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2 SPECIAL COVERAGE 

(Tyluse: dealing with 

cts beyond our control 

?i Leonard L. McDaniel 

Abstract We used multiple-linear-regression methods to simultaneously assess effects of vege- 
tative disturbance and weather on the production of sharp-tailed grouse 

braska using a long-term data set of harvest-age ratios as production indices. After 
developing the model, we plotted the model-averaged predictions of sharp-tailed 
grouse production indices forValentine NWR against actual sharp-tailed grouse pro- 

Nebraska. Model-averaged estimates of production provided reasonable predictions 
of actual production indices on Valentine NWR, although prediction intervals were 
large. The most useful predictor variables according to cumulative Akaike's Informa- 
tion Criterion weights were weather variables, emphasizing the significant influence 
of weather on sharp-tailed grouse production. As hypothesized a priori, "May Average 
Temperature," "June Average Temperature," and "Cumulative Precipitation from 1 Janu- 
ary-31 July" were positively correlated with sharp-tailed grouse production, while 
"June Number of Heat Stress Days" and "June Number of Days of Precipitation >2.54 
mm" were negatively correlated with sharp-tailed grouse production. The drought 
index, Cumulative Precipitation from 1 January-31 July, explained the most variability 
in sharp-tailed grouse production indices. The model developed on Valentine NWR 
overpredicted sharp-tailed grouse production indices on Samuel R. McKelvie NF by 
0.77 juveniles per adult, when averaged across years. Further experimentation is 
needed to support our hypothesis that vegetative disturbance on Samuel R. McKelvie 
NF is negatively affecting sharp-tailed grouse production at its current levels. 

Key Words brood survival, grouse, harvest-age ratios, nest success, precipitation, production, 
sharp-tailed grouse, temperature, Tympanuchus, weather 

reduction-the number of juveniles raised to independ- success, and subsequent survival of juveniles to inde- 
ence per adult-is a key demographic parameter in the pendence (Bergerud 1988). For prairie grouse species 
dynamics of any population. This parameter is influ- such as the greater prairie-chicken (Tympanuchus cupido 
enced by percentage of hens nesting, clutch size, nesting pinnatus) and the sharp-tailed grouse (T phasianellus) 
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(hereafter sharptail), variation in production appears to be 
related to a number of factors. Of those factors, vegeta- 
tive cover (Kirsch et al. 1978) and weather (Shelford and 
Yeatter 1955) are 2 of the foremost influencing produc- 
tion. 

The first factor, vegetative cover, is partially influ- 
enced by disturbance. Newell (1987) found that greater 
prairie-chicken hens tended to avoid pastures with cattle 
and pastures that had been grazed earlier that year. 
Prairie-chicken females in disturbed habitats commonly 
are killed on the nest, and this type of depredation could 
be more frequent when cover is short and sparse or 
patchy (Bergerud 1988). 
Between 1980 and 2000, It is apparent 1 
Valentine National Wildlife duction from ye 
Refuge (NWR) in Nebraska 
reduced the number of hectares Correlation betv 
disturbed annually from 65% to chicken product 
27% and also increased the duction also ma 
periods of rest between distur- 
bances. 

There also is evidence that weather has a substantial 
influence on prairie grouse production (Shelford and 
Yeatter 1955, Yeatter 1963). Its importance has been 
suggested by regional trends in prairie grouse popula- 
tions. A marked increase in the numbers of prairie chick- 
ens in Indiana, Illinois, Missouri, Kansas, and Nebraska 
in the late 1930s was reported by game technicians dur- 
ing a symposium in Urbana, Illinois, in 1940 (Yeatter 
1963). Yeatter (1963) suggested that the marked popula- 
tion increase indicated that conditions favorable at that 
time to prairie chicken reproduction were regional in 
scope. Harvest data show a similar increase in prairie 
grouse numbers throughout the Nebraska Sandhills dur- 
ing the mid-1980s (L. L. McDaniel, United States Fish 
and Wildlife Service [USFWS], unpublished data). 

However, investigators hold different opinions as to 
when weather is most important (Ritcey and Edwards 
1963), partially because its direct and indirect effects are 
so multifaceted. Some of this inconsistency also may 
stem from attempts to draw simple linear relationships 
between a single weather variable and grouse production 
indices or lek counts. Such simple associations do not 
adequately represent the complex relationships between 
numerous weather factors that influence prairie grouse 
production. 

The importance of both weather and vegetative distur- 
bance suggests that these 2 factors may interact to influ- 
ence prairie grouse production. Therefore, our goal was 
to use multiple-linear-regression methods to simultane- 
ously assess the effects of both vegetative disturbance 
and weather on prairie grouse production on Valentine 

NWR. This approach would allow us to develop a model 
that could adequately represent the complex relationships 
between vegetative disturbance and numerous weather fac- 
tors influencing prairie grouse production on the refuge. 
Our secondary goal was to assess how well our model 
could predict production indices on our reference area, 
Samuel R. McKelvie National Forest (NF) in Nebraska. 

Specific weather effects 
We found limited information on specific effects of 

weather on prairie grouse production in the published lit- 
erature. However, published literature on effects of 

that much of the variability in sharptail pro- 
ar to year was influenced by weather. 
veen sharptail production and greater prairie- 
ion suggests that greater prairie-chicken pro- 
y be broadly affected by weather. 
F----;F. . -- =;;,iC_;lGl=|Xt9F a . ,- Dn,:1W X ' ;S v . 

weather on other species of Phasianidae may provide evi- 
dence as to how weather influences prairie grouse. 
However, some caution is needed when using literature 
on other species, for some of these weather effects may 
be more pronounced in species such as the willow grouse 
(Lagopus lagopus) that experience more extreme weather 
conditions than those faced by prairie grouse. 

The nesting period in May could be an important peri- 
od for prairie grouse production, as it is for several other 
grouse species. Dorey and Kabat (1960) found that 
ruffed grouse (Bonasa umbellus) production was above 
average following high average temperatures in May and 
below average following a cold May. Cold and wet con- 
ditions during incubation were associated with years of 
poor productivity in spruce grouse (Dendragapus 
canadensis) (Smyth and Boag 1984). Cold spring tem- 
peratures can delay gonadal recrudescence (Garbutt 
1979) and inhibit nest initiation in ruffed grouse (Neave 
and Wright 1969). Such a delay in nest initiation could 
negatively impact production through reduced clutch 
size, as is suggested for spruce grouse by Ellison (1972), 
who found a decrease in numbers of females with broods 
as well as juveniles per brood in a year when nest initia- 
tion was delayed significantly. In addition, Smyth and 
Boag (1984) suggested that incubating females may 
increase the number and (or) length of feeding trips if 
they are energetically stressed by periods of cold and wet 
weather and thereby decrease nest attentiveness. 

The early post-hatching period in June is considered a 
sensitive period for prairie grouse (Shelford and Yeatter 
1955). Greatest chick mortality tends to occur during 
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June because of the high vulnerability of chicks during 
early development. Myrberget (1972 as quoted in 
Erikstad 1985) reported that most mortality of willow 
grouse chicks occurred during the first 2 weeks after 
hatch and accounted for variation in chick production 
between years. Neave and Wright (1969) found that the 
greatest loss of juvenile ruffed grouse also occurred in 
June. 

Newly hatched chicks still have poorly developed ther- 
moregulation (Myhre et al. 1975, Aulie 1976, Allen et al. 
1977) and are therefore more vulnerable to extreme 
weather conditions. Chilling occurs during cold and wet 
conditions. If heavy rains occur in June, many young 
chicks drown or get chilled and die (Horak and 
Applegate 1998). During cold summers, willow grouse 
mortality peaks at between 3 and 5 days of age (Erikstad 
unpublished as cited in Erikstad and Andersen 1983). 
Survival rates of gray partridge (Perdix perdix) chicks 
increased with mean temperatures and decreased with 
increasing numbers of rainy days in June (Panek 1992). 
When significant amounts of precipitation fell during the 
last 3 weeks of the hatching period, survival of blue 
grouse (Dendragapus obscurus) chicks was adversely 
affected (Cedarleaf et al. 1982). 

To counteract the chilling effects of cold and wet con- 
ditions, chicks of Phasianidae must brood for longer 
durations (Boggs et al. 1977, Pedersen and Steen 1979, 
Erikstad and Spids0 1982, Offerdahl and Fivizzani 1987). 
Increased brooding time results in decreased feeding time 
(Erikstad and Andersen 1983). Thus, food intake 
decreases and the chicks may starve to death if rain and 
low temperatures prevail for several days (Erikstad and 
Spids0 1982). 

Weather conditions during June also can influence the 
abundance and availability of insects that young chicks 
rely upon for nourishment (Green 1984, Potts 1986). 
Many studies provide evidence that survival of gray par- 
tridge chicks increases with abundance of their preferred 
insect prey (Southwood and Cross 1969, Potts 1986, 
Rands 1986, Enck 1987). Panek (1992) found that part 
of the variation in abundance of plant bugs (Hemoptera) 
was related to weather, with the number of Hemoptera 
increasing with temperature. Potts (1986) found reduced 
numbers of Hemoptera during cold and wet weather. 

Extremely high temperatures may have negative 
impacts on chicks in the form of heat stress, as occurs in 
bobwhite quail (Colinus virginianus) (Forrester et al. 
1998, Guthery et al. 2001) and willow ptarmigan 
(Lagopus lagopus) (Aulie and Moen 1975). Extremely 
high temperatures have the potential to harm chicks 
before they develop thermoregulation because it takes 
much less heat energy to increase a chick's body temper- 

ature to lethal levels (Calder 1974). 
Finally, soil moisture indirectly influences prairie 

grouse production through its effect on vegetative 
growth. In especially dry years, soil moisture may be 
insufficient to produce grass and other food plants 
(Hamerstrom and Hamerstrom 1968) that are a require- 
ment for good brood habitat. Sharptail production was 
positively correlated with a 23-month soil-moisture index 
in both North Dakota and South Dakota (Bergerud 1988). 

Study area 
Valentine NWR 

Valentine NWR lies in the Sandhills of north-central 
Nebraska. The Sandhills region contains >49,000 km2 of 
wind-blown, stabilized dune sand and is the largest sand- 
dune area in the Western Hemisphere (Bleed and 
Flowerday 1990). Physiographically, loose sandy soil is 
its chief characteristic, although hills and valleys are 
more sharply defined than are those of true prairie 
(Weaver 1965). In the uplands the hills rise 30-60 m 
above the valley floors. Elevations above sea level 
ranged from 867-954 m. 

The 28,941-ha refuge has approximately 20,000 ha of 
grassy, undulating uplands (choppy sand and sand range 
sites), 5,000 ha of meadow (subirrigated and wetland 
range sites), and 4,000 ha of shallow lakes and marshes. 
Trees are infrequent, other than those found around the 
refuge headquarters and along the shorelines. 

Annual precipitation on the refuge averaged 54.9 cm 
between 1945 and 1999 (USFWS 1999). Approximately 
65% of that rainfall occurred between April and 
September (National Climatic Data Center 1996). The 
soil was fine sand and very porous. Therefore, rainfall 
was absorbed with little or no runoff. Much of the pre- 
cipitation reached the water table, which can be just a 
few decimeters from the surface in the meadow areas. 
Tall grasses thrived on the dunes because the sand was 
efficient in absorbing rainfall without loss by runoff and 
in preventing evaporation from its surface (Weaver 1965). 

The uplands consisted of sand and choppy sand range 
sites (USFWS 1999). Sand range sites consist of sands, 
loamy sands, and loamy fine sands on nearly level to 
gentle slopes. Typical vegetation included needle-and- 
thread (Stipa comata), prairie sandreed (Calamovilfa 
longifolia), little bluestem (Schizachyrium scoparium), 
sand bluestem (Andropogon hallii), sand lovegrass 
(Eragrostis trichodes), sand dropseed (Sporobolus 
cryptandrus), junegrass (Koeleria pyramidata), small 
soapweed (Yucca glauca), and poison ivy (Rhus 
radicans) (Weaver 1965). Choppy sand range sites con- 
sisted of sands on abrupt, irregular slopes of 20% or 
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more. Vegetation was generally that of a sand range site, 
but was usually more sparse with patches of exposed 
sands. 

Meadows consisted of wetland and subirrigated range 
sites. Wetland range sites were dominated by grass 
species that thrive in a moisture-saturated soil profile, 
such as prairie cordgrass (Spartina pectinata), northern 
reedgrass (Calamagrostis stricta), and sedges (Carex 
spp.) (USFWS 1999). Subirrigated range sites were 
meadows very close to groundwater level (USFWS 
1999). Subirrigated meadows were dominated by tall- 
grass prairie species such as switchgrass (Panicum virga- 
tum), Indiangrass (Sorghastrum nutans), and big 
bluestem (Andropogon gerardii) (Weaver 1965, USFWS 

1999), as well as little bluestem on the drier portions of 
the meadows. 

The land adjacent to the study area was used exclu- 
sively as rangeland for livestock grazing, with no culti- 
vated cropland on or near the study area. Grasslands on 
the study area were managed using periodic rest, pre- 
scribed fire, and grazing treatments. 

Samuel R. McKelvie National Forest 
The 46,211-ha Samuel R. McKelvie National Forest 

was selected as a reference area because of its similarities 
to Valentine NWR. Located approximately 12 km north- 
west of Valentine NWR, its topography, climate, species 
of predators, and vegetative species were similar to those 
of the refuge. Predators were not controlled on either 
area, and both public land areas supported sharptail pop- 
ulations. 

The major known difference in the 2 public land areas 
was the intensity and extent of vegetative disturbance. 
Cattle grazed almost 100% of Samuel R. McKelvie NF 
from 1980 to 2000. During the nesting season, less than 
5% of McKelvie NF had not been burned or grazed by 
cattle within the past 12 months. Grazing treatments 
averaged about 1.24 animal-unit-months (AUMs)/ha 
between 1980 and 1990, and 0.74 AUMs/ha between 
1991 and 2000. In comparison, 35% of Valentine NWR 
provided nesting cover undisturbed by cattle or fire with- 
in the past 12 months in 1980. Undisturbed nesting 
cover had steadily increased to 74% by 2000. Grazing 
treatments on Valentine NWR averaged about 0.57 
AUMs/ha between 1985 and 2000. 

Methods 
Production indices 

There is no known method for obtaining true estimates 
of prairie grouse production. An index of production can 
be developed using the ratio of juveniles to adults in the 

autumn harvest, or the harvest-age ratio. Annual harvest- 
age ratios were determined for Valentine NWR and 
McKelvie NF using wings removed from prairie grouse 
harvested within the public land areas. Every autumn, 
wing-donation boxes were placed along the roads in 
established locations throughout the 2 public land areas, 
to encourage hunters to donate wings and to ensure that a 
representative sample of the entire public land area was 
attained. Experienced biologists then identified age class 
and species of each wing. The number of juveniles and 
adults for each species was summed for each public land 
area, and the ratio was used as an index of production. 
These data were available for both public land areas 
between 1980 and 2000 through a cooperative effort by 
the USFWS, the United States Forest Service, and the 
Nebraska Game and Parks Commission. 

Production data were available for both sharptails and 
greater prairie-chickens on Valentine NWR. An average 
of 60 (SE = 10) greater prairie-chicken wings was col- 
lected annually on Valentine NWR, as opposed to an 
average of 370 (SE = 26) sharptail wings. Marcstrom 
and Hoglund (1980) concluded that a strong indication of 
the proportion of juveniles in the population within a 
restricted area could be ascertained within the first 70-75 
grouse collected. Therefore, to avoid the large sampling 
variance associated with the small samples of greater 
prairie-chicken wings, we chose to use only the sharptail 
data for model development. We considered the sample 
sizes for McKelvie NF (x = 146, SE = 16) adequate for 

estimating harvest-age ratios, as those ratios were to be 
used in plots only and not for model development. 
Preliminary analyses of harvest data on both public land 
areas indicated there were no biases in the harvest-age 
ratios due to a changing ratio of juveniles to adults as the 
hunting season progressed (Flanders 2002). Thus, poten- 
tial biases in the harvest-age ratios due to differential sus- 
ceptibility to harvest or differential survival of juveniles 
and adults did not appear to be present (Flanders 2002). 

It is important to note that as an index, harvest-age 
ratios can indicate only relative differences in production. 
To compare production indices, we assumed the ratio of 
juvenile to adult harvest rates was approximately con- 
stant across years and areas. To meet this assumption, 
potential influences on rate of harvest of juveniles and 
adults, such as early flocking of adult birds during years 
of poor production or late brood break-up during years of 
delayed nest initiation, must be minimal. In addition, 
production indices cannot be used as an index of recruit- 
ment or population size (Bergerud 1988). Nevertheless, 
production has the most influence on changes in breeding 
numbers of grouse (Bergerud 1988). Changes in breed- 
ing numbers were correlated with prior reproductive suc- 
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cess in prairie chickens in Texas (Peterson and Silvy 
1994), Kansas (Horak 1974), and South Dakota (Linde et 
al. 1978). Annual changes in density of sharptail males 
on leks have been correlated with production in Montana 
(Brown 1968), Minnesota (Berg 1977), South Dakota 
(Hillman and Jackson 1973), and North Dakota (Kobriger 
1981). Therefore, long-term monitoring of harvest-age 
ratios can provide valuable information about the fitness 
of a population. 

Vegetative disturbance data 
Data on number of hectares within each habitat block 

and date of the last disturbance in each habitat block 
were available between 1980 and 2000. We managed 
habitat blocks on the refuge individually, with a rest 
treatment leaving the vegetation within a habitat block 
undisturbed. Grazing, prescribed fire, wildfire, and hail 
damage were considered disturbances within each habitat 
block. Calculated on 1 May, the number of hectares 
within each habitat block contributed to 1 of the 3 distur- 
bance categories: "Disturbed," "1 Year Rest," and "2+ 
Years Rest." Disturbed referred to the percentage of 
refuge area that had been disturbed since the beginning 
of the previous growing season, 1 Year Rest referred to 
the percentage of refuge area that had received an entire 
growing season of rest, and 2+ Years Rest referred to the 
percentage of refuge area that had received >2 growing 
seasons of rest. 

Weather data 
We obtained precipitation data for 1980-2000 from 

the weather station located at the refuge headquarters. 
We obtained temperature data for 1980-2000 from the 
airport weather station, which provided more precise 
hourly temperature measurements, as opposed to the 
daily temperature measurements provided on the refuge. 
The National Oceanic and Atmospheric Administration 
supervised both weather stations. 

Distance from the airport weather station to the far- 
thest point of Valentine NWR and McKelvie NF was 
approximately 50 km and 60 km, respectively. In addi- 
tion, the distances from the weather station at the refuge 
headquarters to the farthest point of Valentine NWR and 
McKelvie NF were approximately 30 km and 50 km, 
respectively. Thus, we felt that data from these 2 weather 
stations could represent weather conditions on both pub- 
lic land areas similarly. 

Selection of variables 
The dependent variable for all analyses was sharptail 

juveniles per sharptail adult harvested. From the 3 dis- 
turbance categories, we selected the 2 extreme categories, 

Disturbed and 2+ Years Rest, as vegetative disturbance 
variables for our model. These 2 highly correlated vari- 
ables were not included with the expectation that both 
variables would be selected for the final model(s). 
Instead, we included both variables because we were 
uncertain whether the amount of disturbed cover or the 
amount of cover in extended rest would have greater 
influence on sharptail production. Including both vari- 
ables allowed us to objectively select the more important 
variable. We hypothesized that Disturbed would be nega- 
tively correlated with sharptail production and that 2+ 
Years Rest would be positively correlated with sharptail 
production. 

We then selected weather variables we believed would 
have the greatest influence on sharptail production based 
on the published literature. We identified the nesting 
period in May and the early post-hatch period in June as 
2 important periods for sharptail production. 

For the nesting period, we included the variable "May 
Average Temperature" and hypothesized it would be pos- 
itively correlated with sharptail production. Since both 
the timing and amount of precipitation have the potential 
to affect sharptail production, we included 2 May precip- 
itation variables, "May Total Precipitation" and "May 
Number of Days with Precipitation >2.54 mm," and 
hypothesized that both would be negatively correlated 
with sharptail production. Days with precipitation <2.54 
mm did not contribute a significant amount of precipita- 
tion and therefore were not included in the calculation of 
the second May precipitation variable. 

For the early post-hatch period in June, we selected 
several important weather variables, including a heat- 
stress variable. However, we found no literature specific 
to thermoregulation in North American prairie grouse 
chicks. Yet, some extrapolation was reasonable, since a 
bird's thermoneutral zone is dependent upon its size, 
independent of the species (Calder 1974). Based on this 
premise, we used research on willow grouse chicks of 
similar size to extrapolate a sharptail chick's response to 
heat stress. 

One-day-old willow ptarmigan chicks placed inside a 
climatic chamber with ambient temperatures of 38.9?C 
experienced an increase in body temperature to 41.5?C 
after 20 minutes of exposure, causing them to "[try] des- 
perately to get away from the heat" (Aulie and Moen 
1975:606). Unlike the air temperature in a natural envi- 
ronment, ambient temperature in a climatic chamber pro- 
vides an accurate measure of a chick's microclimate. Air 
temperature is not an accurate measure of a chick's 
microclimate because it does not take into account the 
heating effects of solar radiation near the ground. 
Consequently, a chick's microclimate near the ground 
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could potentially be 3?C to 4?C higher than the measured 
air temperature because of the additional heat created by 
solar radiation (F. S. Guthery, Oklahoma State University, 
personal communication). Therefore, an air temperature 
of 35?C could correspond to Aulie and Moen's (1975) 
ambient temperature of 38.9?C, because the solar radia- 
tion not accounted for by air temperature could compen- 
sate for the difference in the 2 values. To account for this 
disparity, we used the number of days with air tempera- 
tures >35?C as an indicator of potential heat stress in 
sharptail chicks. We hypothesized that the variable "June 
Number of Heat Stress Days" would be negatively corre- 
lated with sharptail production if heat stress impacted 
chick survival. 

As long as temperatures in June are not extremely hot, 
June temperatures generally have a positive influence on 
sharptail chick survival. Therefore, we selected the vari- 
able "June Average Temperature" and hypothesized that 
it would be positively correlated with sharptail produc- 
tion. 

As with May precipitation, both the timing and 
amount of precipitation in June have the potential to 
affect sharptail production. For instance, a large amount 
of precipitation in one day may be more detrimental to 
the survival of sharptail chicks than the same amount of 
precipitation spread out over the course of several weeks. 
Therefore, we selected the variables "June Total 
Precipitation" and "June Number of Days with 
Precipitation >2.54 mm" and hypothesized that both 
would be negatively correlated with sharptail production. 

In addition to the nesting period in May and the early 
post-hatch period in June, drought also may have a large 
effect on sharptail production. We chose "Cumulative 
Precipitation from 1 January-31 July" as an index of 
drought because we preferred values that could be easily 
calculated for future use and because precipitation tends 
to be the overriding predictor of drought conditions (M. 
D. Svoboda, National Drought Mitigation Center, person- 
al communication). We hypothesized that Cumulative 
Precipitation from 1 January-31 July would be positively 
correlated with sharptail production. 

In summary, we chose 8 weather variables and 2 vege- 
tative disturbance variables to use as main effects in our 
production model. We also suspected that temperature 
and precipitation interactions could be useful in explain- 
ing some of the variability in sharptail production, but 
waited to select the most important main effects before 
incorporating any specific interactions. 

Statistical procedures 
We broke down the analysis into several steps to avoid 

over-parameterizing the model. First, we sought to 

explain some of the variability in the sharptail production 
indices with the weather variables. We used multiple-lin- 
ear-regression methods (SAS Institute 1989) to fit the 
dependent variable, sharptail juveniles per sharptail 
adults harvested, to the independent weather variables. 
The sampling unit was years, with a total of 21 data 
points. We chose not to split our data for cross-valida- 
tion purposes because we did not want to further reduce 
the small sample size and because the observations with- 
in a year could not be split. The full model included all 8 
weather variables, an intercept, and an estimate of MSE, 
for a total of 10 parameters. Our suite of candidate mod- 
els included all possible combinations of weather vari- 
ables for a total of 28 = 256 models. We included all 
possible combinations because we felt all 8 weather vari- 
ables were justified in the final model and we had no way 
of knowing which variables were more likely to appear 
together in the most plausible models. 

We used Akaike's Information Criterion with a small- 
sample bias adjustment (AICc) model selection 
(Burnham and Anderson 1998) to objectively select the 
most parsimonious model(s). We then calculated the 
cumulative AICc weights for each weather variable by 
summing the AICc model weights of every model con- 
taining that variable. We could then objectively select 
variables with the greatest cumulative AICc weights as 
the most biologically important weather variables with 
which to continue our model development. 

In the final analysis, we sought to explain additional 
variability in the data by including the 2 vegetative dis- 
turbance variables, Disturbed and 2+ Years Rest. 
Although no obvious relationship existed between annual 
sharptail production indices and the vegetative distur- 
bance variables (Figure 1), we wanted to evaluate 
whether the 2 vegetative disturbance variables could be 
used as predictors of sharptail production indices now 
that some of the variability in the data had been 
explained by weather variables. We also included an 
interaction term for 2 of the retained variables, June 
Average Temperature and June Total Precipitation. Thus, 
the full model included the 5 best weather variables, 2 
vegetative disturbance variables, an interaction term, an 
intercept, and an estimate of MSE, for a total of 10 
parameters. Our suite of candidate models included all 
possible combinations of weather variables for a total of 
28 = 256 models. Once again, we used AICc model 
selection to select the most parsimonious model(s). 

To address model uncertainty, we used model-averag- 
ing as a formal way to base inference on more than a sin- 
gle model. All models within 2 units of the minimum 
AICc model were considered plausible (Burnham and 
Anderson 1998). Using the annual predictions of sharp- 
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5 production indices on McKelvie NF if the increased veg- 
etative disturbance on McKelvie NF was negatively influ- 

4 I encing sharptail production. 
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Figure 1. Annual plains sharp-tailed grouse (Sharptail) production 
indices plotted against vegetation disturbance categories on Valentine 
National Wildlife Refuge, Nebraska, 1980-2000. Disturbed = the per- 
centage of refuge area on 1 May that had been disturbed since the 
beginning of the previous growing season, 1 year rest = the percentage 
of refuge area on 1 May that had received an entire growing season of 
rest, 2+ years rest = percentage of refuge area on 1 May that had 
received >2 growing seasons of rest, and Sharptail production index = 
ratio of juveniles to adult sharptails in the autumn harvest. 

tail production indices from all plausible models, we cal- 
culated a weighted average using the equation, 

R 

Oa =Wi'Oi, 
i=i 

where 0a = weighted average of predicted annual produc- 
tion indices, R = number of models considered, wi = 
scaled AICc weight for model i (scaled to sum to 1) 
(Burham and Anderson 2002), and Oi = prediction of the 

production index according to the year for model i. To 
account for both sampling variance and model selection 

uncertainty, we used the adjusted standard error (ase) 
estimator (Buckland et al. 1997), 

ase(0)= Wi var( lMi)+ (0 -Oa ) 
i=1 

where Mi = model i. We then used the adjusted standard 
errors to develop unconditional 95% confidence intervals 
(CI). 

Finally, we plotted the model-averaged predictions of 

sharptail production indices for Valentine NWR against 
the actual sharptail production indices for our reference 
area, McKelvie NF. Since vegetative disturbance was the 

only known influence on sharptail production that was 
notably different between the 2 public land areas, we 

hypothesized that the model-averaged predictions devel- 
oped on Valentine NWR would over-predict sharptail 

Results 
All models within 2 units of the minimum AICc value 

have substantial support and should receive consideration 
in making inferences (Burnham and Anderson 1998). 
Using that criterion, at least 5 models were especially 
useful in our first iterative analysis (Table 1). 
Cumulative AICc weights indicate the percent of weight 
attributable to models containing that particular variable 
(Table 2). 

Following our final analysis, 7 models were highly 
plausible based on their AICc values (Table 3). None of 
the most plausible models contained a vegetation vari- 
able. We included all 5 weather variables in the top mod- 
els and correlated each with sharptail production as 

hypothesized a priori. 
Cumulative Precipitation from 1 January-31 July 

(JulCumPr) was positively correlated with sharptail pro- 
duction. We attributed 75% of the AICc weight to mod- 
els that included JulCumPr. According to the coefficients 
for the top 7 models, every additional centimeter of 
cumulative precipitation as of 31 July would result in a 
0.05 (95% CI = 0.02, 0.08) to 0.03 (95% CI = -0.002, 
0.06) increase in the juvenile-to-adult harvest ratio of 

sharptails, when holding all other variables constant. 
June Number of Heat Stress Days (JunDay35) was 

negatively correlated with sharptail production. We 
attributed 55% of the AICc weight to models that includ- 
ed JunDay35. According to the JunDay35 coefficients 
for the top models, every day in June with air tempera- 
tures >35?C would result in a 0.20 (95% CI = -0.33, 
-0.07) to 0.16 (95% CI = -0.29, -0.03) decrease in the 

juvenile-to-adult harvest ratio when holding all other 
variables constant. 

May Average Temperature (MayAveTe) was positively 
correlated with sharptail production. We attributed 44% 
of the AICc weight to models that included MayAveTe. 
According to the MayAveTe coefficients for the top mod- 
els, every increase in May average temperature of 1?C 
would result in a 0.19 (95% CI = (0.02, 0.36) to 0.12 
(95% CI = -0.07, 0.31) increase in the juvenile-to-adult 
harvest ratio of sharptails, when holding all other vari- 
ables constant. 

June Average Temperature (JunAveTe) was positively 
correlated with sharptail production. We attributed 35% 
of the AICc weight to models that included JunAveTe. 

According to the JunAveTe coefficients for the top mod- 
els, every increase in June average temperature of 1?C 
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Table 1. Candidate modelsa used to fit the dependent variable, annual sharp-tailed grouse production indexb 
on Valentine National Wildlife Refuge, Nebraska, to the independent weather variables, 1980-2000. 

No. of Delta AICc 
Variables in model parameters AICc c AICc weight d R2 

JulCumPr e 3 -13.50 0.00 0.08 0.16 

MayAveTe f, JunAveTe g, JunTotPr h, JunDay35 i, JulCumPr 7 -12.41 1.09 0.05 0.57 

MayAveTe, JulCumPr 4 -12.32 1.17 0.05 0.24 

MayAveTe, JunAveTe, JunDay35, JulCumPr 6 -12.10 1.40 0.04 0.46 

JunTotPr, JulCumPr 4 -11.61 1.89 0.03 0.21 

a Models may be compared by AICc values to models in Table 3. 
b Annual sharp-tailed grouse production index = sharp-tailed grouse juveniles per sharp-tailed grouse 

adults in the fall harvest on Valentine National Wildlife Refuge. 
c AICc = Akaike's Information Criterion with small-sample bias adjustment (Burnham and Anderson 1998). 
d AICc weight = percent of total weight from all 256 models that can be attributed to the specified model. 
e JulCumPr = cumulative precipitation from 1 January-31 July. 
f MayAveTe = May average temperature. 
g JunAveTe = June average temperature. 
h JunTotPr = June total precipitation. 

JunDay35 = No. of heat stress days in June (air temperatures >35?C). 

would result in a 0.21 (95% CI = 0.03, 0.39) to 0.18 
(95% CI = -0.01, 0.37) increase in the juvenile-to-adult 
harvest ratio of sharptails, when holding all other vari- 
ables constant. 

June Total Precipitation (JunTotPr) was negatively cor- 
related with sharptail production. We attributed 34% of 
the weight to models that included JunTotPr. According 
to the JunTotPr coefficients for the top models, an 
increase in June total precipitation of 1 cm would result 
in a 0.44 (95% CI = -0.79, -0.08) to 0.04 (95% CI = 
-0.11, 0.04) decrease in the juvenile-to-adult harvest 
ratio of sharptails, when holding all other variables con- 

Table 2. Cumulative AICc a weights for all 8 weather variables hypoth- 
esized to influence annual sharp-tailed grouse production on Valentine 
National Wildlife Refuge, Nebraska, 1980-2000. 

Variable Cumulative AICc weight b 

July Cumulative Precipitation 0.72 
June No. of heat stress days c 0.46 

May average temperature 0.41 
June average temperature 0.34 
June total precipitation 0.30 

May No. of days of precipitation d 0.17 

June No. of days of precipitation d 0.16 

May total precipitation 0.16 

a AICc = Akaike's Information Criterion with small-sample bias 
adjustment (Burnham and Anderson 1998). 

b Cumulative AICc weight of a variable = the percent of weight 
attributable to models containing that particular variable and is calcu- 
lated by summing the AICc model weights of every model containing 
that variable. 

c A heat stress day = a day with air temperatures >35 ?C. 
d Days with insignificant precipitation events <2.54 mm not included. 

stant. The effect of 
JunTotPr was more vari- 
able than any of the previ- 
ous 4 weather variables. 

Thirty percent of the 
weight was attributed to 
models that included the 
June Average Temperature 
x June Total Precipitation 
interaction (Interact). The 
interaction effect was 
small, and the correlation 
varied unpredictably 
according to the other vari- 
ables in the model. 
Interact coefficients for the 
top models varied between 
0.020 (95% CI = 0.002, 
0.039) and -0.003 (95% CI 
= -0.007, 0.0003). 

Averaged across years, the model-averaged predictions 
of sharptail production indices for Valentine NWR over- 
predicted actual sharptail production indices on 
McKelvie NF by 0.77 juveniles per adult (Figure 2). 
Thirteen of the 21 sharptail production indices for 
McKelvie NF were not included in the 95% uncondition- 
al CI around the prediction estimates. However, the 
trend in predicted sharptail production indices generally 
followed that of the actual production indices on 
McKelvie NF. 
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Figure 2. Actual sharp-tailed grouse (Sharptail) production indices for 
Samuel R. McKelvie National Forest, Nebraska, (SRMNF real produc- 
tion indices) plotted against model-averaged, predicted sharptail pro- 
duction indices (Model-averaged predictions) for Valentine National 
Wildlife Refuge, 1980-2001. Production indices were attained from 
juvenile to adult harvest-age ratios. CI = 95% confidence interval. 
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Table 3. Top 7 candidate models a in final model selection procedure used to fit the dependent vari- 
able, annual sharp-tailed grouse production index b on Valentine National Wildlife Refuge, Nebraska, 
to the independent weather and vegetation variables, 1980-2000. 

No. of Delta AICc 
Variables in model parameters AICcc AICc weightd R2 

JulCumPr e 3 -13.50 0.00 0.06 0.16 
MayAveTef, JunTotPr g, JunDay35 h, JulCumPr, Interacti 7 -12.74 0.75 0.04 0.58 
MayAveTe, JunAveTe J, JunTotPr, JunDay35, JulCumPr 7 -12.41 1.09 0.04 0.57 
MayAveTe, JulCumPr 4 -12.32 1.17 0.03 0.24 
MayAveTe, JunAveTe, JunDay35, JulCumPr, Interact 7 -12.23 1.26 0.03 0.57 
MayAveTe, JunAveTe, JunDay35, JulCumPr 6 -12.10 1.40 0.03 0.46 
JunTotPr, JulCumPr 4 -11.61 1.89 0.02 0.21 

a Models may be compared by AICc values to models in Table 1. 
b Annual sharp-tailed grouse production index = sharp-tailed grouse juveniles per sharp-tailed 

grouse adults in the fall harvest on Valentine National Wildlife Refuge. 
c AICc = Akaike's Information Criterion with small-sample bias adjustment (Burnham and Anderson 

1998). 
d AICc weight = percent of total weight from all 256 models that can be attributed to the specified 

model. 
e JulCumPr = cumulative precipitation from 1 January-31 July. 
f MayAveTe = May average temperature. 
g JunTotPr = June total precipitation. 
h JunDay35 = No. of heat stress days in June (air temperatures >35?C). 

Interact = June average temperature x June total precipitation 
J JunAveTe = June average temperature. 

Discussion 
Model fit 

Model-averaged prediction estimates predicted general 
trends in sharptail production indices well (Figure 3). 
However, the model-averaged predictions tended to be 
more conservative than the real sharptail production 
indices in most years. In addition, large confidence inter- 
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Figure 3. Actual sharp-tailed grouse (Sharptail) production indices for 
Valentine National Wildlife Refuge, Nebraska, (Real production indices) 
plotted against model-averaged, predicted sharptail production indices 
(Model-averaged predictions) for Valentine National Wildlife Refuge, 
1980-2001. Production indices were calculated from juvenile to adult 
harvest-age ratios. CI = 95% confidence interval. 

vals reflect the amount of vari- 
ability in data that cannot be 
explained by model-averaged 
predictions. 

Some of this additional vari- 
ability could be due to single, 
extreme weather events. For 
instance, extreme amounts of 
precipitation or extremely high 
temperatures late in the hatching 
period could have significant 
effects on production. However, 
extreme weather events cannot 
be distinguished by monthly 
averages or cumulative values, 
which are too coarse to detect 
such singular occurrences. 
Additionally, there are a multi- 
tude of finer factors and minute 
interactions that each explain a 
small proportion of the data. To 
maintain parsimony, not all of 
these factors and interactions 
can be included in the model. 
As a result, "We can rarely hope 

to uncover the true model; rather the objective must be to 
select the simplest, biologically meaningful model that is 
fully supported by the specific dataset" (Burham and 
Anderson 1992:18). 

Model variables 
All 5 weather main effects retained in the suite of 

most-plausible models were correlated with sharptail pro- 
duction as we hypothesized a priori. Consequently, the 
probability that these effects are spurious is diminished. 

The most valuable predictor of sharptail production 
was the drought index, Cumulative Precipitation from 1 
January-31 July (JulCumPr). Seventy-five percent of the 
AICc weight was attributed to models that included 
JulCumPr, which was positively correlated with sharptail 
production. Lack of soil moisture may be indirectly 
restricting sharptail production by limiting the availabili- 
ty of food plants and vegetative cover (Hamerstrom and 
Hamerstrom 1968). Without adequate vegetative cover, 
sharptail chicks may be more vulnerable to predators 
(Bergerud 1988). 

Some models include 2 precipitation variables, sug- 
gesting that not just the amount of precipitation but also 
the timing of precipitation can influence sharptail pro- 
duction. To illustrate, sharptail production is positively 
correlated with Cumulative Precipitation from 1 January 
1-31 July, but negatively correlated with June Total 
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Precipitation. Thus, it seems that adequate soil moisture 
on a season-long basis results in increased sharptail pro- 
duction. However, if too much of that total rainfall 
occurs in June, sharptail production may be lower. This 
may be due to excessive precipitation during the peak 
hatch causing chilling and drowning. 

Some models include 2 different June temperature 
variables that are correlated with sharptail production in 
opposite directions. In these models, June Average 
Temperature is positively correlated with sharptail pro- 
duction, while June Number of Heat Stress Days is nega- 
tively correlated with sharptail production. This may 
seem incongruous, but together these variables may sug- 
gest a nonlinear relationship between temperature and 
sharptail production. More specifically, warmer weather 
in June benefits sharptail production to a point. After 
that point, an upper temperature threshold may begin to 
generate heat stress that may be detrimental to chick sur- 
vival. 

The suggestion of an important heat-stress effect on 
chick survival is a valuable finding, as we found no liter- 
ature on negative impacts of heat stress on sharptail pro- 
duction. More research would be needed to show a defi- 
nite relationship between heat stress and sharptail pro- 
duction, especially in the southern portion of their range. 

The interaction effect is small and explains only 
0.07% more variability in the data than the model with 5 
main weather effects. It would appear that the interaction 
effect adds no new information to the model. 

Only 23% and 18% of the weight were attributed to 
models that included the vegetation variables, Disturbed 
and 2+ Years Rest, respectively. Subsequently, we did 
not include them in any of the most-plausible models, as 
the penalty for over-fitting the data is too large to include 
any mediocre predictors. 

There may be several reasons vegetation disturbance 
variables were not more useful for modeling sharptail 
production on the refuge. First, the vegetation distur- 
bance variables may not provide a comprehensive enough 
representation of vegetative structure. Height and density 
of vegetation at the refuge scale is simultaneously 
dependent upon vegetation species composition, annual 
precipitation, the percent of the refuge annually dis- 
turbed, the timing of the disturbance, and the intensity of 
the disturbance. Thus, there is confounding between 
these variables that prevents any of these elements from 
being a good measure of vegetative structure. In the 
future, visual obstruction readings (VOR) within random- 
ly selected, permanently marked transects might provide 
a better estimate of the vegetative structure on the refuge, 
provided the sample size is adequate to represent the 
structure of vegetation on the entire refuge. 

Second, Valentine NWR provides more than 24,300 
contiguous ha of grassland that has been managed largely 
for upland-nesting birds for the last 2 decades. 
Therefore, vegetative cover may not have limited sharp- 
tail production on the refuge during the last 21 years. 
This would concur with Lutz and Silvy (1980), who sug- 
gested that vegetative cover could be a limiting factor for 
prairie grouse only if it were below some critical level. 

Area effects 
Although we did not find vegetative disturbance to be 

an important variable in our final models, the striking 
contrast in vegetative disturbance between the 2 public 
land areas provided us with another opportunity to evalu- 
ate the effects of vegetation disturbance on sharptail pro- 
duction. The majority of sharptail production indices on 
McKelvie NF are below the 95% unconditional CI 
around the predicted indices of sharptail production on 
Valentine NWR (Figure 2). This result adds support to 
our hypothesis, "Model-averaged predictions developed 
on Valentine NWR will over-predict sharptail production 
indices on McKelvie NF if the increased vegetative dis- 
turbance on McKelvie is negatively influencing sharptail 
production." However, we admit that the lack of replica- 
tion and random application of treatments between public 
land areas weaken the strength of our result. 

Nonetheless, the literature provides additional support 
for our hypothesis. Newell (1987) found that vegetation 
in deferred pastures and prairie hay (undisturbed vegeta- 
tion) had superior height and density compared to grazed 
pastures. Broods used lowlands and midlands more than 
uplands both day and night because of the superior cover 
provided, avoiding areas of sparse vegetation (Horak 
1985). Newell (1987) recognized the need for undis- 
turbed cover after finding that hens with broods utilized 
vegetation which provided visual screening in excess of 
2.5 dm throughout the summer and that hens appeared to 
avoid shorter vegetation, especially as the growing season 
progressed and taller vegetation became more available. 
Lack of residual herbaceous vegetation has been cited as 
the most limiting factor for the sharptail (Pepper 1972, 
Hillman and Jackson 1973, Sisson 1976, Grosz 1988) 
throughout its range. Without adequate vegetative cover, 
sharptail chicks may be more vulnerable to predators 
(Bergerud 1988). 

Therefore, we suspect that the difference in production 
indices between the 2 areas was at least partially influ- 
enced by the longer grazing periods and the greater total 
number of hectares grazed annually on McKelvie NF 
during the last 22 years compared to Valentine NWR. 
However, it is possible that other unknown factors also 
are negatively impacting sharptail production on 
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McKelvie NF. For instance, population estimates of the 
major sharptail predators were not available for either 
area, although we do know that the same species of pred- 
ators inhabit both areas and that predators are not con- 
trolled on either area. Nonetheless, a greater total num- 
ber of predators per ha could at least partially account for 
the lower production indices, although greater numbers 
of predators per ha has never been confirmed on 
McKelvie NF. Higher disease prevalence, also never ver- 
ified in the sharptail population on McKelvie, also could 
have negative impacts on production if it did exist in the 
population. 

To further decipher which factors may be suppressing 
sharptail production on McKelvie NF, we propose a 
pseudo-experiment in which lengths of grazing periods 
and particularly number of annually disturbed hectares 
on McKelvie NF are reduced to levels similar to those on 
Valentine NWR. Once a vegetation structure similar to 
that on Valentine NWR has been achieved, we hypothe- 
size that sharptail production indices on McKelvie NF 
will increase to levels similar to those on Valentine 
NWR. Should no increase in production indices occur 
on McKelvie, other factors such as predators and disease 
may need to be considered. 

Regional effects 
Aside from the within-year differences in sharptail 

production between Valentine NWR and McKelvie NF, 
considerable parallelism in sharptail production indices 
can be noticed between the 2 areas when comparing 
across years (Figure 2). This further suggests that 
regional factors such as weather may be influencing fluc- 
tuations in sharptail production on a broader scale than 
the public land area. 

Applicability to the greater prairie-chicken 
Greater prairie-chicken production indices tend to fol- 

low trends similar to sharptail production indices on 
Valentine NWR (Figure 4). Therefore, although these 
analyses were limited to sharptail data, it may be reason- 
able to assume there may be similarities between the fac- 
tors affecting production of sharptail and those affecting 
the production of the greater prairie-chicken in the 
Nebraska Sandhills. 

Management implications 
It is apparent that much of the variability in sharptail 

production from year to year was influenced by weather. 
Correlation between sharptail production and greater 
prairie-chicken production suggests that greater prairie- 
chicken production also may be broadly affected by 
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Figure 4. Sharp-tailed grouse and greater prairie-chicken production 
indices for Valentine National Wildlife Refuge, Nebraska, 1980-2000. 
Production indices were calculated from juvenile to adult harvest-age 
ratios. 

weather. Although the impacts of weather on prairie 
grouse production are beyond management control, nutri- 
tion and temperatures at ground level may be mediated 
through cover management, as has been suggested for 
Gambel's quail (Callipepla gambelii) (Heffelinger et al. 
1999). 

For example, the intensity of solar radiation decays 
rapidly as it passes through the plant canopy, thereby nul- 
lifying a potential source of heat stress (Guthery 2002). 
In a similar fashion, an ample plant canopy may help 
insulate young chicks against the negative effects of 
heavy rainfall. In years with adequate soil moisture, the 
current year's growth may be sufficient in providing such 
shelter. However, in drought years, there may not be 
enough vegetative growth to provide adequate shelter. 
Since vegetation in deferred pastures and prairie hay 
(undisturbed vegetation) was found to have superior 
height and density compared to grazed pastures (Newell 
1987), reductions in both the length of grazing periods 
and the proportion of hectares grazed annually should 
result in vegetation of increased height and density. 
Therefore, by minimizing vegetative disturbance to that 
necessary for the maintenance of healthy, productive 
grasslands with desirable species compositions, managers 
provide extra insurance that prairie grouse chicks will 
have sufficient shelter in all years. 
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