Analytical Results Report TOC

Page 2 - Chapter 1. : ECDMS Analytical Results Report 5/27/2010
Page 3 - Chapter 2. : Bulk Data
Page 5 - Chapter 4. : Contaminant Concentrations
Page 29 - Chapter 6. : Duplicates
Page 32 - Chapter 7. : Spike Recoveries
Page 35 - Chapter 10. : QAQC Summary
Page 37 - Chapter 11. : QA/QC Anomalies
Page 39 - Chapter 12. : Analytical Methods
1. ECDMS Analytical Results Report 5/27/2010

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Purchase Order Number</th>
<th>Lab ID</th>
<th>Catalog Submitter</th>
<th>ECDMS User ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020128</td>
<td>94420-09-Y004</td>
<td>TERL</td>
<td>Lusk, Joel - Albuquerque, NM</td>
<td>r2alfo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog Title</th>
<th>Rio Grande Silvery Minnow Health Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Name:</td>
<td>Trace Element Research Laboratory</td>
</tr>
</tbody>
</table>

Notes, Symbols and Abbreviations Used

Based on the report options selected the report should be printed in landscape mode.

Notes, Symbols and Abbreviations Used

- < Less than symbol indicates that the actual result is less than the reported detection limit.
- > Greater than symbol indicates that the actual result is greater than the reported result.

All results are reported as 3 significant digits.

All results are reported as parts per million (ppm), or percent, unless otherwise noted.

1. Integrity Report

<table>
<thead>
<tr>
<th>Lab Receipt Date</th>
<th>Lab Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2009</td>
<td>10/01/2009</td>
</tr>
</tbody>
</table>

Catalog Problems

No problems reported

Problem Resolution
2. Bulk Data

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Matrix</th>
<th>Sample Weight (grams)</th>
<th>Percent Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-07-2</td>
<td>Partial Carcass</td>
<td>34.582</td>
<td>76.2</td>
</tr>
<tr>
<td>1-07-3</td>
<td>Partial Carcass</td>
<td>87.213</td>
<td>76.6</td>
</tr>
<tr>
<td>1-07-5</td>
<td>Partial Carcass</td>
<td>33.67</td>
<td>72.2</td>
</tr>
<tr>
<td>1-07-6</td>
<td>Partial Carcass</td>
<td>102.092</td>
<td>72.9</td>
</tr>
<tr>
<td>1-08-1</td>
<td>Partial Carcass</td>
<td>4.752</td>
<td>75.2</td>
</tr>
<tr>
<td>1-08-2</td>
<td>Partial Carcass</td>
<td>4.685</td>
<td>74.7</td>
</tr>
<tr>
<td>1-08-3</td>
<td>Partial Carcass</td>
<td>4.725</td>
<td>73.2</td>
</tr>
<tr>
<td>1-08-4</td>
<td>Partial Carcass</td>
<td>4.509</td>
<td>72.6</td>
</tr>
<tr>
<td>1-08-5</td>
<td>Partial Carcass</td>
<td>65.723</td>
<td>72.7</td>
</tr>
<tr>
<td>1-08-6</td>
<td>Partial Carcass</td>
<td>4.595</td>
<td>70.7</td>
</tr>
<tr>
<td>2-07-4</td>
<td>Partial Carcass</td>
<td>103.398</td>
<td>72.2</td>
</tr>
<tr>
<td>4-07-1</td>
<td>Partial Carcass</td>
<td>56.026</td>
<td>74.1</td>
</tr>
<tr>
<td>4-07-2</td>
<td>Partial Carcass</td>
<td>37.471</td>
<td>75.3</td>
</tr>
<tr>
<td>4-07-3</td>
<td>Partial Carcass</td>
<td>30.856</td>
<td>74.0</td>
</tr>
<tr>
<td>4-07-4</td>
<td>Partial Carcass</td>
<td>60.238</td>
<td>74.3</td>
</tr>
<tr>
<td>4-07-5</td>
<td>Partial Carcass</td>
<td>27.374</td>
<td>73.5</td>
</tr>
<tr>
<td>4-08-1</td>
<td>Partial Carcass</td>
<td>4.255</td>
<td>73.0</td>
</tr>
<tr>
<td>4-08-2</td>
<td>Partial Carcass</td>
<td>4.405</td>
<td>72.0</td>
</tr>
<tr>
<td>4-08-3</td>
<td>Partial Carcass</td>
<td>4.302</td>
<td>71.0</td>
</tr>
<tr>
<td>4-08-4</td>
<td>Partial Carcass</td>
<td>4.676</td>
<td>73.0</td>
</tr>
<tr>
<td>4-08-6</td>
<td>Partial Carcass</td>
<td>4.405</td>
<td>73.3</td>
</tr>
<tr>
<td>7-06-1</td>
<td>Partial Carcass</td>
<td>3.869</td>
<td>73.2</td>
</tr>
<tr>
<td>7-06-2</td>
<td>Partial Carcass</td>
<td>4.069</td>
<td>72.5</td>
</tr>
<tr>
<td>7-06-3</td>
<td>Partial Carcass</td>
<td>3.891</td>
<td>71.5</td>
</tr>
<tr>
<td>7-06-4</td>
<td>Partial Carcass</td>
<td>4.417</td>
<td>66.5</td>
</tr>
<tr>
<td>7-06-5</td>
<td>Partial Carcass</td>
<td>4.199</td>
<td>68.8</td>
</tr>
<tr>
<td>7-06-6</td>
<td>Partial Carcass</td>
<td>4.354</td>
<td>69.8</td>
</tr>
<tr>
<td>7-08-1</td>
<td>Partial Carcass</td>
<td>62.399</td>
<td>71.6</td>
</tr>
<tr>
<td>7-08-2</td>
<td>Partial Carcass</td>
<td>53.332</td>
<td>71.5</td>
</tr>
<tr>
<td>7-08-3</td>
<td>Partial Carcass</td>
<td>23.286</td>
<td>72.8</td>
</tr>
<tr>
<td>7-08-4</td>
<td>Partial Carcass</td>
<td>35.884</td>
<td>73.5</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Sample Matrix</td>
<td>Sample Weight (grams)</td>
<td>Percent Moisture</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7-08-5</td>
<td>Partial Carcass</td>
<td>18.078</td>
<td>71.5</td>
</tr>
<tr>
<td>7-08-6</td>
<td>Partial Carcass</td>
<td>23.443</td>
<td>71.3</td>
</tr>
<tr>
<td>06385810</td>
<td>Water</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>
4. Contaminant Concentrations

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06385810</td>
<td>Aluminum</td>
<td>Water</td>
<td>0.905</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Water</td>
<td>0.00440</td>
<td>0.0000500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Water</td>
<td>0.116</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Water</td>
<td>0.106</td>
<td>0.00100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Water</td>
<td>< 0.000500</td>
<td>0.000500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Water</td>
<td>0.000260</td>
<td>0.0000100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Water</td>
<td>< 0.00500</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Water</td>
<td>0.0130</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Water</td>
<td>1.04</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Water</td>
<td>0.00000300</td>
<td>0.00000100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Water</td>
<td>4.48</td>
<td>0.0200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Water</td>
<td>0.0750</td>
<td>0.00200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Water</td>
<td>< 0.0100</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Water</td>
<td>0.00800</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Water</td>
<td>0.0120</td>
<td>0.0000500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Water</td>
<td>0.000200</td>
<td>0.000100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Water</td>
<td>0.264</td>
<td>0.000500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Water</td>
<td>0.00700</td>
<td>0.00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Water</td>
<td>0.0700</td>
<td>0.00200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| 1-07-2 | Aluminum | Partial Carcass | 141 | 0.462 | 33.6 | 0.110 |
| | Arsenic | Partial Carcass | 3.50 | 0.0462| 0.833 | 0.0110|
| | Boron | Partial Carcass | < 0.462| 0.462| < 0.110| 0.110 |
| | Barium | Partial Carcass | 79.3 | 0.0920| 18.9 | 0.0219|
| | Beryllium | Partial Carcass | < 0.0462| 0.0462| < 0.0110| 0.0110|
| | Cadmium | Partial Carcass | 0.0695| 0.00924| 0.0165| 0.00220|</p>
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.462</td>
<td>0.462</td>
<td>< 0.110</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.30</td>
<td>0.462</td>
<td>0.785</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>203</td>
<td>0.920</td>
<td>48.3</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.315</td>
<td>0.00510</td>
<td>0.0750</td>
<td>0.00121</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1550</td>
<td>1.85</td>
<td>369</td>
<td>0.440</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>24.0</td>
<td>0.185</td>
<td>5.71</td>
<td>0.0440</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.920</td>
<td>0.920</td>
<td>< 0.219</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.472</td>
<td>0.462</td>
<td>0.112</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.416</td>
<td>0.0462</td>
<td>0.0990</td>
<td>0.0110</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.16</td>
<td>0.0462</td>
<td>0.514</td>
<td>0.0110</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>176</td>
<td>0.0462</td>
<td>41.9</td>
<td>0.0110</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.26</td>
<td>0.462</td>
<td>0.300</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>179</td>
<td>0.185</td>
<td>42.6</td>
<td>0.0440</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.221</td>
<td>0.00845</td>
<td>0.0526</td>
<td>0.00201</td>
</tr>
</tbody>
</table>

<p>| | Aluminum | Partial Carcass | 95.6 | 0.431 | 22.4 | 0.101 |
| | Arsenic | Partial Carcass | 3.43 | 0.0431 | 0.803 | 0.0101 |
| | Boron | Partial Carcass | < 0.431 | 0.431 | < 0.101 | 0.101 |
| | Barium | Partial Carcass | 68.0 | 0.0860 | 15.9 | 0.0201 |
| | Beryllium | Partial Carcass | < 0.0431 | 0.0431 | < 0.0101 | 0.0101 |
| | Cadmium | Partial Carcass | 0.0371 | 0.00862 | 0.00868 | 0.00202 |
| | Chromium | Partial Carcass | < 0.431 | 0.431 | < 0.101 | 0.101 |
| | Copper | Partial Carcass | 3.20 | 0.431 | 0.749 | 0.101 |
| | Iron | Partial Carcass | 151 | 0.860 | 35.3 | 0.201 |
| | Mercury | Partial Carcass | 0.296 | 0.00480 | 0.0693 | 0.00112 |
| | Magnesium | Partial Carcass | 1590 | 1.72 | 372 | 0.402 |
| | Manganese | Partial Carcass | 16.4 | 0.172 | 3.84 | 0.0402 |
| | Molybdenum | Partial Carcass | < 0.860 | 0.860 | < 0.201 | 0.201 |
| | Nickel | Partial Carcass | 0.537 | 0.431 | 0.126 | 0.101 |</p>
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.395</td>
<td>0.0431</td>
<td>0.0924</td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.52</td>
<td>0.0431</td>
<td>0.590</td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>147</td>
<td>0.0431</td>
<td>34.4</td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.852</td>
<td>0.431</td>
<td>0.199</td>
<td>0.101</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>159</td>
<td>0.172</td>
<td>37.2</td>
<td>0.0402</td>
<td></td>
</tr>
<tr>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.241</td>
<td>0.0101</td>
<td>0.0564</td>
<td>0.00236</td>
<td></td>
</tr>
<tr>
<td>1-07-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>109</td>
<td>0.425</td>
<td>30.3</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.96</td>
<td>0.0425</td>
<td>0.823</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>0.477</td>
<td>0.425</td>
<td>0.133</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>22.1</td>
<td>0.0850</td>
<td>6.14</td>
<td>0.0236</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0425</td>
<td>0.0425</td>
<td>< 0.0118</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00851</td>
<td>0.00851</td>
<td>< 0.00237</td>
<td>0.00237</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.425</td>
<td>0.425</td>
<td>< 0.118</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.69</td>
<td>0.425</td>
<td>0.748</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>162</td>
<td>0.850</td>
<td>45.0</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.198</td>
<td>0.00490</td>
<td>0.0550</td>
<td>0.00136</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1150</td>
<td>1.70</td>
<td>320.</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>16.3</td>
<td>0.170</td>
<td>4.53</td>
<td>0.0473</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.850</td>
<td>0.850</td>
<td>< 0.236</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.470</td>
<td>0.425</td>
<td>0.131</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.272</td>
<td>0.0425</td>
<td>0.0756</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>3.19</td>
<td>0.0425</td>
<td>0.887</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>143</td>
<td>0.0425</td>
<td>39.8</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.669</td>
<td>0.425</td>
<td>0.186</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>114</td>
<td>0.170</td>
<td>31.7</td>
<td>0.0473</td>
<td></td>
</tr>
<tr>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.164</td>
<td>0.00837</td>
<td>0.0456</td>
<td>0.00233</td>
<td></td>
</tr>
<tr>
<td>1-07-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>127</td>
<td>0.439</td>
<td>34.4</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.26</td>
<td>0.0439</td>
<td>0.883</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.439</td>
<td>0.439</td>
<td>< 0.119</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>37.3</td>
<td>0.0880</td>
<td>10.1</td>
<td>0.0238</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0439</td>
<td>0.0439</td>
<td>< 0.0119</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00878</td>
<td>0.00878</td>
<td>< 0.00238</td>
<td>0.00238</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.439</td>
<td>0.439</td>
<td>< 0.119</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.58</td>
<td>0.439</td>
<td>0.699</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>178</td>
<td>0.880</td>
<td>48.2</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.258</td>
<td>0.00460</td>
<td>0.0699</td>
<td>0.00125</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1290</td>
<td>1.76</td>
<td>350.</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>15.6</td>
<td>0.176</td>
<td>4.23</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.880</td>
<td>0.880</td>
<td>< 0.238</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.439</td>
<td>0.439</td>
<td>< 0.119</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.290</td>
<td>0.0439</td>
<td>0.0786</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.85</td>
<td>0.0439</td>
<td>0.501</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>134</td>
<td>0.0439</td>
<td>36.3</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.656</td>
<td>0.439</td>
<td>0.178</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>110</td>
<td>0.176</td>
<td>29.8</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.256</td>
<td>0.00652</td>
<td>0.0694</td>
<td>0.00177</td>
</tr>
</tbody>
</table>

1-08-1

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>140</td>
<td>0.519</td>
<td>34.7</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>4.49</td>
<td>0.0490</td>
<td>1.11</td>
<td>0.0122</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.519</td>
<td>0.519</td>
<td>< 0.129</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>88.4</td>
<td>0.104</td>
<td>21.9</td>
<td>0.0258</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0519</td>
<td>0.0519</td>
<td>< 0.0129</td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0627</td>
<td>0.0196</td>
<td>0.0155</td>
<td>0.00486</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.753</td>
<td>0.519</td>
<td>0.187</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.78</td>
<td>0.519</td>
<td>0.937</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>149</td>
<td>1.04</td>
<td>37.0</td>
<td>0.258</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1-08-2</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>162</td>
<td>0.508</td>
<td>41.0</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.92</td>
<td>0.0480</td>
<td>0.992</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.508</td>
<td>0.508</td>
<td>< 0.129</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>69.3</td>
<td>0.102</td>
<td>17.5</td>
<td>0.0258</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0508</td>
<td>0.0508</td>
<td>< 0.0129</td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0359</td>
<td>0.0192</td>
<td>0.00908</td>
<td>0.00486</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>1.23</td>
<td>0.508</td>
<td>0.311</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>46.7</td>
<td>0.508</td>
<td>11.8</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>181</td>
<td>1.02</td>
<td>45.8</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.146</td>
<td>0.00570</td>
<td>0.0369</td>
<td>0.00144</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1440</td>
<td>2.03</td>
<td>364</td>
<td>0.514</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>17.0</td>
<td>0.203</td>
<td>4.30</td>
<td>0.0514</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.258</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>7.50</td>
<td>0.508</td>
<td>1.90</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.291</td>
<td>0.0480</td>
<td>0.0736</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.08</td>
<td>0.0480</td>
<td>0.526</td>
<td>0.0121</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>144</td>
<td>0.0508</td>
<td>36.4</td>
<td>0.0129</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.908</td>
<td>0.508</td>
<td>0.230</td>
<td>0.129</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>138</td>
<td>0.203</td>
<td>34.9</td>
<td>0.0514</td>
</tr>
<tr>
<td>1-08-3</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>95.0</td>
<td>0.520</td>
<td>25.5</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.77</td>
<td>0.0490</td>
<td>1.01</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.520</td>
<td>0.520</td>
<td>< 0.139</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>62.1</td>
<td>0.104</td>
<td>16.6</td>
<td>0.0279</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0520</td>
<td>0.0520</td>
<td>< 0.0139</td>
<td>0.0139</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0196</td>
<td>0.0196</td>
<td>< 0.00525</td>
<td>0.00525</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.520</td>
<td>0.520</td>
<td>< 0.139</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.47</td>
<td>0.520</td>
<td>0.930</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>125</td>
<td>1.04</td>
<td>33.5</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.125</td>
<td>0.00520</td>
<td>0.0335</td>
<td>0.00139</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1400</td>
<td>2.08</td>
<td>375</td>
<td>0.557</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>10.7</td>
<td>0.208</td>
<td>2.87</td>
<td>0.0557</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.04</td>
<td>1.04</td>
<td>< 0.279</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.856</td>
<td>0.520</td>
<td>0.229</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.166</td>
<td>0.0490</td>
<td>0.0445</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.70</td>
<td>0.0490</td>
<td>0.456</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>147</td>
<td>0.0520</td>
<td>39.4</td>
<td>0.0139</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.706</td>
<td>0.520</td>
<td>0.189</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>136</td>
<td>0.208</td>
<td>36.4</td>
<td>0.0557</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>142</td>
<td>0.508</td>
<td>38.9</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.70</td>
<td>0.0480</td>
<td>0.740</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.508</td>
<td>0.508</td>
<td>< 0.139</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>56.1</td>
<td>0.102</td>
<td>15.4</td>
<td>0.0279</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0508</td>
<td>0.0508</td>
<td>< 0.0139</td>
<td>0.0139</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0192</td>
<td>0.0192</td>
<td>< 0.00526</td>
<td>0.00526</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.508</td>
<td>0.508</td>
<td>< 0.139</td>
<td>0.139</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.76</td>
<td>0.508</td>
<td>1.03</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>178</td>
<td>1.02</td>
<td>48.8</td>
<td>0.279</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.0861</td>
<td>0.00870</td>
<td>0.0236</td>
<td>0.00238</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1390</td>
<td>2.03</td>
<td>381</td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>12.9</td>
<td>0.203</td>
<td>3.53</td>
<td>0.0556</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.279</td>
<td>0.279</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.692</td>
<td>0.508</td>
<td>0.190</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.191</td>
<td>0.0480</td>
<td>0.0523</td>
<td>0.0132</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.89</td>
<td>0.0480</td>
<td>0.518</td>
<td>0.0132</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>121</td>
<td>0.0508</td>
<td>33.2</td>
<td>0.0139</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.788</td>
<td>0.508</td>
<td>0.216</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>132</td>
<td>0.203</td>
<td>36.2</td>
<td>0.0556</td>
<td></td>
</tr>
</tbody>
</table>

1-08-5

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>36.4</td>
<td>0.459</td>
<td>9.94</td>
<td>0.125</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.10</td>
<td>0.0459</td>
<td>0.846</td>
<td>0.0125</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.459</td>
<td>0.459</td>
<td>< 0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>34.7</td>
<td>0.0920</td>
<td>9.47</td>
<td>0.0251</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0459</td>
<td>0.0459</td>
<td>< 0.0125</td>
<td>0.0125</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00918</td>
<td>0.00918</td>
<td>< 0.00251</td>
<td>0.00251</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.459</td>
<td>0.459</td>
<td>< 0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.89</td>
<td>0.459</td>
<td>0.789</td>
<td>0.125</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>66.1</td>
<td>0.920</td>
<td>18.0</td>
<td>0.251</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.102</td>
<td>0.00510</td>
<td>0.0278</td>
<td>0.00139</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1280</td>
<td>1.84</td>
<td>349</td>
<td>0.502</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>13.1</td>
<td>0.184</td>
<td>3.58</td>
<td>0.0502</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.920</td>
<td>0.920</td>
<td>< 0.251</td>
<td>0.251</td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.459</td>
<td>0.459</td>
<td>< 0.125</td>
<td>0.125</td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.214</td>
<td>0.0459</td>
<td>0.0584</td>
<td>0.0125</td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.03</td>
<td>0.0459</td>
<td>0.554</td>
<td>0.0125</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1-08-6</td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>134</td>
<td>0.0459</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>< 0.459</td>
<td>0.459</td>
<td>< 0.125</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>112</td>
<td>0.184</td>
<td>30.6</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.0995</td>
<td>0.00755</td>
<td>0.0272</td>
</tr>
</tbody>
</table>

1-08-6

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>73.3</td>
<td>0.502</td>
<td>21.5</td>
<td>0.147</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.73</td>
<td>0.0474</td>
<td>0.800</td>
<td>0.0139</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.502</td>
<td>0.502</td>
<td>< 0.147</td>
<td>0.147</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>22.1</td>
<td>0.100</td>
<td>6.48</td>
<td>0.0293</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0502</td>
<td>0.0502</td>
<td>< 0.0147</td>
<td>0.0147</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0190</td>
<td>0.0190</td>
<td>< 0.00557</td>
<td>0.00557</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.502</td>
<td>0.502</td>
<td>< 0.147</td>
<td>0.147</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>6.91</td>
<td>0.502</td>
<td>2.02</td>
<td>0.147</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>101</td>
<td>1.00</td>
<td>29.6</td>
<td>0.293</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.102</td>
<td>0.00780</td>
<td>0.0299</td>
<td>0.00229</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1240</td>
<td>2.01</td>
<td>363</td>
<td>0.589</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>11.8</td>
<td>0.201</td>
<td>3.46</td>
<td>0.0589</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.00</td>
<td>1.00</td>
<td>< 0.293</td>
<td>0.293</td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>3.45</td>
<td>0.502</td>
<td>1.01</td>
<td>0.147</td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.115</td>
<td>0.0474</td>
<td>0.0337</td>
<td>0.0139</td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.84</td>
<td>0.0474</td>
<td>0.832</td>
<td>0.0139</td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>175</td>
<td>0.0502</td>
<td>51.3</td>
<td>0.0147</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.608</td>
<td>0.502</td>
<td>0.178</td>
<td>0.147</td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>131</td>
<td>0.201</td>
<td>38.4</td>
<td>0.0589</td>
</tr>
</tbody>
</table>

2-07-4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>61.3</td>
<td>0.434</td>
<td>17.0</td>
<td>0.121</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.13</td>
<td>0.0434</td>
<td>0.870</td>
<td>0.0121</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.434</td>
<td>0.434</td>
<td>< 0.121</td>
<td>0.121</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>47.8</td>
<td>0.0870</td>
<td>13.3</td>
<td>0.0242</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0434</td>
<td>0.0434</td>
<td>< 0.0121</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00867</td>
<td>0.00867</td>
<td>< 0.00241</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.434</td>
<td>0.434</td>
<td>< 0.121</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.67</td>
<td>0.434</td>
<td>0.742</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>106</td>
<td>0.870</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.141</td>
<td>0.00450</td>
<td>0.0392</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1330</td>
<td>1.73</td>
<td>370.</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>12.5</td>
<td>0.173</td>
<td>3.48</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.870</td>
<td>0.870</td>
<td>< 0.242</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.434</td>
<td>0.434</td>
<td>< 0.121</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.326</td>
<td>0.0434</td>
<td>0.0906</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.81</td>
<td>0.0434</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>108</td>
<td>0.0434</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>< 0.434</td>
<td>0.434</td>
<td>< 0.121</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>114</td>
<td>0.173</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.141</td>
<td>0.00762</td>
<td>0.0392</td>
</tr>
</tbody>
</table>

4-07-1

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>382</td>
<td>0.511</td>
<td>98.9</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.02</td>
<td>0.0482</td>
<td>0.782</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.511</td>
<td>0.511</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>79.0</td>
<td>0.102</td>
<td>20.5</td>
<td>0.0264</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0511</td>
<td>0.0511</td>
<td>< 0.0132</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0193</td>
<td>0.0193</td>
<td>< 0.00500</td>
<td>0.00500</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.618</td>
<td>0.511</td>
<td>0.160</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.49</td>
<td>0.511</td>
<td>0.904</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>457</td>
<td>1.02</td>
<td>118</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.282</td>
<td>0.00460</td>
<td>0.0730</td>
<td>0.00119</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1730</td>
<td>2.04</td>
<td>448</td>
<td>0.528</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>32.4</td>
<td>0.204</td>
<td>8.39</td>
<td>0.0528</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.264</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.24</td>
<td>0.511</td>
<td>0.321</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.376</td>
<td>0.0482</td>
<td>0.0974</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.00</td>
<td>0.0482</td>
<td>0.518</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>138</td>
<td>0.0511</td>
<td>35.7</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.32</td>
<td>0.511</td>
<td>0.342</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>140.</td>
<td>0.204</td>
<td>36.3</td>
<td>0.0528</td>
</tr>
<tr>
<td>4-07-2</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>429</td>
<td>0.513</td>
<td>106</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.29</td>
<td>0.0484</td>
<td>0.813</td>
<td>0.0120</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.513</td>
<td>0.513</td>
<td>< 0.127</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>70.0</td>
<td>0.103</td>
<td>17.3</td>
<td>0.0254</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0513</td>
<td>0.0513</td>
<td>< 0.0127</td>
<td>0.0127</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00194</td>
<td>0.0194</td>
<td>< 0.00479</td>
<td>0.00479</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.783</td>
<td>0.513</td>
<td>0.193</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.25</td>
<td>0.513</td>
<td>0.803</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>496</td>
<td>1.03</td>
<td>123</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.251</td>
<td>0.00510</td>
<td>0.0620</td>
<td>0.00126</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1570</td>
<td>2.05</td>
<td>388</td>
<td>0.506</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>34.1</td>
<td>0.205</td>
<td>8.42</td>
<td>0.0506</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.03</td>
<td>1.03</td>
<td>< 0.254</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.15</td>
<td>0.513</td>
<td>0.284</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.522</td>
<td>0.0484</td>
<td>0.129</td>
<td>0.0120</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.66</td>
<td>0.0484</td>
<td>0.410</td>
<td>0.0120</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>145</td>
<td>0.0513</td>
<td>35.8</td>
<td>0.0127</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.84</td>
<td>0.513</td>
<td>0.454</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>135</td>
<td>0.205</td>
<td>33.3</td>
<td>0.0506</td>
</tr>
<tr>
<td>4-07-3</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>256</td>
<td>0.512</td>
<td>66.6</td>
<td>0.133</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>4-07-4</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>450.0</td>
<td>0.507</td>
<td>116</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.09</td>
<td>0.0478</td>
<td>0.794</td>
<td>0.0123</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.507</td>
<td>0.507</td>
<td>< 0.130</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>59.0</td>
<td>0.101</td>
<td>15.2</td>
<td>0.0260</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0507</td>
<td>0.0507</td>
<td>< 0.0130</td>
<td>0.0130</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0191</td>
<td>0.0191</td>
<td>< 0.00491</td>
<td>0.00491</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.752</td>
<td>0.507</td>
<td>0.193</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.57</td>
<td>0.507</td>
<td>0.917</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>511</td>
<td>1.01</td>
<td>131</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.161</td>
<td>0.00490</td>
<td>0.0414</td>
<td>0.00126</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1710</td>
<td>2.03</td>
<td>439</td>
<td>0.522</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>28.4</td>
<td>0.203</td>
<td>7.30</td>
<td>0.0522</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.01</td>
<td>1.01</td>
<td>< 0.260</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.26</td>
<td>0.507</td>
<td>0.324</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.557</td>
<td>0.0478</td>
<td>0.143</td>
<td>0.0123</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.07</td>
<td>0.0478</td>
<td>0.532</td>
<td>0.0123</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>129</td>
<td>0.0507</td>
<td>33.2</td>
<td>0.0130</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.56</td>
<td>0.507</td>
<td>0.401</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>126</td>
<td>0.203</td>
<td>32.4</td>
<td>0.0522</td>
</tr>
</tbody>
</table>

4-07-5

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>201</td>
<td>0.493</td>
<td>53.3</td>
<td>0.131</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.79</td>
<td>0.0493</td>
<td>0.739</td>
<td>0.0131</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>0.758</td>
<td>0.493</td>
<td>0.201</td>
<td>0.131</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>29.7</td>
<td>0.0990</td>
<td>7.87</td>
<td>0.0262</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0493</td>
<td>0.0493</td>
<td>< 0.0131</td>
<td>0.0131</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00987</td>
<td>0.00987</td>
<td>< 0.00262</td>
<td>0.00262</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.493</td>
<td>0.493</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.00</td>
<td>0.493</td>
<td>0.795</td>
<td>0.131</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>294</td>
<td>0.990</td>
<td>77.9</td>
<td>0.262</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.216</td>
<td>0.00490</td>
<td>0.0572</td>
<td>0.00130</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1360</td>
<td>1.97</td>
<td>360.</td>
<td>0.522</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>35.1</td>
<td>0.197</td>
<td>9.30</td>
<td>0.0522</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.990</td>
<td>0.990</td>
<td>< 0.262</td>
<td>0.262</td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.493</td>
<td>0.493</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.562</td>
<td>0.0493</td>
<td>0.149</td>
<td>0.0131</td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.33</td>
<td>0.0493</td>
<td>0.617</td>
<td>0.0131</td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>155</td>
<td>0.0493</td>
<td>41.1</td>
<td>0.0131</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.977</td>
<td>0.493</td>
<td>0.259</td>
<td>0.131</td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>125</td>
<td>0.197</td>
<td>33.1</td>
<td>0.0522</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4-08-1</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>383</td>
<td>0.509</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.41</td>
<td>0.0480</td>
<td>0.921</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.509</td>
<td>0.509</td>
<td>< 0.137</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>69.5</td>
<td>0.102</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0509</td>
<td>0.0509</td>
<td>< 0.0137</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0436</td>
<td>0.0192</td>
<td>0.0118</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.925</td>
<td>0.509</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.34</td>
<td>0.509</td>
<td>0.902</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>408</td>
<td>1.02</td>
<td>110.</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.129</td>
<td>0.00570</td>
<td>0.0348</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1410</td>
<td>2.03</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>27.1</td>
<td>0.203</td>
<td>7.32</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.275</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.25</td>
<td>0.509</td>
<td>0.338</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.298</td>
<td>0.0480</td>
<td>0.0805</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.36</td>
<td>0.0480</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>107</td>
<td>0.0509</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.30</td>
<td>0.509</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>136</td>
<td>0.203</td>
<td>36.7</td>
</tr>
<tr>
<td>4-08-2</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>317</td>
<td>0.511</td>
<td>88.8</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.70</td>
<td>0.0482</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.511</td>
<td>0.511</td>
<td>< 0.143</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>67.7</td>
<td>0.102</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0511</td>
<td>0.0511</td>
<td>< 0.0143</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0193</td>
<td>0.0193</td>
<td>< 0.00540</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.662</td>
<td>0.511</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.17</td>
<td>0.511</td>
<td>0.888</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>344</td>
<td>1.02</td>
<td>96.3</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.123</td>
<td>0.00570</td>
<td>0.0344</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1470</td>
<td>2.04</td>
<td>412</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>22.9</td>
<td>0.204</td>
<td>6.41</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.286</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.949</td>
<td>0.511</td>
<td>0.266</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.289</td>
<td>0.0482</td>
<td>0.0809</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.81</td>
<td>0.0482</td>
<td>0.507</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>131</td>
<td>0.0511</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.13</td>
<td>0.511</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>122</td>
<td>0.204</td>
<td>34.2</td>
</tr>
<tr>
<td>4-08-3</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>111</td>
<td>0.508</td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.67</td>
<td>0.0480</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.508</td>
<td>0.508</td>
<td>< 0.147</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>49.8</td>
<td>0.102</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0508</td>
<td>0.0508</td>
<td>< 0.0147</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0192</td>
<td>0.0192</td>
<td>< 0.00557</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.508</td>
<td>0.508</td>
<td>< 0.147</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>20.0</td>
<td>0.508</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>141</td>
<td>1.02</td>
<td>40.9</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.106</td>
<td>0.00650</td>
<td>0.0307</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1310</td>
<td>2.03</td>
<td>380.</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>13.0</td>
<td>0.203</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.02</td>
<td>1.02</td>
<td>< 0.296</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>4.58</td>
<td>0.508</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.305</td>
<td>0.0480</td>
<td>0.0884</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.68</td>
<td>0.0480</td>
<td>0.487</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>109</td>
<td>0.0508</td>
<td>31.6</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.705</td>
<td>0.508</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>119</td>
<td>0.203</td>
<td>34.5</td>
</tr>
</tbody>
</table>

4-08-4

	Aluminum	Partial Carcass	214	0.512	57.8	0.138
	Arsenic	Partial Carcass	2.78	0.0483	0.751	0.0130
	Boron	Partial Carcass	< 0.512	0.512	< 0.138	0.138
	Barium	Partial Carcass	55.3	0.102	14.9	0.0275
	Beryllium	Partial Carcass	< 0.0512	0.0512	< 0.0138	0.0138
	Cadmium	Partial Carcass	< 0.0193	0.0193	< 0.00521	0.00521
	Chromium	Partial Carcass	0.602	0.512	0.163	0.138
	Copper	Partial Carcass	14.9	0.512	4.02	0.138
	Iron	Partial Carcass	233	1.02	62.9	0.275
	Mercury	Partial Carcass	0.111	0.00560	0.0300	0.00151
	Magnesium	Partial Carcass	1460	2.05	394	0.554
	Manganese	Partial Carcass	17.2	0.205	4.64	0.0554
	Molybdenum	Partial Carcass	< 1.02	1.02	< 0.275	0.275
	Nickel	Partial Carcass	3.27	0.512	0.883	0.138
	Lead	Partial Carcass	0.293	0.0483	0.0791	0.0130
	Selenium	Partial Carcass	1.53	0.0483	0.413	0.0130
	Strontium	Partial Carcass	124	0.0512	33.5	0.0138
	Vanadium	Partial Carcass	0.940	0.512	0.254	0.138
	Zinc	Partial Carcass	127	0.205	34.3	0.0554

4-08-6

<p>| | Aluminum | Partial Carcass | 95.3 | 0.506 | 25.4 | 0.135 |
| | Arsenic | Partial Carcass | 2.67 | 0.0477 | 0.713 | 0.0127 |
| | Boron | Partial Carcass | < 0.506 | 0.506 | < 0.135 | 0.135 |
| | Barium | Partial Carcass | 30.6 | 0.101 | 8.17 | 0.0270 |
| | Beryllium| Partial Carcass | < 0.0506 | 0.0506 | < 0.0135 | 0.0135 |
| | Cadmium | Partial Carcass | < 0.0191 | 0.0191 | < 0.00510 | 0.00510 |</p>
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.506</td>
<td>0.506</td>
<td>< 0.135</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.01</td>
<td>0.506</td>
<td>0.804</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>163</td>
<td>1.01</td>
<td>43.5</td>
<td>0.270</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.120</td>
<td>0.00600</td>
<td>0.0320</td>
<td>0.00160</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1450</td>
<td>2.02</td>
<td>387</td>
<td>0.539</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>15.8</td>
<td>0.202</td>
<td>4.22</td>
<td>0.0539</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.01</td>
<td>1.01</td>
<td>< 0.270</td>
<td>0.270</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.639</td>
<td>0.506</td>
<td>0.171</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.120</td>
<td>0.0477</td>
<td>0.0320</td>
<td>0.0127</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.69</td>
<td>0.0477</td>
<td>0.451</td>
<td>0.0127</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>186</td>
<td>0.0506</td>
<td>49.7</td>
<td>0.0135</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.789</td>
<td>0.506</td>
<td>0.211</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>133</td>
<td>0.202</td>
<td>35.5</td>
<td>0.0539</td>
<td></td>
</tr>
</tbody>
</table>

7-06-1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>1150</td>
<td>0.522</td>
<td>308</td>
<td>0.140</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.27</td>
<td>0.0493</td>
<td>0.876</td>
<td>0.0132</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>1.05</td>
<td>0.522</td>
<td>0.281</td>
<td>0.140</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>88.0</td>
<td>0.104</td>
<td>23.6</td>
<td>0.0279</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>0.0578</td>
<td>0.0522</td>
<td>0.0155</td>
<td>0.0140</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.115</td>
<td>0.0197</td>
<td>0.0308</td>
<td>0.00528</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>3.73</td>
<td>0.522</td>
<td>1.00</td>
<td>0.140</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>31.7</td>
<td>0.522</td>
<td>8.50</td>
<td>0.140</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>1180</td>
<td>1.04</td>
<td>316</td>
<td>0.279</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.277</td>
<td>0.00670</td>
<td>0.0742</td>
<td>0.00180</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>2000</td>
<td>2.09</td>
<td>536</td>
<td>0.560</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>58.2</td>
<td>0.209</td>
<td>15.6</td>
<td>0.0560</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.04</td>
<td>1.04</td>
<td>< 0.279</td>
<td>0.279</td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>13.3</td>
<td>0.522</td>
<td>3.56</td>
<td>0.140</td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>1.12</td>
<td>0.0493</td>
<td>0.300</td>
<td>0.0132</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.09</td>
<td>0.0493</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>162</td>
<td>0.0522</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>3.15</td>
<td>0.522</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>156</td>
<td>0.209</td>
<td>41.8</td>
</tr>
</tbody>
</table>

7-06-2

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumium</td>
<td>Partial Carcass</td>
<td>970</td>
<td>0.517</td>
<td>267</td>
<td>0.142</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.08</td>
<td>0.0488</td>
<td>0.847</td>
<td>0.0134</td>
</tr>
<tr>
<td>Monon</td>
<td>Partial Carcass</td>
<td>0.705</td>
<td>0.517</td>
<td>0.194</td>
<td>0.142</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>74.3</td>
<td>0.103</td>
<td>20.4</td>
<td>0.0283</td>
</tr>
<tr>
<td>Berylilum</td>
<td>Partial Carcass</td>
<td>< 0.0517</td>
<td>0.0517</td>
<td>< 0.0142</td>
<td>0.0142</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0542</td>
<td>0.0195</td>
<td>0.0149</td>
<td>0.00536</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>2.63</td>
<td>0.517</td>
<td>0.723</td>
<td>0.142</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>18.2</td>
<td>0.517</td>
<td>5.00</td>
<td>0.142</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>1060</td>
<td>1.03</td>
<td>292</td>
<td>0.283</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.273</td>
<td>0.00640</td>
<td>0.0751</td>
<td>0.00176</td>
</tr>
<tr>
<td>Magnessium</td>
<td>Partial Carcass</td>
<td>1700</td>
<td>2.07</td>
<td>468</td>
<td>0.569</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>52.4</td>
<td>0.207</td>
<td>14.4</td>
<td>0.0569</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.03</td>
<td>1.03</td>
<td>< 0.283</td>
<td>0.283</td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>12.9</td>
<td>0.517</td>
<td>3.55</td>
<td>0.142</td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>1.47</td>
<td>0.0488</td>
<td>0.404</td>
<td>0.0134</td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>2.42</td>
<td>0.0488</td>
<td>0.666</td>
<td>0.0134</td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>123</td>
<td>0.0517</td>
<td>33.8</td>
<td>0.0142</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>2.48</td>
<td>0.517</td>
<td>0.682</td>
<td>0.142</td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>140</td>
<td>0.207</td>
<td>38.5</td>
<td>0.0569</td>
</tr>
</tbody>
</table>

7-06-3

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumium</td>
<td>Partial Carcass</td>
<td>767</td>
<td>0.500</td>
<td>219</td>
<td>0.142</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.68</td>
<td>0.0472</td>
<td>0.764</td>
<td>0.0135</td>
</tr>
<tr>
<td>Monon</td>
<td>Partial Carcass</td>
<td>0.651</td>
<td>0.500</td>
<td>0.186</td>
<td>0.142</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>59.8</td>
<td>0.100</td>
<td>17.0</td>
<td>0.0285</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0500</td>
<td>0.0500</td>
<td>< 0.0142</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0189</td>
<td>0.0189</td>
<td>< 0.00539</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>2.58</td>
<td>0.500</td>
<td>0.735</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.28</td>
<td>0.500</td>
<td>0.935</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>838</td>
<td>1.00</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.205</td>
<td>0.00830</td>
<td>0.0584</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1780</td>
<td>2.00</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>39.9</td>
<td>0.200</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.00</td>
<td>1.00</td>
<td>< 0.285</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>2.24</td>
<td>0.500</td>
<td>0.638</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.763</td>
<td>0.0472</td>
<td>0.217</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.74</td>
<td>0.0472</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>164</td>
<td>0.0500</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>2.81</td>
<td>0.500</td>
<td>0.801</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>147</td>
<td>0.200</td>
<td>41.9</td>
</tr>
</tbody>
</table>

7-06-4

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>626</th>
<th>0.524</th>
<th>210.</th>
<th>0.176</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.68</td>
<td>0.0495</td>
<td>0.898</td>
<td>0.0166</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>0.576</td>
<td>0.524</td>
<td>0.193</td>
<td>0.176</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>65.3</td>
<td>0.105</td>
<td>21.9</td>
<td>0.0352</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0524</td>
<td>0.0524</td>
<td>< 0.0176</td>
<td>0.0176</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0198</td>
<td>0.0198</td>
<td>< 0.00663</td>
<td>0.00663</td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>2.06</td>
<td>0.524</td>
<td>0.690</td>
<td>0.176</td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.81</td>
<td>0.524</td>
<td>0.941</td>
<td>0.176</td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>634</td>
<td>1.05</td>
<td>212.</td>
<td>0.352</td>
</tr>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.181</td>
<td>0.00720</td>
<td>0.0606</td>
<td>0.00241</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1690</td>
<td>2.10</td>
<td>566.</td>
<td>0.704</td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>36.8</td>
<td>0.210</td>
<td>12.3</td>
<td>0.0704</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.05</td>
<td>1.05</td>
<td>< 0.352</td>
<td>0.352</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.87</td>
<td>0.524</td>
<td>0.626</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.668</td>
<td>0.0495</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.81</td>
<td>0.0495</td>
<td>0.606</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>154</td>
<td>0.0524</td>
<td>51.6</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.74</td>
<td>0.524</td>
<td>0.583</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>170.</td>
<td>0.210</td>
<td>57.0</td>
</tr>
</tbody>
</table>

7-06-5

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>328</td>
<td>0.513</td>
<td>102</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.80</td>
<td>0.0484</td>
<td>0.874</td>
<td>0.0151</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.513</td>
<td>0.513</td>
<td>< 0.160</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>54.4</td>
<td>0.103</td>
<td>17.0</td>
<td>0.0321</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0513</td>
<td>0.0513</td>
<td>< 0.0160</td>
<td>0.0160</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0194</td>
<td>0.0194</td>
<td>< 0.00605</td>
<td>0.00605</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.993</td>
<td>0.513</td>
<td>0.310</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.31</td>
<td>0.513</td>
<td>0.721</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>344</td>
<td>1.03</td>
<td>107</td>
<td>0.321</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.185</td>
<td>0.00630</td>
<td>0.0577</td>
<td>0.00197</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1640</td>
<td>2.05</td>
<td>512</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>49.9</td>
<td>0.205</td>
<td>15.6</td>
<td>0.0640</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.03</td>
<td>1.03</td>
<td>< 0.321</td>
<td>0.321</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.10</td>
<td>0.513</td>
<td>0.343</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.392</td>
<td>0.0484</td>
<td>0.122</td>
<td>0.0151</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.42</td>
<td>0.0484</td>
<td>0.443</td>
<td>0.0151</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>187</td>
<td>0.0513</td>
<td>58.3</td>
<td>0.0160</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.19</td>
<td>0.513</td>
<td>0.371</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>146</td>
<td>0.205</td>
<td>45.6</td>
<td>0.0640</td>
</tr>
</tbody>
</table>

7-06-6

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>289</td>
<td>0.521</td>
<td>87.3</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.55</td>
<td>0.0492</td>
<td>0.770</td>
<td>0.0149</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.521</td>
<td>0.521</td>
<td>< 0.157</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>57.6</td>
<td>0.104</td>
<td>17.4</td>
<td>0.0314</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0521</td>
<td>0.0521</td>
<td>< 0.0157</td>
<td>0.0157</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.0197</td>
<td>0.0197</td>
<td>< 0.00595</td>
<td>0.00595</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>0.728</td>
<td>0.521</td>
<td>0.220</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.32</td>
<td>0.521</td>
<td>0.701</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>309</td>
<td>1.04</td>
<td>93.3</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.232</td>
<td>0.00680</td>
<td>0.0701</td>
<td>0.00205</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1530</td>
<td>2.09</td>
<td>462</td>
<td>0.631</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>31.7</td>
<td>0.209</td>
<td>9.57</td>
<td>0.0631</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 1.04</td>
<td>1.04</td>
<td>< 0.314</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>1.19</td>
<td>0.521</td>
<td>0.359</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.338</td>
<td>0.0492</td>
<td>0.102</td>
<td>0.0149</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.40</td>
<td>0.0492</td>
<td>0.423</td>
<td>0.0149</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>170.</td>
<td>0.0521</td>
<td>51.3</td>
<td>0.0157</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.12</td>
<td>0.521</td>
<td>0.338</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>165</td>
<td>0.209</td>
<td>49.8</td>
<td>0.0631</td>
</tr>
</tbody>
</table>

7-08-1

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>542</td>
<td>0.468</td>
<td>154</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>4.10</td>
<td>0.0468</td>
<td>1.16</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>0.562</td>
<td>0.468</td>
<td>0.160</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>71.4</td>
<td>0.0940</td>
<td>20.3</td>
<td>0.0267</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0468</td>
<td>0.0468</td>
<td>< 0.0133</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0776</td>
<td>0.00935</td>
<td>0.0220</td>
<td>0.00266</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.468</td>
<td>0.468</td>
<td>< 0.133</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.72</td>
<td>0.468</td>
<td>1.06</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>749</td>
<td>0.940</td>
<td>213</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.192</td>
<td>0.00440</td>
<td>0.0545</td>
<td>0.00125</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1570</td>
<td>1.87</td>
<td>446</td>
<td>0.531</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>56.6</td>
<td>0.187</td>
<td>16.1</td>
<td>0.0531</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.940</td>
<td>0.940</td>
<td>< 0.267</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.898</td>
<td>0.468</td>
<td>0.255</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.959</td>
<td>0.0468</td>
<td>0.272</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.74</td>
<td>0.0468</td>
<td>0.494</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>120.</td>
<td>0.0468</td>
<td>34.1</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.47</td>
<td>0.468</td>
<td>0.417</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>149</td>
<td>0.187</td>
<td>42.3</td>
<td>0.0531</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.181</td>
<td>0.00571</td>
<td>0.0514</td>
<td>0.00162</td>
</tr>
</tbody>
</table>

7-08-2

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>419</td>
<td>0.463</td>
<td>119</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.75</td>
<td>0.0463</td>
<td>1.07</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.463</td>
<td>0.463</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>67.6</td>
<td>0.0930</td>
<td>19.3</td>
<td>0.0265</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0463</td>
<td>0.0463</td>
<td>< 0.0132</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>0.0230</td>
<td>0.00925</td>
<td>0.00656</td>
<td>0.00264</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.463</td>
<td>0.463</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.19</td>
<td>0.463</td>
<td>0.909</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>574</td>
<td>0.930</td>
<td>164</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.195</td>
<td>0.00440</td>
<td>0.0556</td>
<td>0.00125</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1440</td>
<td>1.85</td>
<td>410.</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>62.8</td>
<td>0.185</td>
<td>17.9</td>
<td>0.0527</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.930</td>
<td>0.930</td>
<td>< 0.265</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.866</td>
<td>0.463</td>
<td>0.247</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.722</td>
<td>0.0463</td>
<td>0.206</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.89</td>
<td>0.0463</td>
<td>0.539</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>105</td>
<td>0.0463</td>
<td>29.9</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.22</td>
<td>0.463</td>
<td>0.348</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>143</td>
<td>0.185</td>
<td>40.8</td>
<td>0.0527</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>7-08-3</td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.197</td>
<td>0.00908</td>
<td>0.0561</td>
<td>0.00259</td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>81.0</td>
<td>0.484</td>
<td>22.0</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.83</td>
<td>0.0484</td>
<td>0.770</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.484</td>
<td>0.484</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>47.5</td>
<td>0.0970</td>
<td>12.9</td>
<td>0.0264</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0484</td>
<td>0.0484</td>
<td>< 0.0132</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00968</td>
<td>0.00968</td>
<td>< 0.00263</td>
<td>0.00263</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.484</td>
<td>0.484</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.56</td>
<td>0.484</td>
<td>0.696</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>130.</td>
<td>0.970</td>
<td>35.4</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.136</td>
<td>0.00400</td>
<td>0.0370</td>
<td>0.00109</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1300</td>
<td>1.94</td>
<td>354</td>
<td>0.528</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>14.8</td>
<td>0.194</td>
<td>4.03</td>
<td>0.0528</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.970</td>
<td>0.970</td>
<td>< 0.264</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.484</td>
<td>0.484</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.343</td>
<td>0.0484</td>
<td>0.0933</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.69</td>
<td>0.0484</td>
<td>0.460</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>104</td>
<td>0.0484</td>
<td>28.3</td>
<td>0.0132</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>< 0.484</td>
<td>0.484</td>
<td>< 0.132</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>135</td>
<td>0.194</td>
<td>36.7</td>
<td>0.0528</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.143</td>
<td>0.00675</td>
<td>0.0389</td>
<td>0.00184</td>
</tr>
<tr>
<td>7-08-4</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>394</td>
<td>0.449</td>
<td>104</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.43</td>
<td>0.0449</td>
<td>0.909</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.449</td>
<td>0.449</td>
<td>< 0.119</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>64.2</td>
<td>0.0900</td>
<td>17.0</td>
<td>0.0238</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0449</td>
<td>0.0449</td>
<td>< 0.0119</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00899</td>
<td>0.00899</td>
<td>< 0.00238</td>
<td>0.00238</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.449</td>
<td>0.449</td>
<td>< 0.119</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.07</td>
<td>0.449</td>
<td>0.814</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>590.</td>
<td>0.900</td>
<td>156</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.219</td>
<td>0.00440</td>
<td>0.0580</td>
<td>0.00117</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1520</td>
<td>1.80</td>
<td>403</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>35.6</td>
<td>0.180</td>
<td>9.43</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.900</td>
<td>0.900</td>
<td>< 0.238</td>
<td>0.238</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.867</td>
<td>0.449</td>
<td>0.230</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.908</td>
<td>0.0449</td>
<td>0.241</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.84</td>
<td>0.0449</td>
<td>0.488</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>121</td>
<td>0.0449</td>
<td>32.1</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>1.35</td>
<td>0.449</td>
<td>0.358</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>145</td>
<td>0.180</td>
<td>38.4</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.199</td>
<td>0.00982</td>
<td>0.0527</td>
<td>0.00260</td>
</tr>
</tbody>
</table>

7-08-5

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Dry Weight (ppm)</th>
<th>DL Dry Weight (ppm)</th>
<th>Wet Weight (ppm)</th>
<th>DL Wet Weight (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>205</td>
<td>0.470</td>
<td>58.4</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>3.20</td>
<td>0.0470</td>
<td>0.912</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.470</td>
<td>0.470</td>
<td>< 0.134</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>42.0</td>
<td>0.0940</td>
<td>12.0</td>
<td>0.0268</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0470</td>
<td>0.0470</td>
<td>< 0.0134</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00940</td>
<td>0.00940</td>
<td>< 0.00268</td>
<td>0.00268</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.470</td>
<td>0.470</td>
<td>< 0.134</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>3.22</td>
<td>0.470</td>
<td>0.918</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>314</td>
<td>0.940</td>
<td>89.5</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.204</td>
<td>0.00450</td>
<td>0.0581</td>
<td>0.00128</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1470</td>
<td>1.88</td>
<td>419</td>
<td>0.536</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>38.8</td>
<td>0.188</td>
<td>11.1</td>
<td>0.0536</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.940</td>
<td>0.940</td>
<td>< 0.268</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>0.622</td>
<td>0.470</td>
<td>0.177</td>
<td>0.134</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Dry Weight (ppm)</td>
<td>DL Dry Weight (ppm)</td>
<td>Wet Weight (ppm)</td>
<td>DL Wet Weight (ppm)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.435</td>
<td>0.0470</td>
<td>0.124</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.92</td>
<td>0.0470</td>
<td>0.547</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>128</td>
<td>0.0470</td>
<td>36.5</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>0.708</td>
<td>0.470</td>
<td>0.202</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>153</td>
<td>0.188</td>
<td>43.6</td>
<td>0.0536</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.221</td>
<td>0.00742</td>
<td>0.0630</td>
<td>0.00211</td>
</tr>
<tr>
<td>7-08-6</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>30.8</td>
<td>0.456</td>
<td>8.84</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>2.80</td>
<td>0.0456</td>
<td>0.804</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>< 0.456</td>
<td>0.456</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>26.3</td>
<td>0.0910</td>
<td>7.55</td>
<td>0.0261</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>< 0.0456</td>
<td>0.0456</td>
<td>< 0.0131</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>< 0.00913</td>
<td>0.00913</td>
<td>< 0.00262</td>
<td>0.00262</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>< 0.456</td>
<td>0.456</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>2.78</td>
<td>0.456</td>
<td>0.798</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>68.7</td>
<td>0.910</td>
<td>19.7</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>0.357</td>
<td>0.00410</td>
<td>0.102</td>
<td>0.00118</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>1260</td>
<td>1.83</td>
<td>362</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>14.0</td>
<td>0.183</td>
<td>4.02</td>
<td>0.0525</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>< 0.910</td>
<td>0.910</td>
<td>< 0.261</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>< 0.456</td>
<td>0.456</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>0.136</td>
<td>0.0456</td>
<td>0.0390</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>1.92</td>
<td>0.0456</td>
<td>0.551</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>98.8</td>
<td>0.0456</td>
<td>28.4</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>< 0.456</td>
<td>0.456</td>
<td>< 0.131</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>132</td>
<td>0.183</td>
<td>37.9</td>
<td>0.0525</td>
</tr>
<tr>
<td></td>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>0.360</td>
<td>0.00746</td>
<td>0.103</td>
<td>0.00214</td>
</tr>
</tbody>
</table>
6. Duplicates

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Initial Result (ppm/%)</th>
<th>Duplicate Result (ppm/%)</th>
<th>Average (ppm/%)</th>
<th>Relative Percent Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>06385810</td>
<td>Aluminum</td>
<td>Water</td>
<td>Wet</td>
<td>0.905</td>
<td>0.892</td>
<td>0.899</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Water</td>
<td>Wet</td>
<td>0.00440</td>
<td>0.00433</td>
<td>0.00436</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Water</td>
<td>Wet</td>
<td>0.116</td>
<td>0.115</td>
<td>0.116</td>
<td>0.870</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Water</td>
<td>Wet</td>
<td>0.106</td>
<td>0.105</td>
<td>0.106</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Water</td>
<td>Wet</td>
<td>< 0.000500</td>
<td>< 0.000500</td>
<td>0.000250</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Water</td>
<td>Wet</td>
<td>0.000260</td>
<td>0.000260</td>
<td>0.000260</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Water</td>
<td>Wet</td>
<td>< 0.00500</td>
<td>< 0.00500</td>
<td>0.00250</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Water</td>
<td>Wet</td>
<td>0.0130</td>
<td>0.0130</td>
<td>0.0130</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Water</td>
<td>Wet</td>
<td>1.04</td>
<td>1.03</td>
<td>1.04</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Water</td>
<td>Wet</td>
<td>0.00000300</td>
<td>0.00000300</td>
<td>0.00000300</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Water</td>
<td>Wet</td>
<td>4.48</td>
<td>4.42</td>
<td>4.45</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Water</td>
<td>Wet</td>
<td>0.0750</td>
<td>0.0740</td>
<td>0.0745</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Water</td>
<td>Wet</td>
<td>< 0.0100</td>
<td>< 0.0100</td>
<td>0.00500</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Water</td>
<td>Wet</td>
<td>0.00800</td>
<td>0.00800</td>
<td>0.00800</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Water</td>
<td>Wet</td>
<td>0.0120</td>
<td>0.0119</td>
<td>0.0120</td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Water</td>
<td>Wet</td>
<td>0.000200</td>
<td>0.000300</td>
<td>0.000250</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Water</td>
<td>Wet</td>
<td>0.264</td>
<td>0.263</td>
<td>0.264</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Water</td>
<td>Wet</td>
<td>0.00700</td>
<td>0.00600</td>
<td>0.00650</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Water</td>
<td>Wet</td>
<td>0.0700</td>
<td>0.0680</td>
<td>0.0690</td>
<td>2.90</td>
</tr>
</tbody>
</table>

1-07-2

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Initial Result (ppm/%)</th>
<th>Duplicate Result (ppm/%)</th>
<th>Average (ppm/%)</th>
<th>Relative Percent Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.221</td>
<td>0.249</td>
<td>0.235</td>
<td>11.9</td>
</tr>
</tbody>
</table>

4-07-1

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Initial Result (ppm/%)</th>
<th>Duplicate Result (ppm/%)</th>
<th>Average (ppm/%)</th>
<th>Relative Percent Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>382</td>
<td>359</td>
<td>370.</td>
<td>6.21</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>3.02</td>
<td>3.28</td>
<td>3.15</td>
<td>8.25</td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.511</td>
<td>< 0.500</td>
<td>0.253</td>
<td>2.18</td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>79.0</td>
<td>73.2</td>
<td>76.1</td>
<td>7.62</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Basis</td>
<td>Initial Result (ppm/%)</td>
<td>Duplicate Result (ppm/%)</td>
<td>Average (ppm/%)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4-07-4</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.161</td>
<td>0.155</td>
<td>0.158</td>
</tr>
<tr>
<td>4-07-5</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>201</td>
<td>210.</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>2.79</td>
<td>3.05</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.758</td>
<td>< 0.425</td>
<td>0.485</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>29.7</td>
<td>30.5</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.0493</td>
<td>< 0.0425</td>
<td>0.0229</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.00987</td>
<td>< 0.00850</td>
<td>0.00459</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.493</td>
<td>< 0.425</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>3.00</td>
<td>2.93</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>294</td>
<td>305.</td>
<td>300.</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>1360</td>
<td>1400</td>
<td>1380</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>35.1</td>
<td>34.7</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.990</td>
<td>< 0.850</td>
<td>0.460</td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Basis</td>
<td>Initial Result (ppm/%)</td>
<td>Duplicate Result (ppm/%)</td>
<td>Average (ppm/%)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>< 0.493</td>
<td>0.473</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.562</td>
<td>0.475</td>
<td>0.518</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>2.33</td>
<td>2.38</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>155</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.977</td>
<td>0.837</td>
<td>0.907</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>125</td>
<td>123</td>
<td>124</td>
</tr>
<tr>
<td>4-08-4</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.111</td>
<td>0.109</td>
<td>0.110</td>
</tr>
<tr>
<td>7-06-2</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.273</td>
<td>0.275</td>
<td>0.274</td>
</tr>
<tr>
<td>7-08-4</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.219</td>
<td>0.214</td>
<td>0.216</td>
</tr>
</tbody>
</table>
7. Spike Recoveries

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Spike Level (ppm/%)</th>
<th>Amount Recovered (ppm/%)</th>
<th>*** Spike Background</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>06385810</td>
<td>Aluminum</td>
<td>Water</td>
<td>Wet</td>
<td>1.00</td>
<td>0.905</td>
<td>1.10</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>Water</td>
<td>Wet</td>
<td>0.0200</td>
<td>0.0178</td>
<td>4.55</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Water</td>
<td>Wet</td>
<td>0.500</td>
<td>0.495</td>
<td>4.31</td>
<td>99.0</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>Water</td>
<td>Wet</td>
<td>0.500</td>
<td>0.499</td>
<td>4.72</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
<td>Water</td>
<td>Wet</td>
<td>0.0100</td>
<td>0.00985</td>
<td>40.0</td>
<td>98.5</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Water</td>
<td>Wet</td>
<td>0.0200</td>
<td>0.0199</td>
<td>76.9</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>Water</td>
<td>Wet</td>
<td>0.100</td>
<td>0.0965</td>
<td>40.0</td>
<td>96.5</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>Water</td>
<td>Wet</td>
<td>0.200</td>
<td>0.194</td>
<td>15.4</td>
<td>97.0</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>Water</td>
<td>Wet</td>
<td>2.00</td>
<td>1.94</td>
<td>1.92</td>
<td>97.0</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>Water</td>
<td>Wet</td>
<td>0.0000500</td>
<td>0.0000450</td>
<td>16.7</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>Water</td>
<td>Wet</td>
<td>10.0</td>
<td>9.32</td>
<td>2.23</td>
<td>93.2</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>Water</td>
<td>Wet</td>
<td>0.500</td>
<td>0.489</td>
<td>6.67</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>Water</td>
<td>Wet</td>
<td>0.500</td>
<td>0.475</td>
<td>100.0</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>Water</td>
<td>Wet</td>
<td>0.100</td>
<td>0.0950</td>
<td>12.5</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>Water</td>
<td>Wet</td>
<td>0.0200</td>
<td>0.0193</td>
<td>1.67</td>
<td>96.5</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>Water</td>
<td>Wet</td>
<td>0.0200</td>
<td>0.0182</td>
<td>100.0</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Water</td>
<td>Wet</td>
<td>0.200</td>
<td>0.174</td>
<td>0.760</td>
<td>87.0</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Water</td>
<td>Wet</td>
<td>0.100</td>
<td>0.0960</td>
<td>14.3</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Water</td>
<td>Wet</td>
<td>1.00</td>
<td>0.990</td>
<td>14.3</td>
<td>99.0</td>
</tr>
</tbody>
</table>

<p>| 4-07-4 | Aluminum | Partial Carcass | Dry | 191 | 184 | 0.430 | 96.1 |
| | Arsenic | Partial Carcass | Dry | 19.1 | 19.1 | 6.19 | 99.8 |
| | Boron | Partial Carcass | Dry | 47.8 | 53.6 | 189 | 112 |
| | Barium | Partial Carcass | Dry | 9.57 | 9.80 | 0.160 | 102 |
| | Beryllium | Partial Carcass | Dry | 0.957 | 1.05 | 37.8 | 110. |
| | Cadmium | Partial Carcass | Dry | 4.78 | 5.43 | 501 | 114 |
| | Chromium | Partial Carcass | Dry | 19.1 | 21.4 | 25.4 | 112 |
| | Copper | Partial Carcass | Dry | 19.1 | 21.8 | 5.36 | 114 |</p>
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Spike Level (ppm/%)</th>
<th>Amount Recovered (ppm/%)</th>
<th>*** Spike Background</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>191</td>
<td>202</td>
<td>0.370</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>957</td>
<td>1030</td>
<td>0.560</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>47.8</td>
<td>54.3</td>
<td>1.68</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>9.57</td>
<td>10.7</td>
<td>19.0</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>9.57</td>
<td>10.5</td>
<td>7.59</td>
<td>110.</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>9.57</td>
<td>9.44</td>
<td>17.2</td>
<td>98.7</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>4.78</td>
<td>4.96</td>
<td>2.31</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>19.1</td>
<td>18.0</td>
<td>0.150</td>
<td>94.0</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>19.1</td>
<td>21.2</td>
<td>12.3</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>95.7</td>
<td>109</td>
<td>0.760</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>4-08-6</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.703</td>
<td>0.739</td>
<td>5.86</td>
<td>105</td>
</tr>
<tr>
<td>7-06-3</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.602</td>
<td>0.621</td>
<td>2.94</td>
<td>103</td>
</tr>
<tr>
<td>7-08-1</td>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.942</td>
<td>0.978</td>
<td>4.91</td>
<td>104</td>
</tr>
<tr>
<td>7-08-2</td>
<td>Aluminum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>246</td>
<td>291</td>
<td>0.590</td>
<td>118</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>24.6</td>
<td>22.0</td>
<td>6.55</td>
<td>89.8</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>61.4</td>
<td>60.7</td>
<td>265</td>
<td>98.8</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>12.3</td>
<td>11.1</td>
<td>0.180</td>
<td>90.4</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>1.23</td>
<td>1.33</td>
<td>53.0</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>6.14</td>
<td>6.58</td>
<td>267</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>24.6</td>
<td>25.8</td>
<td>106</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>24.6</td>
<td>26.6</td>
<td>7.70</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>246</td>
<td>312</td>
<td>0.430</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>1230</td>
<td>1360</td>
<td>0.850</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>61.4</td>
<td>65.2</td>
<td>0.980</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>12.3</td>
<td>12.3</td>
<td>26.4</td>
<td>100.</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>12.3</td>
<td>12.7</td>
<td>14.2</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>12.3</td>
<td>13.7</td>
<td>17.0</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Sample Number</td>
<td>Analyte</td>
<td>Sample Matrix</td>
<td>Basis</td>
<td>Spike Level (ppm/%)</td>
<td>Amount Recovered (ppm/%)</td>
<td>*** Spike Background</td>
<td>Percent Recovery</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>24.6</td>
<td>27.0</td>
<td>0.230</td>
<td>110.</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>24.6</td>
<td>25.4</td>
<td>20.1</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>123</td>
<td>127</td>
<td>0.860</td>
<td>103</td>
</tr>
</tbody>
</table>

7-08-6

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Sample Matrix</th>
<th>Basis</th>
<th>Spike Level (ppm/%)</th>
<th>Amount Recovered (ppm/%)</th>
<th>*** Spike Background</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>0.553</td>
<td>0.483</td>
<td>1.55</td>
<td>87.3</td>
</tr>
<tr>
<td>Methyl Mercury</td>
<td>Partial Carcass</td>
<td>Dry</td>
<td>1.55</td>
<td>1.33</td>
<td>4.32</td>
<td>85.5</td>
</tr>
</tbody>
</table>

*** For a spike to be a valid measure of method accuracy, this ratio must be higher than 1.0.
10. QAQC Summary

1. Procedural Blank Summary

Procedural Blank Summary of Blank Equivalent Concentration (BEC) Data

Within a lab sample matrix, there must be three or more Blank results for a given analyte in order to generate a report.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Lab Sample Matrix</th>
<th>No. of Records</th>
<th>Basis</th>
<th>Lowest BEC (ppm)</th>
<th>Highest BEC (ppm)</th>
<th>BEC Mean (ppm)</th>
<th>BEC STDEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Animal Tissue</td>
<td>4</td>
<td>Dry</td>
<td>< 0.00430</td>
<td>< 0.00704</td>
<td>0.00280</td>
<td>0.000640</td>
</tr>
</tbody>
</table>

BEC = Blank Equivalent Concentration STD = Standard Deviation

10.2. Duplicate Summary

Duplicate Summary of Relative Percent Difference (RPD) Data

Within a lab sample matrix and concentration range, there must be three or more Duplicate results for a given analyte in order to generate a report.

Mean concentration greater than 10 times the Limit of Detection

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Lab Sample Matrix</th>
<th>No. of Samples</th>
<th>Lowest RPD</th>
<th>Highest RPD</th>
<th>RPD Mean (ppm)</th>
<th>RPD STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Animal Tissue</td>
<td>4</td>
<td>0.73</td>
<td>3.8</td>
<td>2.16</td>
<td>1.27</td>
</tr>
</tbody>
</table>

RPD = Relative Percent Difference STD = Standard Deviation

10.3. Spike Summary

Spike Summary of Percent Recovery (PR) Data

Within a lab sample matrix, there must be three or more Spike results for a given analyte in order to generate a report.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Lab Sample Matrix</th>
<th>No. of Samples</th>
<th>Lowest PR</th>
<th>Highest PR</th>
<th>PR Mean</th>
<th>PR STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>Animal Tissue</td>
<td>4</td>
<td>87.34</td>
<td>105.09</td>
<td>99.83</td>
<td>8.36</td>
</tr>
</tbody>
</table>

PR = Percent Recovery STD = Standard Deviation

10.4. SRM Summary

Standard Reference Material Summary of Percent Recovery (PR) Data

Within an SRM ID, there must be three or more Recoveries for a given analyte in order to generate a report.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>No. of Records</th>
<th>Lowest PR</th>
<th>Highest PR</th>
<th>PR Mean</th>
<th>PR STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4</td>
<td>102.37</td>
<td>107.42</td>
<td>105.71</td>
<td>2.26</td>
</tr>
</tbody>
</table>

SRM ID: NRCC DOLT-3 SRM Name: Dogfish Liver
<table>
<thead>
<tr>
<th>Analyte</th>
<th>No. of Records</th>
<th>Lowest PR</th>
<th>Highest PR</th>
<th>PR Mean</th>
<th>PR STDEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>4</td>
<td>93.32</td>
<td>104.31</td>
<td>97.58</td>
<td>4.87</td>
</tr>
</tbody>
</table>

PR = Percent Recovery STD = Standard Deviation
11. QA/QC Anomalies

1. Blank Frequency Anomalies
 The required number of blank analyses were performed.

1.2. Duplicate Frequency Anomalies
 The required number of duplicate analyses were performed.

1.3. Spike Frequency Anomalies
 The required number of spike analyses were performed.

1.4. Reference Material Frequency Anomalies
 The required number of Standard Reference Material analyses were performed.

1.5. Mass Spec Frequency Anomalies
 No Carbamate, OC, or OP data exists in this set of results; therefore, the anomaly test was not performed.

1.6. Limit of Detection Anomalies
 Limits of Detection were within the contract requirements.

1.7. Blank Anomalies
 Procedural Blank analyses were acceptable.
11.8. Duplicate Anomalies

All duplicate results were within normal limits.

11.9. Spike Anomalies

All spike results were within normal limits.

11.10. S.R.M. Anomalies

<table>
<thead>
<tr>
<th>Analyte</th>
<th>S.R.M. ID</th>
<th>Certified Value</th>
<th>95% Confidence Interval</th>
<th>LOD (ppm/%)</th>
<th>Result (ppm/%)</th>
<th>% Recovery</th>
<th>See QA/QC Note No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>NIST 2976</td>
<td>33.0</td>
<td>2.00</td>
<td>0.207</td>
<td>38.6</td>
<td>117</td>
<td>1</td>
</tr>
<tr>
<td>Strontium</td>
<td>NIST 2976</td>
<td>93.0</td>
<td>2.00</td>
<td>0.0459</td>
<td>65.2</td>
<td>70.1</td>
<td>2</td>
</tr>
</tbody>
</table>

S.R.M Names

<table>
<thead>
<tr>
<th>SRM ID</th>
<th>SRM Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST 2976</td>
<td>Mussel Tissue</td>
</tr>
</tbody>
</table>

11.11. QA/QC Notes

Sample IDs 7-08-2, 7-08-3, 7-08-5 and 7-08-6 had ratios of greater than 1 for MeHg:Hg in the data report. To express MeHg as Hg you have to divide the MeHg based values by approx. 1.075. In doing this, the ratio values for all samples that were analyzed for MeHg and Hg are acceptable.

1-2 The values are acceptable for Mn and Sr in SRM Nist 2976 and should have no effect on the interpretation of the data.

QA/QC Approved: Brenda Montgomery, Inorganic Analytical Chemist
12. Analytical Methods
Below are the analytical methods used by TERL to produce the results included in this report.

<table>
<thead>
<tr>
<th>Method Codes:</th>
<th>001005</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lab Matrix</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Tissue</td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
</tr>
</tbody>
</table>

Method Code: 001

LABORATORY: Trace Element Research Laboratory

Digestion of biological tissue.

Liquid or solid biological tissue samples are wet digested with nitric acid and converted into acidic digest solutions for analysis by various atomic spectroscopy methods. When possible, tissue is freeze dried in order to minimize loss of analytes and to facilitate subsequent sample preparation steps, and then homogenized to a fine powder by ball-milling in plastic containers. Approximately 0.20 to 0.25 g of powdered tissue is weighed into a Teflon reaction vessel and 3 ml of HNO₃ are added. The closed reaction vessel is heated in a 130 C oven until digestion is complete. Samples are then diluted to a final volume of 20 ml with quartz distilled water and stored in 1 oz. polyethylene bottles for later analysis by instrumental techniques.

Method Code: 005

LABORATORY: Trace Element Research Laboratory
Analysis of trace metals by inductively coupled plasma optical emission spectroscopy (ICP).

Liquid samples are nebulized and the resulting aerosol is transported to the plasma torch. Element-specific atomic-line emission spectra are produced by a inductively coupled argon plasma. The spectra are dispersed by a grating spectrometer, and the intensities of the lines are monitored by photomultiplier tubes or solid state detectors. Samples are quantitated by comparison with external standards. One or more internal standards may be incorporated to compensate for physical effects resulting from viscosity and varying levels of total dissolved solids in the samples. Background correction is required and is measured adjacent to analyte lines on samples during analysis.

| Method Codes: | 001016 |

<table>
<thead>
<tr>
<th>Lab Matrix</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Tissue</td>
<td>Arsenic</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
</tr>
</tbody>
</table>

Method Code: 001

LABORATORY: Trace Element Research Laboratory

Digestion of biological tissue.

Liquid or solid biological tissue samples are wet digested with nitric acid and converted into acidic digest solutions for analysis by various atomic spectroscopy methods. When possible, tissue is freeze dried in order to minimize loss of analytes and to facilitate subsequent sample preparation steps, and then homogenized to a fine powder by ball-milling in plastic containers. Approximately 0.20 to 0.25 g of powdered tissue is weighed into a Teflon reaction vessel and 3 ml of HNO₃ are added. The closed reaction vessel is heated in a 130°C oven until digestion is complete. Samples are then diluted to a final volume of 20 ml with quartz distilled water and stored in 1 oz. polyethylene bottles for later analysis by instrumental techniques.

Method Code: 016

LABORATORY: Trace Element Research Laboratory

Analysis of trace metals in water samples by inductively coupled plasma-mass spectroscopy (ICP-MS).

Concentrations of trace elements in water samples are determined with an atomic spectroscopy method that relies on ionization of sample constituents in a high temperature argon plasma and separation of positively-charged ions on the basis of their
mass:charge ratios (m/z) by a quadrupole mass spectrometer. The method offers extremely low detection limits but is subject to interferences from atomic and molecular ions having values within 1 AMU of the target ions. Sample preconcentration and matrix elimination can sometimes eliminate these problems, along with those resulting from high total dissolved solids.

<table>
<thead>
<tr>
<th>Method Codes:</th>
<th>003007</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lab Matrix</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Mercury</td>
</tr>
</tbody>
</table>

Method Code: 003

LABORATORY: Trace Element Research Laboratory

Digestion of water, soil, sediment, and biological tissue
for mercury analysis.

Before samples are analyzed by the CVAAS method in use in this laboratory, the mercury is converted to the Hg2+ form. Mercury is digested by a modified version of EPA method 245.5 and 245.6. Sediment and tissue samples can be analyzed either freeze dried or on a wet basis. Sediment samples are homogenized by mixing before subsampling, while tissue samples are homogenized in the original sample containers either after freeze drying or with a Tekmar Tissumizer and subsampled. Samples are digested with nitric acid, sulfuric acid, potassium permanganate, and potassium persulfate in polypropylene tubes in a water bath at 90-95°C. Before analysis, hydroxylamine hydrochloride is added to reduce excess permanganate and the samples are brought to volume with distilled-deionized water.

Method Code: 007

LABORATORY: Trace Element Research Laboratory

Analysis of mercury by cold-vapor atomic absorption spectroscopy (CVAAS).

In this procedure, divalent mercury (Hg++) in aqueous samples (digests of water, tissue or sediment samples) is reduced to the elemental state (Hgo) by a strong reducing agent (stannous chloride). Gaseous Hgo enters the sweep gas and is introduced into an atomic absorption cell, where light produced by a mercury vapor lamp is absorbed by the free Hg atoms. Mercury in the sample is determined by comparing light absorption of the sample with that of external calibration standards.

<table>
<thead>
<tr>
<th>Method Codes:</th>
<th>004005</th>
</tr>
</thead>
</table>

page: 41
<table>
<thead>
<tr>
<th>Lab Matrix</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Aluminum</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
</tr>
<tr>
<td></td>
<td>Beryllium</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td></td>
<td>Strontium</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
</tr>
</tbody>
</table>

Method Code: 004

LABORATORY: Trace Element Research Laboratory

Digestion of water samples for "total recoverable" metals (other than mercury).

Water samples are digested for two hours at 85 degrees Centigrade in polyethylene containers with ultrapure nitric and hydrochloric acids. Acid strength, on a vol:vol basis, is 1% HCl and 0.5% HNO₃. Sample aliquots for digestion are taken after vigorous shaking to assure resuspension of solids that may have settled. The original sample must have had preservative added (usually HNO₃) in order to ensure that metals do not adhere to the walls of the container.

Method Code: 005

LABORATORY: Trace Element Research Laboratory

Analysis of trace metals by inductively coupled plasma optical emission spectroscopy (ICP).

Liquid samples are nebulized and the resulting aerosol is transported to the plasma torch. Element-specific atomic-line emission spectra are produced by a inductively coupled argon plasma. The spectra are dispersed by a grating spectrometer, and the intensities of the lines are monitored by photomultiplier tubes or solid state detectors. Samples are quantitated by comparison with external standards. One or more internal standards may be incorporated to compensate for physical effects resulting from viscosity.
and varying levels of total dissolved solids in the samples. Background correction is required and is measured adjacent to analyte lines on samples during analysis.

<table>
<thead>
<tr>
<th>Lab Matrix</th>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Arsenic</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
</tr>
</tbody>
</table>

Method Code: 004

LABORATORY: Trace Element Research Laboratory

Digestion of water samples for "total recoverable" metals (other than mercury).

Water samples are digested for two hours at 85 degrees Centigrade in polyethylene containers with ultrapure nitric and hydrochloric acids. Acid strength, on a vol:vol basis, is 1% HCl and 0.5% HNO3. Sample aliquots for digestion are taken after vigorous shaking to assure resuspension of solids that may have settled. The original sample must have had preservative added (usually HNO3) in order to ensure that metals do not adhere to the walls of the container.

Method Code: 016

LABORATORY: Trace Element Research Laboratory

Analysis of trace metals in water samples by inductively coupled plasma-mass spectroscopy (ICP-MS).

Concentrations of trace elements in water samples are determined with an atomic spectroscopy method that relies on ionization of sample constituents in a high temperature argon plasma and separation of positively-charged ions on the basis of their mass:charge ratios (m/z) by a quadrupole mass spectrometer. The method offers extremely low detection limits but is subject to interferences from atomic and molecular ions having values within 1 AMU of the target ions. Sample preconcentration and matrix elimination can sometimes eliminate these problems, along with those resulting from high total dissolved solids.

Method Codes:

| Method Codes: | 004 014 016 |
Moisture content of sediment, soil, and tissue samples.

Moisture content is determined by weight loss upon freeze-drying, and is expressed as weight percent of the original wet sample. Depending upon sample size, either the whole sample or a representative aliquot is frozen and then dried under vacuum until a constant weight is attained. Samples are prepared and dried using plastic materials, whenever possible, in order to minimize potential contamination artifacts that might impact subsequent trace element analysis.

Method Code: 024

Determination of mercury in tissue and sediment samples by decomposition, trapping, and atomic absorption. Total mercury is determined in wet or dry samples by combustion in a stream of oxygen, trapping on a gold column, release by electrothermal heating, and analysis by atomic absorption. Mercury is reported in ppm on either a wet or dry weight basis.

Method Codes: 026
Determination of methyl mercury in water by distillation, ethylation, trapping, gas chromatography, and atomic fluorescence. Methyl mercury in water is distilled to separate it from interfering species and then ethylated with sodium tetraethyl borate. Methyl ethyl mercury is trapped on a Tenax column and then separated on an isothermal GC column. Following pyrolysis of the separated species, Hg is detected by atomic fluorescence.