (p> 0.05) and weak correlation (r = 0.001) when
compared to the post-fire inverted resistivity. Stratified regres-
sions were also developed to assess inter-fire variability and
associated error metrics can be seen in Table 4.

Absence of Near/Absence of
Near-surface Permafrost

ALT (for active layers< 101 cm) was spatially extrapolated
across the YFE based on the single piecewise regression
model. Highly influential variables in the model included
spectral bands, biomass indices, topography, land cover
and estimated NSR (Table 2). The Pearson correlation coef-
ficient (r) value for the model was 0.82 (n = 369, p< 0.001)
(Figure 7). ALTs in the map ranged from 25 cm to the max-
imum 101 cm allowed in the model (Figure 8).

Estimated average results on the validation cases on the
piecewise regression tree model had a correlation coeffi-
cient value of 0.60 (n = 1840, p< 0.001). Averaged error
metric calculations from the five, tenfold cross-validations
show that the bias errors (MBE=�3 cm) and absolute errors
-fire near-surface resistivity (ohm-m).

rMAE MBE rMBE r Slope p

0.30 135 0.25 0.001 �0.03 > 0.05
0.54 42 0.07 0.04 0.60 < 0.05
0.42 �38 �0.09 0.54 1.64 < 0.001

ssessed in linear space, where post-fire resistivity was regressed
See text for other abbreviations.

domain in the USA. Permafrost and Periglac. Process., (2013)



Figure 7 Scatter plot of actual versus predicted active-layer thickness (ALT)
of the singular piecewise regression tree model.

N. J. Pastick et al.
(MAE=11 cm) were relatively low (rMBE=�0.04; rMAE=
0.12) when compared to the actual mean (88 cm). Model
estimates tended to overestimate the thickness of the ALT
and may be due to truncation of the real ALT> 101 cm
to 101 cm.
A boosted decision tree model (accuracy of 87%) was used

to classify the presence and absence of near-surface permafrost,
where 122 cm below the ground surface served as the threshold
value (Figures 9 and 10). When grouped into four classes, per-
mafrost occurrence was highly unlikely (<= 30% probability)
on 16 per cent of the YFE, unlikely (> 30 and< 50%) on 20
per cent, likely (> 50 and< 70%) on 22 per cent and highly
likely (>=70%) on 32 per cent of the area. Excluded masked
areas (i.e. grassland/herbaceous, dwarf shrub, developed, bar-
ren land, open water) and areas of probability equal to 50 per
cent covered 7 per cent and 3 per cent of the YFE, respectively.
The strongest stratifiers for the presence/absence classification
model were spectral indices (i.e. NDII7 and NWDI), spatial
texture, land cover updated with fires (2000 to April of 2008)
and estimated NSR (Table 2). A series of ten, tenfold cross-
validations were then averaged and had an overall accuracy
of 72.25 per cent on validation cases.
ALT measurements at two CALM sites (n=50/site) at Fort

Yukon and Circle were also compared to predicted ALT. The
CALM sites were established in areas wherewe had no training
data and represent an additional qualitative assessment of
model robustness and accuracy. These independent data indi-
cated an overestimation of ALT measurements during the year
2010: actual ALT versus predicted ALT were 93 cm versus
101 cm and 72 cm versus 86 cm at the two sites, respectively.
To evaluate how the model could be improved, we pro-

duced an absolute difference map for the singular piecewise
regression tree model for ALT to identify areas where model
application was extrapolating to new conditions not repre-
sented by the model development data (Figure 11a). The
results show areas where the ALT model could be improved
Published 2013. This article is a U.S. Government work and is in the public
by gathering additional field data, including recent burns, to
better incorporate the effects of fire on permafrost. Note that
although the units of the map are in centimetres, this does
not actually represent estimation uncertainty. As such, in
order to evaluate ALT prediction uncertainty, a MAE map
was produced from the rules comprising the singular piece-
wise regression tree model (Figure 11b). Accordingly, values
of this map represent the MAE of the rule used to predict each
estimate. Areas represented by high MAE are more likely to
be associated with higher prediction errors or discrepancies
from the mean. Areas represented by low MAE are more
likely to be associated with lower errors or discrepancies from
the mean.
DISCUSSION

The modelling approach was able to incorporate point field
measurements, NSR measurements from linear AEM
surveys, and remotely sensed satellite and map products to
produce a regional map of ALT and permafrost occurrence
at 30-m resolution. The quantitative modelling approach is
similar to the traditional photo-interpreted approach in that
it relies on information on topography, surficial deposits,
hydrology, vegetation and spectral characteristics, yet has
the advantages of providing quantitative estimates of per-
mafrost probability, modelling uncertainty and identifying
data gaps where models could be improved. Another
strength of this spatial modelling is that input variables
can be easily updated with more current imagery, whereas
older manual mapping techniques provide static representa-
tions, especially for areas with frequent fires.

Influential environmental variables used within the vari-
ous regression and decision tree models (Table 2) show a
strong dependence on surficial deposit information, topog-
raphy (e.g. slope, elevation), spectral data and indices, spa-
tial texture, land cover and estimated NSR. Influential
predictors were more commonly spectral data and indices,
while influential stratifiers were elevation, land cover and
surficial geology. Heavily utilised spectral indices were
related to greenness (i.e. vegetation productivity/stress,
moisture, absorbed radiation) and soils (i.e. soil brightness).
Such predictors and stratifiers are to be expected, as these
variables can help delineate different land characteristics.
However, the physical driver behind each predictor variable
and subsurface characteristic is harder to assess, as models
had complicated interactions. The interaction among the
drivers, and their association with physical processes
controlling permafrost development, could be assessed by
producing more simplistic rule-based models, but likely at
the expense of model accuracy. While a diverse set of
variables was found to be useful, some variables introduced
artefacts within modelled maps. For example, the CTI was
useful for modelling ALT, but introduced polygonal shapes
into the modelled ALT map within the relatively low-lying
alluvial deposits.

At the site scale, the predicted ALTs in this study were
similar to those previously observed for different vegetation
types (Jorgenson et al., 2001b). At Fort Greely in central
domain in the USA. Permafrost and Periglac. Process., (2013)



Figure 8 Estimated active-layer thickness (ALT) (< 101 cm) in the Yukon Flats based on a singular piecewise regression tree ALT model. Water class is
predominantly water, but includes negligible amounts of other masked areas (i.e. grassland/herbaceous, dwarf shrub, barren land and developed areas).

Figure 9 Probability of near-surface permafrost occurrence (within 122 cm) in the Yukon Flats based on a singular decision tree classification model. Water
class is predominantly water, but includes negligible amounts of other masked areas (i.e. grassland/herbaceous, dwarf shrub, barren land, and developed areas).

Remote Sensing and Mapping of Permafrost and Active-layer Thickness
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Figure 10 Comparison of (a) permafrost probablity map with (b) Landsat mosaic for an enlarged area that extends from the Yukon River to the loess foothills.
Several landscape features are identified on the Landsat mosaic to illustrate predicted permafrost responses to terrain conditions. Water class is predominantly
water, but includes negligible amounts of other masked areas (i.e. grassland/herbaceous, dwarf shrub, barren land, and developed areas).
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Alaska (Jorgenson et al., 2001b), mean ALTs were 70 cm
for lowland wet needleleaf forest (black spruce) versus
66 cm for evergreen forest in this study, 118 cm for lowland
wet broadleaf forest (paper birch) versus 89 cm for decidu-
ous forest, 106 cm for lowland fen meadow (wet sedge
herbaceous) versus 93 cm for emergent herbaceous wetlands
and 49 cm for lowland wet tussock scrub versus 71 cm for
sedge/herbaceous. The comparison between estimated ALT
from the map also corresponded well with ALT measured at
two CALM grids.
At the landscape level, estimated ALT was predomi-

nately thinner within the higher-elevation loess deposits
Published 2013. This article is a U.S. Government work and is in the public
(i.e. blue area in Figure 8) than the low-lying alluvial
and sand sheet deposits (i.e. red area in Figure 8) of
the Yukon Flats. On average, low-lying flat areas (slopes
6.15%) within the Yukon Flats were more likely to have
permafrost than areas with steeper slopes (79% vs 50%).
Similarly, for terrain in the Tanana Valley, permafrost
was common in lowlands, on north-facing slopes and
in alpine areas (Jorgenson et al., 2001b). These land-
scape differences in ALT are likely due to the strong ef-
fects of soil texture on thermal properties and permafrost
formation (Jorgenson et al., 2001b), which in turn relates to
differences in depositional processes (Kreig, 1977). In the
domain in the USA. Permafrost and Periglac. Process., (2013)



Figure 11 (a) Absolute difference map for the singular piecewise regres-
sion tree model for active-layer thickness (ALT) indicating areas where
ALT was extraploted beyond the model conditions. (b) Mean average error
map for the singular ALT piecewise regression tree model indicating the
mean absolute error of the rules used to generate each pixel. Water class is
predominantly water, but includes negligible amounts of other masked areas
(i.e. grassland/herbaceous, dwarf shrub, barren land, and developed areas).

Remote Sensing and Mapping of Permafrost and Active-layer Thickness
YFE, permafrost wasmuch less common onfloodplains and al-
luvial fans, which typically have gravel near the surface, than
on loess composed of massive silt. The effects of soil properties
on thermal regimes and ALT can be further affected by interac-
tions among vegetation cover, soil moisture and organic matter
accumulation. For example, the loess deposits, which typically
have high moisture contents and thus high thermal conductiv-
ities, are dominated by evergreen forests (42%, often stunted
black spruce) and shrub/scrub (17%, often dwarf birch or tus-
socks), which typically have thick surface organic horizons.
Our mapping was consistent with observations by Williams
(1962) that suggest loess deposits in the southern and eastern
portions of the YFE contain substantial amounts of ground
ice. Estimating permafrost occurrence in alluvial fans, how-
ever, is more problematic because of the high resistivity of
gravel and the potential effects of subsurface water
Published 2013. This article is a U.S. Government work and is in the public
movement. There are extensive alluvial fan deposits on the
north side of the Yukon River, as well as where the Yukon
River enters the flats, where our mapping predicted a low
probability of permafrost occurrence. We had no ground data
from these areas and little ability to assess the reliability of the
mapping.

Fires can have large effects on permafrost stability
(Yoshikawa and Hinzman, 2003). Substantial areas within
the low-lying interior of the YFE that were affected by fires
(2000 to April 2008) had relatively lower NSR values, im-
plying less or deeper permafrost than the surrounding
unburned landscape (Figure 4). But when we examined
our predicted NSR with actual NSR values from the AEM
survey, we found trends were complicated and varied
among fires. For the fire-affected areas (Big Creek fire) occur-
ring primarily on loess, NSR values after fire were greater
than the pre-fire predictions for areas with high resistivity
(areas associated with gravel laden deposits), but lower than
pre-fire predictions for areas with low resistivity. For areas
on alluvial fan deposits (Sheenjek and Rock Slough fires),
actual NSR values were overall lower and higher than pre-
dicted for pre-fire conditions. Many factors could have
influenced these results, including fire severity, topography,
thickening of the active layer, increased wetness from thawing
subsurface ice or reduced evapotranspiration, decreased wet-
ness after draining of the thickened active layer, loss of insulat-
ing peat, or artefacts of data processing. Further limiting our
ability to model permafrost in burned areas was the lack of field
data. While the probability map (Figure 9) shows that perma-
frost is less likely in the burned areas, mean-estimated ALT
in the burned areas was similar to that in unburned forest (Ta-
ble 3). With our limited data, we are cautious about using
NSR to assess how permafrost responds to fire given the nu-
merous factors involved; it would be worthy of a future re-
search effort.

Our analyses revealed several limitations to the spatial
extrapolation. First, the ALT extrapolation was based upon
various ALT measurement sites and there can be a mismatch
in the spatial scale of point measurements, which can be highly
variable at the microsite scale, with the 30-m mapping resolu-
tion. Second, the map represents the general trend in ALT,
which showed fairly strong relationships among spatial data
and resistivity values within the flats, but the representation of
ALT on a pixel-by-pixel basis throughout the entirety of the
region is less accurate because of possible disconnects between
the temporal variation in AEM, ALT and Landsat data, and the
spatial clustering of study sites/pixel values used within model
development. However, a Moran’s I (0.09) (p = 0.77)
test for spatial autocorrelation was conducted on all
field data and indicated a random dispersion of ALT
measurements. Third, there are errors and uncertainty
within each of the individual datasets used within this
analysis (i.e. resistivity images, land cover, disturbances,
field data). Of particular concern is the surficial geology
map we used that had insufficient resolution and accuracy
to adequately differentiate subsurface characteristics. Direct
domain in the USA. Permafrost and Periglac. Process., (2013)



N. J. Pastick et al.
measurement of ALT or permafrost presence in relation to
NSR is also limited by the quality of information on below-
ground stratigraphy, groundwater levels (Ikeda, 2006) and
corresponding resistivity freeze-thaw thresholds for different
soil types. Finally, areas affected by groundwater movement
may have permafrost characteristics that are not reflected well
in surface properties used in the spatial extrapolations.
Together these factors present challenges for modelling
permafrost distribution, yet these uncertainties can be quanti-
fied through the statistical modelling approach.
The maps provide a baseline for future monitoring of this

area by presenting a quantitative distribution of ALTs. This
information is critical for evaluating the active-layer
response and perhaps recovery to wildfire, surface water
redistribution and climate perturbations. Areas such as the
YFE that contain discontinuous permafrost are of particular
interest for mapping and monitoring because these areas have
relatively warm permafrost (Osterkamp and Romanovsky,
1999), which is generally more unstable and sensitive to a
warming climate than continuous permafrost in more
northern areas. The maps can serve as inputs and verification
for various hydrological models, allowing for improved
understanding of streamflow recession (i.e. Lyon et al.,
2009; Lyon and Destouni, 2010), baseflow magnitude (Ge
et al., 2011; Walvoord et al., 2012), dissolved carbon export
(Striegl et al., 2005), subartic lake hydrology (Jepsen et al.,
2012; Wellman et al., 2013) and potential future changes to
these elements. The maps may also enhance our understand-
ing of the relationships between ALT and the soil organic
layer, and subsequently serve as inputs into carbon cycle
models by helping estimate soil organic depth and content.
NSR, ALT and permafrost probability maps can also give
insight into permafrost-fire relationships and thawing pro-
cesses, be used for land exchange purposes, allow engineers
and planners to efficiently develop new infrastructure .
(e.g. pipelines and roads), and help emergency management
personal mitigate against permafrost-related landslides,
flooding, rockfall and avalanches.

CONCLUSION

Wemapped near-surface (0–2.6m) resistivity, ALT (< 101 cm)
and the probability of near-surface permafrost occurrence
Published 2013. This article is a U.S. Government work and is in the public
at 30-m resolution for the YFE using field data, AEM survey
data, Landsat imagery, surficial geology and other relevant
spatial data. A single piecewise regression model for mapping
NSR in the Yukon Flats, which was based on 23 independent
variables, explained a high proportion of the variance
(r = 0.86) between actual and predicted natural logarithms
of NSR. A piecewise regression model (r = 0.82) and a
presence/absence decision tree classification (accuracy of
87%) were then used to estimate ALT (< 101 cm), the
probability of permafrost occurrence (up to 122 cm) from
field data, modelled NSR and other spatial data. This statisti-
cal approach provides a quantitative framework for mapping
permafrost and ALT with estimated uncertainty. Modelling
could be improved by having more field data, higher-quality
surficial geology maps and a tighter temporal correspondence
among data inputs. Adequately incorporating groundwater
effects remains a difficult challenge, but may be improved
through the use of higher-resolution topographical data. The
results provide a baseline for future permafrost monitoring,
serve as inputs for modelling hydrological and carbon cycles
at local to regional scales, and offer insight into the ALT
response to fire and thaw processes.
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