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Climate change is expected to alter the distribution and abundance 
of many species. Predictions of climate-induced population extinc- 
tions are supported by geographic range shifts that correspond to 
climatic warming, but few extinctions have been linked mechanis- 
tically to climate change. Here we show that extinctions of two 
populations of a checkerspot butterfly were hastened by increas- 
ing variability in precipitation, a phenomenon predicted by global 
climate models. We model checkerspot populations to show that 
changes in precipitation amplified population fluctuations, leading 
to rapid extinctions. As populations of checkerspots and other 
species become further isolated by habitat loss, climate change is 
likely to cause more extinctions, threatening both species diversity 
and critical ecosystem services. 

C limate change at global and regional scales is predicted to 
alter species distributions, life histories, community compo- 

sition, and ecosystem function (1-5). In particular, population 
losses caused by climate change threaten both species diversity 
and the delivery of critical ecosystem services (6). Predictions of 
climate-induced population extinctions are supported by corre- 
lational evidence that numerous species are shifting their ranges 
in response to climatic warming (7-11). Nevertheless, few mech- 
anistic studies have linked extinctions to recent climate change 
(12, 13). Furthermore, most climate change research and fore- 
casts focus on shifts in climatic means. Global climate models 
also predict changes in climatic variability (14, 15), but biotic 
impacts of those increases have received less study. Here, we 
report that extinctions of two populations of the checkerspot 
butterfly, Euphydryas editha bayensis, were caused by a combi- 
nation of habitat loss and regional climate change in the form of 
increasing variability in precipitation. 

The Bay checkerspot butterfly, Euphydryas editha bayensis, is 
a univoltine butterfly inhabiting patches of native grassland in 
the San Francisco Bay Area in California. The subspecies was 
listed as threatened under the United States Federal Endan- 
gered Species Act in 1987. Populations at the Jasper Ridge 
Biological Preserve, Stanford University (San Mateo County, 
CA) have been studied since 1960 (16, 17) and fluctuated over 
4 orders of magnitude before going extinct (refs. 18 and 19; 
J.J.H., S. B. Weiss, J.F.M., C.L.B., P.R.E., A. E. Launer, and 
D. D. Murphy, unpublished work) (Fig. 1). The two habitat 
patches with longest occupancy at Jasper Ridge share common 
management histories, plant species, and climates (20). They 
differ primarily in size and topography. The larger patch (9.80 
hectares; area C, JRC) is nearly flat, and the smaller patch (2.55 
hectares; area H, JRH) is topographically heterogeneous. Al- 
though areas C and H are only 500 m apart, dispersal between 
them was low, averaging less than 2% of recaptured adults (16). 
These populations also were isolated: the only other suitable 
habitat at Jasper Ridge has been unoccupied since 1973 (ref. 18; 
J.J.H., S. B. Weiss, J.F.M., C.L.B., P.R.E., A. E. Launer, and 
D. D. Murphy, unpublished work), and the distance to the 
nearest habitat outside Jasper Ridge exceeds the documented 
dispersal ability of the butterfly (21). 

Mechanisms of weather-induced changes in E. e. bayensis 
populations are well-understood. Fluctuations in population 
abundance are determined by the survival of prediapause larvae, 
which depends on the temporal overlap of larvae and their host 

plants, Plantago erecta, Castilleja densiflora, and Castilleja exserta 
(18, 22, 23). Prediapause larvae starve unless they reach the 
fourth instar before host plants senesce. Weather conditions 
affect the phenology of both larvae and plants, with larvae 
tending to lose the developmental race in very wet or dry years 
(24, 25). Habitat topography mediates weather effects by ad- 
vancing development of both plants and larvae on warm slopes 
and delaying development on cool slopes (26). Topographic 
diversity thus buffers climatic variability by supporting larval 
survival on some slope aspects in most weather conditions. 

Weather data can be used to forecast changes in checkerspot 
populations. Previously, we predicted dynamical properties of 
the two Jasper Ridge populations from knowledge of larval 
responses to weather (27). We tested those predictions with 
nonlinear models of population responses to precipitation that 
were fitted to adult abundance data. Results showed that effects 
of weather account for the contrasting dynamics in the two 
populations. The population in JRC varied more widely, went 
extinct first, and fluctuated strongly with annual growing season 
precipitation. Dynamics of the population in JRH were more 
complex, containing damped oscillations and weaker influences 
of precipitation. 

Sensitivity to weather makes E. e. bayensis populations vul- 
nerable to climate change. In principle, two kinds of climate 
change could cause extinctions in E. e. bayensis populations by 
disrupting phenological overlap of larvae and host plants. First, 
long-term trends in climatic means could reduce overlap by 
hastening plant senescence or by shifting plant and larval 
phenologies relative to each other (18, 22). Second, increased 
climatic variability could increase variability in overlap, inducing 
greater population f luctuations and eventual extinction. 
Changes in both temperature and precipitation are expected to 
affect E. e. bayensis populations, but here we focus on precipi- 
tation because its effect on population processes is better 
understood. 

Methods 
Precipitation Variability. Precipitation data from San Jose, Califor- 
nia (28 km from Jasper Ridge), are the longest climate data set 
available in the region. They contain an apparent increase in 
variability after 1971 (Fig. 2). We evaluated changes in the vari- 
ability of annual growing season precipitation by examining vari- 
ance within a moving 20-year window and by comparing the 
variance before and after 1971. Because they are a time series, San 
Jose precipitation data do not satisfy assumptions of independence 
required by tests for homogeneity of variances. We avoided this 
problem by calculating bootstrapped estimates of precipitation 
variance, using 200 bootstrapped samples for each estimate (28). 

Population Simulations. Simulations applied a mixed endogenous/ 
exogenous model (27), N, = f(Nt-1, Wt-1), where N, is adult 
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Fig. 1. Population estimates for Jasper Ridge Euphydryas editha bayensis 
adult males, derived fromrdaily mark-recapture data (J.J.H., S. B. Weiss, J.F.M., 
C.L. B., P.R.E., A. E. Lau ner, and D. D. Murphy, unpublished work) from 1960 to 
1998. Mark-recapture data are incomplete or unavailable for 1964-1968. To 
show extinctions on a logarithmic scale, values plotted are Nt + 1. Arrows 
point to population extinctions. Also shown are data on growing season 
precipitation (October-April), recorded at Woodside Fire Station, California, 
from 1969 to 1998. @, Population estimates; 0, precipitation data. (a) JRC; 
extinction occurred in 1991. (b) JRH; extinction occurred in 1998. 

abundance in year t, and Wt- I is precipitation in year t - 1 (Fig. 
1). Model selection and fitting used response surface method- 
ology (29, 30), which predicts population size from generalized 
polynomial regression of transformed predictor variables. Vari- 
able transformations included the Box-Cox family of power 
transformations. Model selection was conducted by using ordi- 
nary cross-validation to minimize one-step prediction error (27). 
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Fig. 2. Precipitation at San Jose. The points are growing season (October- 

o - 

r:0 

U * *.- 

E c\j 

40 

1940 1960 1980 2000 
Year 

Fig. 3. Variance in annual growing season precipitation at San Jose. Variance 
was estimated from bootstrapped samples, as described in Methods. Points 
are the mean (+1 SE) of the variance in each of 200 bootstrapped samples 
drawn from a moving 20-year window. Points are plotted at the 10th year of 
each 20-year window. 

Models were fitted to abundance data for adult males (J.J.H., 
S. B. Weiss, J.F.M., C.L.B., P.R.E., A. E. Launer, and D. D. 
Murphy, unpublished work) (Fig. 1) from 1969 until the first zero 
abundance recorded for each population (1988 for JRC, 1996 for 
JRH). We used male data because they provide more accurate 
population estimates than female data (31). Model prediction 
accuracy was 0.58 and 0.47 for JRC and JRH, respectively (values 
are the prediction coefficient of determination, which equals 1 
for perfect prediction), which is high for population models 
containing few variables (30). 
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Fig. 4. Simulated trajectories for Jasper Ridge E. e. bayensis populations. 
Simulations used mixed endogenous/exogenous models for each population 
and the 1932-1998 adjusted San Jose precipitation time series. Results are 
shown for several starting population sizes, N1932: A, 200; EZ, 500; 0, 1,000;@*, 
2,000; O~, 5,000. (a) JRC. (b) JRH. 
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Fig. 5. Population simulations before and after climate change. Simulations were run with population-specific models and bootstrapped samples of adjusted 
San Jose precipitation before and after 1971 (see Methods). One thousand simulations were run for each combination of population and time interval (Fig. 6), 
but only the first 10 simulations for each combination are shown here. (a) JRC simulations using bootstrapped samples from 1932-1970 precipitation data. (b) 
JRH simulations using bootstrapped samples from 1932-1970 precipitation data. (c) JRC simulations with 1972-1991 precipitation data. (d) JRH simulations with 
1972-1998 precipitation data. 

To simulate population trajectories, the model required pre- 
cipitation data and a starting population size as inputs. Simu- 
lations were run with two kinds of precipitation data: (i) the 
precipitation time series recorded at San Jose from 1932 to 1998 
(Fig. 2), and (ii) bootstrapped samples drawn from San Jose data 
before and after 1971. Because the models were fitted by using 
local precipitation data (recorded at Woodside Fire Station, 
adjacent to Jasper Ridge), we adjusted San Jose precipitation 
data before simulations by using linear regression between San 
Jose and Woodside data (n = 30, r2 = 0.884). Simulations using 
the San Jose precipitation time series were run to extinction (n < 
1), starting from a range of plausible values: N1932 = 500, 1,000, 
2,000, or 5,000 for JRC; N1932 = 200,500, 1,000, or 2,000 for JRH. 
Simulations using bootstrapped precipitation data were started 
at No = 1,000. Simulations were run with each of 1,000 boot- 
strapped samples drawn from the period 1932-1970 (pre-1971) 
and the period from 1972 until the year in which each population 
went extinct (post-1971). Qualitatively similar simulation results 
(data not shown) were obtained by using bootstrapped precip- 
itation data from other relevant time intervals, e.g., the first 20 
years of the San Jose data set (1932-1951) versus the last 20 years 
before JRH extinction (1979-1998). 

Results 
Precipitation Variability. Precipitation data from San Jose show an 
increasing frequency of extremely wet and dry years (Fig. 2). 
Interannual variance in growing season precipitation, derived 
from bootstrapped estimates within a moving 20-year window, 
increased over the last 70 years (Fig. 3). This increase was 
significant by the time of JRC extinction (Bartlett's test, Bc = 
4.81, P = 0.0251). Significant differences also exist between 
bootstrapped estimates of variance for all pre-1971 (1932-1970) 
data vs. all post-1971 (1972-1998) data (Bartlett's test, Bc = 
6.075, P = 0.0137). 

Annual precipitation also appears to be increasing, but the 
data do not contain a significant trend in the mean. Nevertheless, 
variance in San Jose precipitation data would be expected to rise 
with an apparent increase in the mean, because means and 
variances are correlated. The coefficient of variation in precip- 
itation data differed significantly between pre-1971 and post- 
1971 intervals (Lewontin's test: F26,38 = 2.39, P = 0.0143), 
implying that the increase in precipitation variability was more 
than an artifact of an increasing mean. 

Population Simulations. Given the relationship between weather 
and E. e. bayensis populations, we predicted that the amplitude 
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Fig. 6. Distributions of population persistence times, simulated before and after climate change. Simulations for each population were run using 1,000 
bootstrapped samples of adjusted San Jose precipitation before and after 1971 (see Methods). (a) JRC simulations using samples from 1932-1970 precipitation 
data. (b) JRH simulations using samples from 1932-1970 precipitation data. (c) JRC simulations with samples from 1972-1991 precipitation data. (d) JRH 
simulations with samples from 1972-1998 precipitation data. 

of population fluctuations at Jasper Ridge would increase with 
precipitation variability. These fluctuations would hasten extinc- 
tion. We tested this prediction by simulating butterfly population 
trajectories by using San Jose precipitation data and the models 
for Jasper Ridge population dynamics mentioned above (see 
Methods). Simulated trajectories for JRC fluctuated with small 
amplitude until recent decades, when fluctuations became large 
(Fig. 4a). Simulated populations for JRH declined in response to 
increased precipitation variance (Fig. 4b). For both populations, 
simulated extinctions occurred within 1 year of observed extir- 
pations (Fig. 1). These simulation results confirm the prediction 
that greater climatic variability would increase population fluc- 
tuations, leading to extinction. 

Further simulations using bootstrapped precipitation data 
showed that the extinctions were caused by climate change, 
rather than a particular unlucky sequence of weather events. 
Simulated extinctions using bootstrapped samples of post-1971 
data were rapid for both populations (Figs. 5 and 6), with mean 
persistence times of 19.2 years for JRC and 51.9 years for JRH. 
Simulations using pre-1971 data persisted much longer, with 
means of 443.8 years and 162.4 years for JRC and JRH, 
respectively (Fig. 6). These differences in pre-1971 vs. post-1971 
persistence times were significant for both populations (two- 
sample t test on log-transformed results: P 0). With pre-1971 
data, JRC simulations persisted longer on average than JRH 
simulations, but this order reversed with post-1971 data. This 
reversal is consistent with earlier reports that topographic 
diversity buffers climatic variability (26, 27). JRC was larger 

under moderate weather, but JRH was less vulnerable to extreme 
weather because of greater topographic diversity in area H. 

Discussion 
Climatic data from San Jose show that precipitation variability 
increased recently in central California. It is not known whether 
anthropogenic changes in the atmosphere caused the rising 
variance in San Jose precipitation, but the increase is consistent 
with global warming scenarios predicted by global climate 
models (14, 15, 32). Our results demonstrate that increased 
precipitation variability likely caused extinctions of two well- 
studied butterfly populations. It is likely that extremes in annual 
precipitation reduced the temporal overlap of larvae and plants, 
which increased larval mortality and the magnitude of popula- 
tion fluctuations. Increasing frequency and severity of weather 
probably drove both populations extinct within three decades. 

Available information contradicts alternative hypotheses for 
the extinctions at Jasper Ridge, including plant declines, natural 
predators, and research impacts (J.J.H., S. B. Weiss, J.F.M., 
P.R.E., D. D. Murphy, and A. E. Launer, unpublished data). 
Butterfly abundance (JRC) was poorly correlated with larval 
host plant cover (Pearson's r = -0.19, P = 0.76). Mortality from 
insect parasitoids was low (33). Research impacts, such as 
destructive sampling and habitat trampling, were small relative 
to weather-induced mortality (17). 

Although impacts of recent climate changes were severe, E. e. 
bayensis populations must have persisted through historical 
climate regimes that exceeded the variability in recent San Jose 
precipitation data (34). We suggest that a formerly extensive 
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habitat distribution before the introduction of Eurasian grasses 
would have assured persistence under high climatic variability. 
Historical populations almost certainly occupied native grass- 
lands once found on nonserpentine areas, where growing sea- 
sons are longer and soils are deeper. Larval mortality in these 
populations may have been reduced by later senescence of larval 
host plants. Historical populations also may have tracked favor- 
able conditions across heterogeneous topography in large hab- 
itat areas. If local extinctions did occur, populations may have 
been reestablished by individuals from adjacent habitats. All of 
these persistence mechanisms were eliminated by habitat loss 
from plant invasions and urban development associated with 
human population growth. These factors reduced the butterfly 
to a small number of isolated populations (20) that face inevi- 
table stochastic extinction (35-38). Climate change hastened 
losses of these populations. 

Many future extinctions are likely to result from interacting 
agents of global change. Habitat loss and fragmentation cur- 
rently affect most species, and they are projected to increase with 
continued human population growth (39, 40). Climate change 

forecasts also warn of growing extinction risks caused by shifts 
in the abiotic environment (2, 3, 11, 40-42). These and other 
threats often are considered in isolation (but see ref. 40), but our 
results imply that checkerspot extinctions were caused by inter- 
actions among these factors. When distributions become insular 
because of habitat loss, populations become more vulnerable to 
climate change and other threats. Extinctions caused by such 
interaction between habitat loss and climate change are partic- 
ularly likely in species, like this checkerspot, with limited dis- 
persal ability (11). As the domains of interacting factors increas- 
ingly overlap, they are likely to cause extinctions in many other 
taxa. 
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