U. S. Fish and Wildlife Service
Region 2

A CONTAMINANTS SURVEY
OF THREE LENTIC SYSTEMS
WITHIN THE CYPRESS CREEK
WATERSHED, TEXAS
1993 - 1995

"ii\.

::; EQF .‘F;’ -?-

Prepared by
Craig M. Giggleman, Denise L. Baker!, and Joel D. Lusk?

Arlington Ecological Services Field Office
711 Stadium Drive, Suite #252
Arlington, Texas 76011

August 1998



CONTAMINANTS SURVEY OF THREE LENTIC SYSTEMS WITHIN THE
CYPRESS CREEK WATERSHED, TEXAS
1993 - 1995

PROJECT ID NO. 9320005/2F27
ABSTRACT

In 1993, a study was initiated by the U.S. Fish and Wildlife Service, Arlington, Texas, Field Office to
determine organic and metal contaminant levels within three lentic systems in the Cypress Creek watershed
in Northeast Texas. Cypress Springs Reservoir, Lake O’ The Pines, and Caddo Lake were the three lentic
bodies selected for this study. From 1993 through 1994, surface water, sediment, and biological samples
were collected from each of these systems. Surface water samples were analyzed for dissolved aluminum,
arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead, magnesium, manganese,
molybdenum, nickel, selenium, strontium, vanadium, zinc, and total mercury content. Sediment samples
were analyzed for total aluminum, arsenic, barium, beryllium, cadmium, chromium, copper, iron, lead,
magnesium, manganese, mercury, molybdenum, nickel, selenium, strontium, vanadium, and zinc content,
as well as aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, and organochlorine residues.
Biological samples collected consisted of fish, macroinvertebrates, and nestling great blue herons (Ardea
herodias). The fish samples collected consisted of whole body composites and fillets which were analyzed
for organochlorine residues and the same total metal contaminants as mentioned above. The
macroinvertebrate samples consisted of whole body composite grass shrimp (Palaemonetes sp.) which
were also analyzed for total metals. Kidney and feather samples collected from the great blue herons were
analyzed for total mercury content, while liver samples were analyzed for total metal content. Data
resulting from this study were evaluated to determine potential health risks to fish and wildlife resources.

The results of this study indicated that Cypress Springs Reservoir was the least contaminated of the three
lentic systems. Cadmium levels were detected in surface water samples in excess of the State of Texas
water quality criteria in all three water bodies. Sediments collected at Lake O’ The Pines contained
concentrations of cadmium, lead, mercury, and zinc that exceeded the State of Texas chronic aquatic life
protection criteria, while sediments collected from Caddo Lake contained lead and mercury levels which
also exceeded the State chronic aquatic life criteria. Aliphatic hydrocarbon compounds were detected in
sediments from all three systems in low concentrations. Polycyclic aromatic hydrocarbons were detected
in sediments collected from Cypress Springs Reservoir and Caddo Lake in low concentrations in
comparison to aquatic life criteria developed by the Ontario Ministry of the Environment, whereas
sediment samples collected from Lake O’ The Pines contained some elevated polycyclic aromatic
hydrocarbons. Organochlorine residue concentrations were below the analytical detection limits in
sediments collected from all three lentic bodies. Whole body composite fish samples collected from all
three water bodies contained elevated mercury levels in excess of predatory protection limits recommended
by the United States Fish and Wildlife Service; however, fillet samples contained mercury concentrations
below the United States Food and Drug Administration action level for human consumption. Fish collected
from Caddo Lake also contained chromium and selenium levels elevated above the predatory protection
limits recommended by the United States Fish and Wildlife Service, but below current fish consumption
advisory levels in the United States. Macroinvertebrates and great blue herons collected from Caddo Lake
exhibited elevated levels of mercury. In addition, the great blue herons sampled at Caddo Lake contained
elevated levels of zinc. Fish collected from all three systems contained low concentrations of
dichlorodiphenyldichloroethylene (DDE) in comparison to the criterion developed by the National
Academy of Sciences/National Academy of Engineering. One fish collected from Lake O’ The Pines
contained a concentration of total-polychlorinated biphenyl (PCB) in excess of the predatory protection
level recommended by the Great Lakes International Joint Commission.
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PROJECT ID NO. 9320005/2F27
INTRODUCTION

In 1993, a study was initiated by the U.S. Fish and Wildlife Service, Arlington, Texas, Field Office to
determine organic and metal contaminant levels within three lentic systems in the Cypress Creek
watershed. Cypress Springs Reservoir, Lake O’ The Pines, and Caddo Lake were the three lentic bodies
selected for this study. From 1993 through 1995, surface water, sediment, and biological samples were
collected from each of these systems. Surface water samples were analyzed for dissolved metal and total
mercury content. Sediment samples were analyzed for total metal, polycyclic aromatic hydrocarbon
(PAH), aliphatic hydrocarbon, and organochlorine concentrations. The biological samples collected
consisted of fish, macroinvertebrates, and nestling great blue herons (Ardea herodias). The fish collected
were analyzed for total metal and organochlorine content, while macroinvertebrate and avian samples were
analyzed for total metals. The resulting data were compared to criteria protective of wildlife developed
by state, federal, and other agencies, to determine health risks to fish and wildlife resources within the
watershed. In addition, results from the surface water, sediment, and fish metals analyses and the sediment
aliphatic hydrocarbon analysis were statistically analyzed to determine differences among the three lentic
systems.

STUDY AREA

The Cypress Creek watershed consists of approximately 6,000 square miles (15,540 square kilometers)
and encompasses portions of 11 counties (Camp, Cass, Franklin, Gregg, Harrison, Hopkins, Marion,
Morris, Rains, Titus, and Upsher Counties) in northeast Texas and one parish (Caddo Parish) in northwest
Louisiana (Figure 1). Primary lotic contributors to the watershed include Big Cypress Creek, Lilly Creek,
Little Cypress Creek, Black Cypress Bayou, James Bayou, and Frazier Creek. Lentic systems within the
watershed include Cypress Springs Reservoir, Bob Sandlin Reservoir, Monticello Reservoir, Lake O’ The
Pines, Caddo Lake, Welsh Reservoir, Ellison Creek Reservoir, Barnes Creek Reservoir, and Johnson
Creek Reservoir (TWC, 1989a). Climate for the area is considered subtropical, characterized by hot,
humid summers and mild winters. Normal temperatures range from 44 F (6.7 C) in the winter to 84 F
(28.9 C) in the summer (USACOE, 1987). Average annual precipitation for the area is approximately 45
inches (114.3 cm). The majority of the watershed is located within the pineywoods ecological region
which is characterized by pine-hardwood forest in upland areas and bottom land hardwoods in flood plain
areas. Vegetation in the upland areas is dominated by short leaf and loblolly pine, red oak, overcup oak,
blackjack oak, post oak, hickory, maple, beech, sweet gum and sycamore, while vegetation in the bottom
land areas is typically dominated by willow oak, water oak, black willow, bald cypress, blackgum,
sweetgum, river birch, green ash, water hickory, winged elm, and water elm (Cloud, 1995). The extreme
western portion of the watershed is located within the post oak savannah ecological region. Vegetation
commonly associated with this region includes blackjack oak, eastern red cedar, mesquite, black hickory,
live oak, sandjack oak, cedar elm, hackberry, yaupon, poison oak, hawthorn, supplejack, trumpet creeper,
dewberry, coral berry, little bluestem, silver bluestem, sand lovegrass, beaked panicum, three-awn,
sprangle grass, and tickclover in the sandy uplands and beech, overcup oak, cherrybark oak, elm,
sweetgum, sycamore, southern magnolia, white oak, black willow, bald cypress, swamp laurel oak, bush
palmetto, common elderberry, southern arrowwood, crossvine, greenbriar, and blackberry in the lower
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flood plain areas (McMahan ef al., 1984). The entire watershed provides viable habitat to support 98
species of fish, including five species listed by the State of Texas as threatened; 31 amphibian species; 60
species of reptiles, of which four are listed by the State of Texas as threatened and one is listed by the
U.S. Department of Interior (DOI) as threatened; 55 mammal species, including one species listed as
threatened by the State of Texas and one listed as threatened by both the State and the DOI; and over 300
avian species of which five are listed as threatened by the State of Texas, two are listed as threatened by
both the State and the DOI, and two are classified by both the State and the DOI as endangered species
(Appendix A, Tables IA - IE).

The watershed’s topography is considered irregular with rolling, hilly, uplands dissected by broad flat
floodplain. Soils in the upland areas are characterized as sandy to sandy loam, while soils in the flood-
plains are dominated by clays (Cloud,1995). Elevation for the watershed ranges from approximately 160
feet (48.8 meters) to approximately 600 feet (182.9 meters) above mean sea level. Hydrogeologically, the
majority of the watershed is located within the East Texas Basin, a structural formation formed by the
Sabine Uplift. The primary groundwater systems underlying the watershed include the Queen City Sand
and the Carrizo - Wilcox Aquifers. The Queen City Sand formation is composed of sand, loosely cemented
sandstone, and interbedded clays. Groundwater retained in this aquifer usually contains total dissolved
solids (TDS) <1000 mg/1, low pH, and a high iron content. This aquifer overlays the Carrizo - Wilcox
Aquifer which is composed of the Carrizo Sand Formation and the Wilcox Group. These two geologic
units are hydrologically connected and collectively are composed of ferruginous, cross bedded sand with
clay, sandstone, silt, lignite, and gravel. Groundwater from this aquifer is high in iron (> 5 mg/1 in some
areas which exceeds the secondary safe drinking water standard of 3 mg/1), chlorides (> 300 mg/I in some
areas which exceeds the secondary safe drinking water standard of 300 mg/1), sulfates (> 300 mg/I in
isolated areas which exceeds the secondary drinking water standard of 300 mg/1) and low in TDS (< 1000
mg/1). Flow for both aquifers is in a south-southeast direction except where influenced by surface water
bodies and draw down from pumpage (TWC, 1989b).

An estimated 593,564 people live in the counties and parish encompassed by the watershed (Appendix A,
Table II). The economy of the area relies primarily on gas and oil exploration and production, lignite coal
mining, forestry and associated industries, agriculture, and iron ore mining and related industries. Wastes
attributed to forestry and its associated industries such as timber processing and paper mills include heavy
metals, spent solvents, dioxins, bleaches, phenols, petroleum hydrocarbons, and spent acids (Shineldecker,
1992). In general, wastes associated with mining include slag, fly ash, PAH compounds, heavy metals,
toxic inorganics, and spent acids. Lignite coal mined from East Texas is usually high in sulphur, selenium
and arsenic (OTA, 1979; TWC, 1989b). Specific wastes associated with metallic ore mining include
sulfuric acid, lead, copper, cadmium, arsenic, sulfates, thorium, vanadium, and cyanide (Shineldecker,
1992). Wastes attributed to gas and oil production and exploration include brine, corrosion inhibitors,
drilling fluids, spent acids, heavy metals, and biocides (TWC, 1989b; Shineldecker, 1992). Typical
constituents of oil field brine include sodium (12,000 - 150,000 mg/1), potassium (30 - 4000 mg/1), lithium
(1 - 50 mg/1), rubidium (0.1 - 7 mg/1), cesium (0.01 - 3 mg/1), calcium (1000 - 120,000 mg/1), magnesium
(500 - 25,000 mg/1), strontium (5 - 5000 mg/1), barium (0 - 1000 mg/1), chloride (20,000 - 250,000 mg/1),
bromine (50 - 5000 mg/1), and iodine (1 - 300 mg/1), while in addition to PAHs, aliphatic hydrocarbons,
sulfides, cadmium, chromium, lead, and zinc, crude oil can also contain elevated levels of mercury (TWC,
1989b).

Located at the upper portion of the watershed, Cypress Springs Reservoir (USGS Hydrologic Unit
11140305; Texas River Segment No. 0405) is an impoundment of the headwaters of Big Cypress Creek
in Franklin County, Texas (Figure 2). This reservoir was constructed in 1971 to supply water to the
surrounding area. The drainage area for the reservoir consists of approximately 75 square miles (194.3
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square kilometers). The reservoir is approximately 25 miles (40 kilometers) long and has a conservation
surface area of 3,400 acres (13.75 square kilometers) and a conservation storage capacity of 72,800 acre-
feet (89.76 cubic hectometers) (USACOE, 1981). Normal pool elevation is 378 feet (115.21 meters).
Between 1974 and 1990, the largest volume of surface water contained within the reservoir was 85,050
acre-feet (104.87 cubic hectometers), while the lowest amount of water retained in the system was 59,440
acre-feet (73.29 cubic hectometers) (Buckner and Shelby, 1990). In addition to public water supply, other
designated uses of the reservoir by the State of Texas include contact recreation and high aquatic life. State
water quality standards for this reservoir designate that water temperature should not exceed 93 F
(33.89 C), dissolved oxygen (DO) content should be no lower than 5.0 mg/l, pH should range from 6 -
8.5, chloride levels should not exceed 100 mg/l, and sulfate content should be less than 500 mg/l
(TNRCC, 1996b). As of 1998, no facilities were permitted to discharge effluent directly into the reservoir
(Prater, pers. comm., 1998).

In 1959, Lake O’ The Pines (USGS Hydrologic Unit 11140305; Texas River Segment No. 0403), located
mid-watershed, was constructed in Marion County, Texas, as an impoundment of Big Cypress Creek for
flood control and water supply purposes (Figure 3). The drainage area for the reservoir encompasses 850
square miles (2201.50 square kilometers). This reservoir is approximately 31 miles (50 kilometers) long
and one mile (1.6 kilometers) wide and contains a conservation surface area of 18,700 acres (75.68 square
kilometers), a conservation storage capacity of 254,900 acre-feet (314.29 cubic hectometers), and a flood
control capacity of 587,200 acre-feet (724.02 cubic hectometers) (USACOE, 1981). Normal pool elevation
is 228.5 feet (69.65 meters) (TNRCC, 1996b). Between 1959 and 1996, the largest volume of surface
water contained in the reservoir was 694,360 acre-feet (856.15 cubic hectometers), while the lowest
amount of water retained in the system was 210,100 acre-feet (259.05 cubic hectometers) (Gandara et al.,
1997). State water quality standards for this reservoir designate that water temperature should not exceed
93 F (33.89 C), DO content should be no lower than 5.0 mg/l, pH should range from 6 - 8.5, chloride
levels should not exceed 80 mg/l, sulfate concentrations should be less than 50 mg/l, and TDS levels
should not exceed 300 mg/l (TNRCC, 1996b). As of 1998, facilities permitted to discharge effluent into
the reservoir included the City of Lone Star (Texas Permit No. WQ12411-001; NPDES Permit No.
TX0088081; permitted to discharge 0.44 million gallons/day (MGD)), the R. Curlee Apartment Complex
(Texas Permit No. WQ11260-001; NPDES Permit No. TX0066338; permitted to discharge 0.002 MGD),
and the E.J. Slampa Apartment Complex (State Permit No. WQ12563-001; NPDES Permit No.
TX0090697; 0.02 MGD permitted discharge). Lone Star Steel (Texas Permit No. WQ0348-000; NPDES
Permit No. TX0000027), a steel manufacturing and pipe fabrication facility, is permitted to discharge into
Big Cypress Creek immediately upstream of the reservoir. This facility has five permitted outfalls (Outfall
001 - 005). Outfall 001 is permitted to discharge 0.5 MGD of domestic wastewater; Outfall 002 is
permitted to discharge up to 70 MGD of process wastewater, cooling water, boiler blowdown and
stormwater; Outfall 003 is permitted to discharge stormwater at flow-variable rates; Outfall 004 is
permitted to discharge non-contact cooling water and stormwater up to 55 MGD; and Outfall 005 is
permitted to discharge filter backwash and stormwater up to 0.75 MGD. Outfalls 001 and 002 discharge
into Big Cypress Creek, while outfalls 003 - 005 discharge into Ellison Creek Reservoir. In addition to
public water supply, other designated uses of Lake O’ The Pines by the State of Texas include contact
recreation and high aquatic life. However, concentrations of dissolved zinc detected in the surface water
have occasionally exceeded the criterion established to protect aquatic life in the lower half of the reservoir
(TNRCC, 1996b). To address this issue, a total maximum daily load (TMDL) study by the Texas Natural
Resource Conservation Commission (TNRCC) was scheduled to begin in the 1998 fiscal year (TNRCC,
1998).

Located at the base of the watershed, Caddo Lake (Texas River Segment No. 0401), a Ramsar
internationally designated wetland (Figure 4), was originally formed during the early nineteenth century
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as a natural impoundment of Cypress Creek resulting from a massive natural log jam. In 1914, a dam was
constructed in Caddo Parish, Louisiana, so that the lake could be employed as a water supply source for
the surrounding communities. This structure was replaced in 1971. The lake is approximately 12 miles
(19 kilometers) long and has a conservation surface area of 26,800 acres (108.46 square kilometers) and
a conservation storage capacity of 128,810 acre-feet (158.82 cubic hectometers) (USACOE, 1981). State
water quality standards designate that water temperature should not exceed 90 F (32.22 C), DO levels
should be no lower than 5.0 mg/l, pH should range from 6 - 8.5, chloride and sulfate concentrations
should not exceed 25 mg/l, and TDS levels should not exceed 100 mg/l. In addition to public water
supply, other designated uses of the lake by the State of Texas include contact recreation and high aquatic
life (TNRCC, 1996b). Facilities permitted to discharge into the lake as of 1998 included Longhorn Army
Ammunition Plant (Texas Permit No. WQ202713; NPDES Permit No. TXO0000035; permitted to
discharge 0.5 MGD), the Woodridge Limited Apartment Complex (Texas Permit No. WQ13474-001;
NPDES Permit No. TX0104761; permitted to discharge 0.004 MGD), Swepco-Liberman (Louisiana
Permit No. LA0002917), Athens Caddo Brick Co. (Louisiana Permit No.LLA0045888), Caddo Parish
Water District No.1 (Louisiana Permit No. LA0068438), Mooringsport STP (Louisiana Permit No.
LA0044652), and the Mud Puppies Club (Louisiana Permit No. LAGS530745). Longhorn Army
Ammunition Plant is a federally owned armament production facility that occupies approximately 8,493
acres (3,437.12 square hectometers) immediately southwest and up gradient of Caddo Lake. This facility
began munitions production in 1942 and continued operations until deactivated in 1997. In 1990, the
facility was placed on the CERCLA National Priority List (NPL) because of groundwater and soil
contamination by chlorinated solvents and spent explosives. In addition to the permitted facilities
mentioned above, other potential sources of discharge into the lake include several active gas/oil
production wells located in and around Caddo Lake. Minor crude oil and brine spills in the lake have been
reported from these facilities since 1971 (TPWD, 1998). In 1995, the State of Texas imposed a fish
consumption advisory at the lake for largemouth bass (Micropterus salmoides) and freshwater drum
(Aplodinotus grunniens). This advisory was established because fish collected from the lake were detected
to have total mercury levels comparable to the U.S. Food and Drug Administration (USFDA) total
mercury action level of 1.0 mg/kg wet weight (USFDA, 1992). The scope of this advisory recommended
that adults should consume no more than two meals, not to exceed 8 oz (226.80 g) of fish per serving per
month, while children should consume no more than two meals, not to exceed 4 oz (113.40 g) of fish per
serving per month (TDH, 1997). In the upper end of the lake, dissolved mercury concentrations in surface
water samples have been detected to occasionally exceed the aquatic life protection criterion. In addition,
dissolved zinc concentrations have been detected in surface water samples in excess of the aquatic life
protection criterion in the middle of the lake (TNRCC, 1998).

MATERIALS & METHODS

Surface water collection sites were selected above FM 115, at Panther Creek, and at Whippoorwill Bay
in Cypress Springs Reservoir (Figure No. 2). At Lake O’ The Pines, sampling sites were selected in the
vicinity of Lone Star Steel, at the SH 155 Marina, and at Copeland Creek (Figure No. 3). In Caddo Lake,
surface water sampling sites were selected at Harrison Bayou, South Little Green Break, and Clinton’s
Chute (Figure No. 4). Water temperature, DO, TDS, pH, and hardness were measured at depths of 1.0
and 3.0 feet (0.3 and 0.9 m) at each site with a Hydrolab Scout 2 submersible multiparameter water
quality monitoring instrument (serial no. 12206). A single surface water grab sample was collected from
each site (for a key to surface water samples, see Appendix B, Table III). All water samples were
collected by direct immersion of rinsed polyethylene containers. Once collected, the samples were filtered
on-site through a 0.45 micron mesh filter , preserved with nitric acid, and chilled. The samples were then
submitted to a contract laboratory through the U.S. Fish and Wildlife Service’s Patuxent Analytical
Control Facility to be analyzed for dissolved aluminum, arsenic, barium, beryllium, boron, cadmium,
chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, strontium,
vanadium, zinc, and total mercury content. Mercury concentrations were determined through the use of



a cold vapor atomic absorption spectrophotometer. Arsenic and selenium concentrations were determined
by a graphite furnace technique, while all other metal concentrations were determined by inductively
coupled plasma spectroscopy (for a synopsis of analytical methods, see Appendix C, method codes
MCO001, MC003, MCO005, and MCO007). The results of the analyses (Appendix D, Tables VII - IX) were
compared to screening criteria protective of aquatic life and statistically analyzed using mainframe
statistical analysis systems (SAS) to determine differences among the three lentic systems.

Sediment core samples were collected from the same three sites as mentioned above at Cypress Springs
Reservoir and Lake O’ The Pines (Figures No. 2 and No. 3). At Caddo Lake, sediment samples were
collected at Harrison Bayou, South Little Green Break, and Goose Prairie (Figure No. 4). All sediment
samples were collected to a depth of approximately 10 inches (25.4 cm), composited, and placed on ice
until chilled. These samples were then submitted to a contract laboratory through the U.S. Fish and
Wildlife Service’s Patuxent Analytical Control Facility. Two samples from each collection site were
analyzed for total aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron,
magnesium, manganese, mercury, molybdenum, nickel, lead, selenium, strontium, vanadium, and zinc
content. Mercury concentrations were determined through the use of a cold vapor atomic absorption
spectrophotometer. Arsenic and selenium concentrations were determined by a graphite furnace technique,
while all other metal concentrations were determined by inductively coupled plasma spectroscopy (for a
synopsis of analytical methods, see Appendix C, method codes MC001, MC002, MC004, and MC006).
A single sediment sample from each sampling site was analyzed for the PAH compounds 1,2-5,6-
dibenzanthracene, 1,2-benzanthracene, 1-methylnaphthalene, 1-methylphenanthrene, 2,3,5-
trimethylnaphthalene, 2,6-dimethylnaphthalene, 2-methylnaphthalene, C1-fluoranthenes & pyrenes, C1-
chrysenes, C1-dibenzothiophenes, C1-fluorenes, C1-naphthalenes, C1-phenanthrenes, C2-chrysenes, C2-
dibenzothiophenes, C2-fluorenes, C2-naphthalenes, C2-phenanthrenes, C3-chrysenes, C3-
dibenzothiophenes, C3-fluorenes, C3-naphthalenes, C3-phenanthrenes, C4-chrysenes, C4-naphthalenes,
C4-phenanthrenes, acenaphthalene, acenaphthene, anthracene, benzo(a)pyrene, benzo(b)fluoranthene,
benzo(e)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, biphenyl, chrysene, dibenzothiophene,
fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, perylene, phenanthrene, and pyrene.
Sediment samples collected from above FM 115 and Whippoorwill Bay at Cypress Springs Reservoir,
from Lone Star Steel and Copeland Creek at Lake O’ The Pines, and from Harrison Bayou and Goose
Prairie at Caddo Lake were also analyzed for the aliphatic hydrocarbons n-decane, n-docosane, n-
dodecane, n-dotriacontane, n-eicosane, n-heneicosane, n-hentriacontane, n-heptacosane, n-heptadecane,
n-hexacosane, n-hexadecane, n-nonacosane, n-nonadecane, n-octacosane, n-octadecane, n-pentacosane,
n-pentadecane, n-tetracosane, n-tetradecane, n-tetratriacontane, n-triacontane, n-tricosane, n-tridecane,
n-tritriacontane, n-undecane, phytane, and pristane. PAH and aliphatic hydrocarbon concentrations were
determined by a petroleum ether extraction technique (for a synopsis of analytical method, see Appendix
C, method code MSCL004). A single sediment sample collected from each of the lentic bodies was
analyzed for the organochlorine constituents hexachlorobenzene (HCB), total-polychlorinated biphenyls
(PCB), alpha-benzene hexachloride ( -BHC), -chlordane, beta-benzene hexachloride ( -BHC), cis-
nonachlor, delta-benzene hexachloride ( -BHC), dieldrin, endrin, gamma-benzene hexachloride ( -
BHC), -chlordane, heptachlor epoxide, mirex, o,p’- dichlorodiphenyldichloroethane (DDD), o,p’-
dichlorodiphenyldichloroethylene (DDE), o,p’- dichlorodiphenyltrichloroethane (DDT), oxychlordane,
p,p’-DDD, p,p’-DDE, p,p’-DDT, toxaphene, and trans-nonachlor to determine residual pesticide content
(for a key to sediment samples, see Appendix B, Table IV). Organochlorine concentrations were
determined by the same petroleum ether procedure as mentioned above (for a synopsis of analytical
method, see Appendix C, method code MSCL004). The results of the analyses were compared to
screening criteria protective of aquatic life. In addition, the results of the metals analysis and the aliphatic
hydrocarbon analysis were statistically analyzed using mainframe SAS to determine differences among
the three lentic bodies.



Fish samples were collected from the same three sites at Cypress Springs Reservoir and Lake O’ The
Pines as previously discussed (Figures No. 2 and No. 3). At Caddo Lake, in addition to Harrison Bayou,
South Little Green Break, and Goose Prairie, fish samples were collected at the South Shore, at Miller’s
Point, at Taylor Island, at Mossey Break, at Clinton’s Chute, and in the vicinity of Uncertain (Figure No.
4). The fish collected included gizzard shad (Dorosoma cepedianum), Kkillifish (Fundulus sp.),
mosquitofish (Gambusia affinis), black bullhead (Ictalurus melas), channel catfish (Ictalurus punctatus),
bluegill sunfish (Lepomis macrochirus), redear sunfish (Lepomis microlophus), spotted bass (Micropterus
punctulatus), largemouth bass (Micropterus salmoides), white bass (Morone chrysops), and spotted gar
(Lepisosteus oculatus) (for a key to fish samples, see Appendix B, Table V). All fish samples were
collected using a direct-current-boom electrofishing boat. Once collected and prepared, whole body
composite and fillet samples were wrapped in aluminum foil, preserved in ice, and frozen. All samples
were submitted to contract laboratories through the U.S. Fish and Wildlife Service’s Patuxent Analytical
Control Facility for analysis. Whole body composite fish samples collected from the three lentic bodies
and fillet samples collected from Caddo Lake were analyzed for the same total metal constituents as were
the sediment samples. Fillet samples from Cypress Springs Reservoir and Lake O’ The Pines were
analyzed for total mercury content to address human health concerns. As with the surface water and
sediment samples, mercury concentrations were determined through the use of a cold vapor atomic
absorption spectrophotometer. Arsenic and selenium concentrations were determined by a graphite furnace
technique, while all other metal concentrations were determined by inductively coupled plasma
spectroscopy (for a synopsis of analytical methods, see Appendix C, method codes MC001, MCO002,
MCO004, and MCO006). In addition to the metals analyses, whole body composite samples and fillet samples
were analyzed for the organochlorine compounds HCB, total-PCB, -BHC, -chlordane, -BHC,
dieldrin, endrin, -BHC, -chlordane, heptachlor epoxide, mirex, o,p’-DDD, o,p’-DDE, o,p’-DDT,
oxychlordane, p,p’-DDD, p,p’-DDE, p,p’-DDT, toxaphene, and trans-nonachlor. Organochlorine content
was determined by a soxhlet extraction technique (for a synopsis of analytical method, see Appendix C,
method codes MCO010 and MSCLO0O01). Data resulting from these analyses were compared with criteria
protective of fish and wildlife. In addition, the results of the metals analyses were statistically analyzed
using mainframe SAS to determine differences in metal concentrations present in fish among the three
lentic systems.

Whole body composite macroinvertebrate samples consisted of grass shrimp (Palaemonetes sp.) collected
from macrophytic vegetation using dip nets (for a key to macroinvertebrate samples, see Table VI,
Appendix B). These samples were collected from Caddo Lake at Harrison Bayou, South Shore, Millers
Point, Taylor Island, Mossey Break, Goose Prairie, and Uncertain. Once collected, these samples were
placed on ice until frozen and then submitted to a contract laboratory through the U.S. Fish and Wildlife
Service’s Patuxent Analytical Control Facility for analysis. Samples collected from Harrison Bayou,
Millers Point, Taylor Island, Mossey Break, and Goose Prairie were analyzed for the same total metal
constituents as mentioned above, while samples collected from the South Shore and Uncertain were
analyzed only for mercury content (for a synopsis of analytical methods, see Appendix C, method codes
MCO001, MC002, MC004, and MC006). The resulting data were compared with criteria protective of fish
and wildlife resources.

Seven great blue heron nestlings (Ardea herodias) were collected from Caddo Lake using a 12-gauge
shotgun with steel shot. Once collected, these avian samples were preserved in ice until frozen. The
samples were then submitted to a contract laboratory through the U.S. Fish and Wildlife Service’s
Patuxent Analytical Control Facility for analysis. The livers from these fledglings were analyzed for the
same metal constituents as mentioned above, while the feathers and kidneys were analyzed for total
mercury content (for a synopsis of analytical methods, see method codes Appendix C, MC001, MC002,
MCO004, and MCO006). In addition, tissues from the fledgling samples were submitted to the National
Biological Service, National Wildlife Health Center for histological analyses. Data resulting from these
analyses were compared with previous studies conducted by the USFWS to evaluate contaminant trends.
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RESULTS & DISCUSSION
Metals In Surface Water

Average surface water temperature, DO, TDS, pH, and hardness are summarized by depth from the three
lentic bodies in Summary Table 1. The measured parameters fell within the State of Texas surface water

Summary Table 1. Measured Water Quality Parameters Within The Three Lentic Systems. (Note:
DO is dissolved oxygen; and TDS is total dissolved solids)

System Cypress Springs Lake O’ The Pines Caddo Lake

Depth, meters 0.3 0.9 0.3 0.9 0.3 0.9
Temperature, C 30.5 29.9 30.6 29.6 26.8 26.5
DO, mg/1 8.51 7.88 7.46 6.68 3.73 3.58
pH 8.32 7.97 7.74 7.66 6.42 6.37
TDS, mg/l 85.8 85.1 97.8 97.4 67.3 67.2
Hardness, mg/1 35.0 34.6 37.0 37.0 28.0 27.3

quality standards established for each lentic body with the exception of DO at Caddo Lake. The low DO
values could be attributed to normal biological respiration occurring within the shallow back waters where
the samples were collected. However, minor fish kills which occurred in the summer of 1986 and the
summer of 1993 at the lake were attributed to DO levels less than 0.5 mg/l1 (TPWD, 1998).

In analyzing the surface water samples, a one-way ANOV A (analysis of variance) with multiple range tests
(MRTs) was used to determine statistical differences in metal concentrations present in the surface water
among all three systems. Where concentrations were not detected above the detection limits, the
conservative approach of selecting the numeric value immediately below the detection limit was employed
for statistical purposes. The mean ( ) concentrations, reported in mg/l, for each metal analyte detected
in surface water samples from the lentic bodies are reported in Summary Table 2.

Tukey’s Studentized MRT (p  0.05) and the Student-Newman-Keuls MRT (p  0.05) demonstrated that
there were no statistically significant differences in mean aluminum, boron, cadmium, chromium, copper,
iron, manganese, nickel, strontium, vanadium, and zinc concentrations present in surface water samples
collected from the three lentic systems. Barium concentrations were statistically significantly higher in
Lake O’ The Pines and Caddo Lake when compared to Cypress Springs Reservoir (p < 0.05). Mean
magnesium concentrations were statistically significantly higher in Cypress Springs Reservoir and Lake
O’ The Pines in comparison to Caddo Lake (p < 0.05). Arsenic, beryllium, mercury, molybdenum, and
selenium concentrations were below the detection limits (bdl) in all of the surface water samples collected.
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Summary Table 2. Results Of Surface Water - Metals Analyses For The Three Lentic Systems.
(Note:  (mean) is average concentration in mg/l; and bdl is below the analytical detection limit)

Analyte Cypress Springs Lake O’ The Pines Caddo Lake
( in mg/l) ( in mg/l) (  in mg/l)
Aluminum (Al) bdl 0.027 0.027
Arsenic (As) bdl bdl bdl
Boron (B) 0.076 0.085 0.080
Barium (Ba) 0.028 0.046 0.056
Cadmium (Cd) 0.006 0.006 0.006
Chromium (Cr) bdl 0.002 0.001
Copper (Cu) 0.002 0.002 bdl
Iron (Fe) 0.031 0.370 0.717
Magnesium (Mg) 3.697 4.053 2.290
Manganese (Mn) 0.002 0.180 0.102
Nickel (Ni) 0.002 0.003 0.002
Strontium (Sr) bdl 0.089 0.279
Vanadium (V) bdl 0.001 bdl
Zinc (Zn) 0.004 0.005 0.005

Chronic aquatic life criteria addressing priority contaminants have been established by the federal and state
governments to assure the protection of aquatic life within inland waters. These values are based on known
chronic toxicological trends and are non-enforceable guidelines. Chronic toxicity refers to the effects of
a toxicant to an organism or group of organisms over an extended time period and may be expressed in
terms of an observation period equal to the lifetime of an organism or to the time span of more than one
generation. Chronic effects often occur in the population rather than in the individual organism. Some
chronic toxicological effects may be reversible, but most are not (USEPA, 1986). In the State of Texas,
the equation e(©-782[In hardness)1-3.4%0) j¢ yy5ed to determine chronic aquatic life protection criteria for cadmium
detected in surface water (TNRCC, 1996a). Incorporating the measured hardness values into this equation,
resulted in criteria values for cadmium of 0.0005 mg/1 in Cypress Springs Reservoir and Lake O’ The
Pines, and 0.0007 mg/1 for Caddo Lake. The detected concentrations were above these criteria in all three
lentic bodies. Cadmium is listed as a priority pollutant by the United States Environmental Protection
Agency (USEPA). This element is a rare heavy metal that is usually found as a natural component of zinc
ores. Cadmium is used in electroplating, pigment production, and the manufacturing of plastic stabilizers
and batteries (USEPA, 1994). Major anthropogenic sources releasing cadmium into an aquatic
environment include particulate emissions from smelter operations, effluent and sludges discharged from
municipal and industrial wastewater treatment facilities, fertilizers, and particulate emissions associated
with incomplete combustion of fossil fuels (Eisler, 1985). Biologically, cadmium is neither essential nor
beneficial (Hodges, 1977). The tolerable limit for cadmium consumed by humans is 0.055 mg/person/day.
Chronic exposure in humans can result in renal damage and neurological birth defects (USEPA, 1994).

Lead concentrations were not detected above the detection limits in any of the water samples collected.
Employing the measured hardness values into the equation e!!273 !t hardness1-4.709) “which is used to calculate
the State of Texas chronic aquatic life protection criteria for lead in surface waters, provided a criteria
value of 0.0008 mg/1 in Cypress Springs Reservoir, a value of 0.0009 mg/I in Lake O’ The Pines, and a
criteria value of 0.0006 mg/1 in Caddo Lake. The detection limits (dl = 0.01 mg/l) used in the analysis
of lead were greater than the surface water criteria in all three systems. Lead is listed by the USEPA as
a priority pollutant and is a nonspecific poison affecting all body systems (Pain, 1996). It is used in
pigment and chemical production, metallurgy and steel manufacturing, storage batteries, ceramics,
petroleum products, cable sheathing, pipe and sheeting fabrication, ammunition production, and building
construction. Major anthropogenic sources releasing lead into the environment include particulate
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emissions from the incomplete combustion of fossil fuels in automobiles, emissions from lead mining and
smelting operations, and discharges from municipal and industrial wastewater treatment facilities. When
discharged into an aquatic environment, lead and its compounds tend to concentrate in the water surface
micro layer, especially when surface organic materials are present in thin films, with the majority
precipitated to the sediment as carbonates or hydroxides. In water, dissolved lead is typically more toxic
than total lead and organic lead compounds are usually more toxic than inorganic lead compounds. (Eisler,
1988b).

Of the other detected metallic analytes, chromium, copper, nickel, and zinc concentrations were below
the State of Texas chronic aquatic life protection criteria in surface water samples collected from all three
lentic systems (TNRCC, 1996b). Aluminum, boron, and iron concentrations were below the federal
ambient water quality criteria in all three systems (for water quality screening criteria, see Appendix J,
Table XL). Barium, magnesium, manganese, strontium, and vanadium do not currently have designated
acute or chronic aquatic life protection screening values for surface water. However, detected barium
concentrations in all samples were below 50.0 mg/1 which, according to the USEPA (1986), represents
the concentration where toxicological effects to aquatic organisms would begin to be detected. According
to Roline and Boehmke (1981), magnesium concentrations in water would have to exceed 500.0 mg/1 to
be toxic to aquatic organisms. Magnesium concentrations detected in the surface water samples from the
watershed were well below this value. Detected manganese concentrations exceeded the worldwide
average manganese concentration of 0.035 mg/1 for surface waters in lentic and lotic systems (Wetzel,
1983). However, according to Wetzel (1983), surface water run-off from forest litter, especially
coniferous forests, is often high in manganese. Strontium is used in metallurgy and the manufacturing of
fireworks, red signal flares, and tracer bullets (Merck Index, 1983). Detected concentrations in Lake O’
The Pines and Caddo Lake, systems which contain possible sources, were not statistically different than
concentrations detected in Cypress Springs Reservoir, a system which has no known dischargers.
Vanadium is a widespread element occurring naturally as a component of over 65 different minerals (Sax
and Lewis, 1987). This element is used in the manufacturing of rust resistant steel and alloys, as a catalyst
in synthetic rubber production, in x-rays, and to reduce mercuric and ferric salts to mercurous and ferrous
salts in industrial processes (Merck Index, 1983; Sax and Lewis, 1987). The water sample collected in
the vicinity of Lone Star Steel at Lake O’ The Pines was the only sample which contained detectable levels
of vanadium and this concentration was detected at the detection limit.

Metals In Sediment

Metal concentrations in sediment samples collected from the three lentic bodies (for results, see Appendix
E, Tables X - XII), reported in dry weight, were statistically analyzed using a nested ANOVA with the
same MRTs used in the analyses of the surface water data. Where concentrations were below the detection
limits, the conservative approach of selecting the numeric value immediately below the detection limit was
employed for statistical analyses. For each lentic body, the mean dry weight values for the metal analytes
are reported in mg/kg in Summary Table 3.

Both MRTs demonstrated that there were no statistically significant differences in mean arsenic, boron,
copper, iron, manganese, nickel, or selenium concentrations between the three systems (p  0.05).
Sediments collected from Caddo Lake demonstrated statistically significantly higher in mean
concentrations of aluminum, barium, beryllium, mercury, magnesium, lead, strontium, and vanadium than
the other two systems (p < 0.05). Mean cadmium and zinc concentrations in Lake O’ The Pines
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Summary Table 3. Results Of Sediments - Metals Analyses For The Three Lentic Systems. (Note:
is average concentration in mg/kg dry weight; and bdl is below the analytical detection limit)

Analyte Cypress Springs Lake O’ The Pines Caddo Lake
( in mg/kg dry weight) ( in mg/kg dry weight) ( in mg/kg dry weight)

Al 7110.0 6256.0 14,348.0

As 2.318 4.005 3.492

B bdl bdl 2.535

Ba 97.62 103.26 162.93

Be 0.570 0.840 1.018

Cd 0.507 1.142 0.732

Cr 9.632 9.473 16.870

Cu 7.343 7.430 12.662

Fe 10,890.0 15,935.0 14,615.0

Hg 0.066 0.108 0.237

Mg 928.80 475.60 1,148.10

Mn 325.63 377.41 224.07

Ni 9.288 8.527 14.428

Pb 11.182 39.323 51.245

Se bdl 0.610 0.475

Sr 15.317 13.555 30.738

\" 20.957 26.132 35.690

7n 29.110 164.050 59.720

sediments were statistically higher than in samples collected from Cypress Springs Reservoir and Caddo
Lake (p < 0.05). Molybdenum concentrations were below the detection limits in all sediment samples
collected. Cadmium concentrations were detected in excess of the Ontario Ministry of the Environment
lowest effect level (LEL) of 0.6 mg/kg in sediments collected from Lake O’ The Pines and Caddo Lake
(Persaud et al., 1993). The LEL indicates a level of sediment contamination which is non-toxic to the
majority of benthic organisms whereas the severe effect level (SEL) is indicative of contaminated
sediments that would be detrimental to a majority of benthic organisms (Persaud ef al., 1993). These
values are non-enforceable guidelines developed to assist in assessing the degree of contamination.
Sediment samples collected in the vicinity of Lone Star Steel at Lake O’ The Pines also contained
detectable concentrations of cadmium (= 2.12 mg/kg dry weight) which were in excess of the State of
Texas sediment screening criteria 85th percentile value for reservoirs of 2.0 mg/kg (TNRCC, 1996b). The
85th percentile values were established by the State of Texas as screening criteria to assure the protection
of aquatic life (TNRCC, 1996b). In the United States, background soil concentrations of cadmium are <
1.0 mg/kg and average approximately 0.4 mg/kg nation wide (Menzer, 1991).

Mercury concentrations detected in sediment collected from Caddo Lake exceeded the State of Texas
sediment screening criteria 85th percentile value of 0.16 mg/kg (TNRCC, 1996b) and the Ontario LEL
of 0.2 mg/kg (Persaud ef al., 1993). Sediment collected from the Goose Prairie sampling site had the
highest concentrations ( = 0.483 mg/kg dry weight). In addition, mercury concentrations in sediment
collected from Lake O’ The Pines in the vicinity of Lone Star Steel ( = 0.187 mg/kg dry weight) also
exceeded the State’s reservoir sediment screening criteria. Mercury is listed by the USEPA as a priority
pollutant and unlike most other metals, it not only concentrates in biological tissue, but also biomagnifies
in concentration in successive trophic levels. Mercury is used in metallurgy, the preparation of dental
amalgams, in switches, thermometers, barometers, pharmaceuticals, and the electrolytic preparation of
chlorine. Historically, this element was also used in anti-fouling and mildew proofing of paints and in
controlling fungal diseases in plants. Major anthropogenic sources of mercury include pulp and paper
mills, mining and reprocessing of metallic ores, and the incomplete combustion of fossil fuels (Eisler,
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1987a). Mercury can exist in many forms in an aquatic environment, including elemental mercury,
dissolved and particulate ionic forms, and/or dissolved and particulate methylmercury (Wiener and Spry,
1996). The production of methylmercury by methylation of inorganic mercury in sediments and in the
water column is dependant on microbial activity, nutrient content, pH, and alkalinity (Eisler, 1987a;
Wiener and Spry, 1996).

Lead is a naturally occurring element within the soil (Eisler, 1988b). The measured soil median level of
lead in the United States is 19.0 mg/kg (Shacklette an Boerngen, 1984). Mean lead concentrations in
sediment samples collected from Lake O’ The Pines and Caddo Lake exceeded the nationwide soil median
value and were in excess of the Ontario LEL of 31.0 mg/kg (Persaud er al., 1993). Sediment samples
collected in the vicinity of Lone Star Steel at Lake O’ The Pines ( = 83.27 mg/kg dry weight) and from
Goose Prairie at Caddo Lake (= 113.53 mg/kg dry weight) also exceeded the State of Texas sediment
screening criteria 85th percentile value of 61.5 mg/kg (TNRCC, 1996b). The bioavailability of lead from
sediments to aquatic fauna increases under conditions of low pH, low organic content, low suspended
sediments, and low concentrations of calcium, iron, manganese, zinc, and cadmium salts (Eisler, 1988b).
Depending on the concentration, lead can adversely affect survival, growth, and/or reproduction in all fish
species, but unlike mercury, it does not undergo biomagnification with successive trophic regimes (Eisler,
1988b).

Zinc concentrations in sediment collected from Lake O’ The Pines exceeded the State of Texas 85th
percentile value of 120.0 mg/kg (TNRCC, 1996b) and the Ontario LEL of 120.0 mg/kg (Persaud et al.,
1993). The highest concentrations were detected in sediments collected in the vicinity of Lone Star Steel
(= 375.26 mg/kg dry weight). Zinc is a naturally occurring metallic element found in soil but is also
listed by the USEPA as a priority pollutant. The U.S. soil median level for this element is 48.0 mg/kg
(Shacklette an Boerngen, 1984). Zinc is used in the production of noncorrosive alloys and brass and in
galvanizing steel and iron products. Major anthropogenic sources releasing zinc into the environment
include electroplaters, smelting and ore processors, drainage from active and inactive mining operations,
domestic and industrial sewage, combustion of fossil fuels and solid wastes, road surface runoff, corrosion
of zinc alloys and galvanized surfaces, and erosion of agricultural soils. The majority of zinc introduced
into an aquatic environment is partitioned into the sediment. Bioavailability from sediments is enhanced
under conditions of high DO, low salinity, low pH, and high levels of inorganic oxides and humic
substances. In fish, zinc is essential for normal growth and reproduction; however excess levels can result
in teratogenic effects in developing fish. (Eisler, 1993).

Mean arsenic, chromium, copper, iron, manganese, and nickel concentrations were detected in sediments
from the three lentic bodies in concentrations below the Ontario LEL values. None of the metal
constituents analyzed were detected in concentrations that approached the Ontario SEL values (for
sediment screening criteria, see Appendix J, Table XL). In addition, mean arsenic, barium, chromium,
copper, manganese, nickel, and selenium concentrations were detected in sediments from the three systems
in concentrations below the State screening criteria (for sediment screening criteria, see Appendix J, Table
XL). Sediment screening criteria for aluminum, boron, beryllium, iron, magnesium, strontium, and
vanadium have not been developed by the State of Texas. Detected aluminum, boron, iron, magnesium,
strontium, and vanadium concentrations in sediments from the three systems were all below U.S. soil
median values (for median soil values, see Appendix J, Table XLI). Based on the assumption that mineral
composition of sediments within a watershed reflect the mineral composition of surrounding soils and
recognizing that sediments experience different geophysical processes, the detected concentrations do not
appear to be elevated. Detected beryllium concentrations in sediments were above the U.S. soil median
of 0.63 mg/kg dry weight in Lake O’ The Pines and Caddo Lake, but well within the national range of
< 1.0 - 15.0 mg/kg dry weight (Shacklette and Boerngen, 1984).
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Hydrocarbons In Sediment

Polycyclic aromatic hydrocarbons compounds consist of hydrocarbons arranged in the form of two or
more fused benzene rings in linear, angular, or cluster arrangements which may or may not have
substituted groups attached to one or more of the rings. Lower molecular weight PAHs (molecular weight
< 202.26) contain two or three benzene rings that often exhibit acute toxicity but are generally
noncarcinogenic. High molecular weight PAHs (molecular weight 202.26) contain four to seven benzene
rings and are considered carcinogenic, mutagenic and/or teratogenic to fish, birds, and mammals (Eisler,
1987b). Lower molecular weight PAHs undergo biodegradation more rapidly than heavy molecular weight
PAHs and are more water soluble (USDOD, 1994). Sources of PAHs include coke production in the iron
and steel industry, catalytic cracking in the petroleum industry, manufacturing of carbon black, coal tar
pitch, asphalt, heating and power generation, refuse incineration, open burning, and emissions from
internal combustion engines. Almost all surface waters within the United States contain PAHs in the g/l
and/or ng/l range. Typically, these compounds are released into aquatic environments by petroleum or oil
spills, surface water run-off, industrial and municipal sewage discharges, and deposition of airborne
particulates. PAHs in water may evaporate, disperse in the water column, or become incorporated into
the sediments (Eisler, 1987b). In the PAH - sediment analysis, 93% of the analytical results (367 of 396
possibilities) demonstrated PAH values that were detected at or below the detection limits, consequentially
statistical analyses were not employed in interpreting the PAH data (for analytical results, see Appendix
F, Tables XIII - XV). Of the 44 PAH compounds analyzed, four were detected at or above the analytical
detection limits in sediments collected from Cypress Springs Reservoir, 18 were detected at or above the
detection limits in Lake O’ The Pines, and nine were detected at or above the detection limits in sediments
from Caddo Lake. Detected concentrations, reported in mg/kg dry weight, are summarized for sediments
from each sampling site within the three lentic systems in Summary Table 4.

Of the detected compounds, acenaphthalene, anthracene, Cl-naphthalene, fluoranthene, 1-
methylnaphthalene, 2-methylnaphthalene, naphthalene, and phenanthrene are low molecular weight PAHs.
Benzo(g, i, i)perylene, benzo(k)fluoranthene, perylene, and pyrene are heavy molecular weight compounds.
Benzo(e)pyrene, chrysene, and indeno(1,2,3-cd)pyrene are heavy molecular weight PAH compounds that
are considered weak carcinogens. Benzo(b)fluoranthene, 1,2,5,6-dibenzanthracene, and 1,2-
benzanthracene are carcinogenic heavy molecular weight compounds, while benzo(a)pyrene is a heavy
molecular weight PAH that is considered strongly carcinogenic (Eisler, 1987b; Merck Index, 1983;
Verschueren, 1983). All of these compounds are considered semi-volatile (TNRCC, 1996b).

According to Long and others (1995), the low effects range (ER-L) of a detected chemical represents the
lower 10th percentile of toxicological effects data for that specific chemical, whereas the median effects
range (ER-M) represents the toxicological effects data for the chemical at the 50th percentile.
Concentrations detected below the ER-L represent a value where minimal effects would be expected,
whereas concentrations detected at or above the ER-L but below the ER-M, represent a possible effects
range. Concentrations detected at or above the ER-M represent a probable effects range where adverse
toxicological effects would frequently occur (Long et al., 1995). As with the Ontario LEL and SEL
values, ER-L and ER-M values are non-enforceable screening guidelines. In addressing compounds
detected in sediments collected from all three lentic systems, naphthalene is listed as a priority pollutant
by the USEPA and is the most abundant single component of coal tar. It is used in the manufacturing of
solvents, lubricants, and motor fuels. This compound volatizes at room temperature and is insoluble in
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Summary Table 4. Results Of Sediments - PAH Analyses For The Three Lentic Systems. (Note: bdl

is below the analytical detection limit)

Cypress Springs Reservoir

Analyte FM 115 Panther Creek Arm Whippoorwill Bay
(mg/kg dry weight) (mg/kg dry weight) (mg/kg dry weight)
2-methylnaphthalene 0.019 0.018 0.015
C1-naphthalene 0.019 0.018 0.044
naphthalene 0.019 0.018 0.015
perylene 0.698 0.330 0.059
Lake O’ The Pines
Analyte Lone Star Steel SH 155 Marina Copeland Creek
(mg/kg dry weight) (mg/kg dry weight) (mg/kg dry weight)
1,2-5,6-dibenzanthracene | 0.081 bdl bdl
1,2-benzanthracene 0.210 bdl bdl
1-methylnaphthalene 0.016 bdl bdl
2-methylnaphthalene 0.032 0.036 0.017
Cl1-naphthalene 0.048 0.036 0.017
acenaphthalene 0.032 bdl bdl
anthracene 0.098 bdl bdl
benzo(a)pyrene 0.258 bdl bdl
benzo(b)fluoranthene 0.274 0.073 bdl
benzo(e)pyrene 0.194 bdl bdl
benzo(g, h,i)perylene 0.210 bdl bdl
benzo(k)fluoranthene 0.242 bdl bdl
chrysene 0.290 bdl bdl
fluoranthene 0.290 bdl bdl
indeno(1,2,3-cd)pyrene 0.210 bdl bdl
naphthalene 0.065 0.036 0.017
perylene 0.258 1.164 0.252
phenanthrene 0.081 bdl bdl
pyrene 0.226 bdl bdl
Caddo Lake
Analyte Harrison Bayou Goose Prairie Little Green Break
(mg/kg dry weight) (mg/kg dry weight) (mg/kg dry weight)
1,2-benzanthracene bdl bdl 0.017
2-methylnaphthalene 0.054 0.044 0.017
C1-naphthalene 0.054 0.044 0.017
benzo(a)pyrene bdl bdl 0.017
chrysene bdl bdl 0.017
fluoranthene bdl bdl 0.017
naphthalene 0.054 0.044 0.017
perylene 0.919 0.356 1.707
pyrene bdl bdl 0.052

water (Verschueren, 1983). Detected C1-naphthalene and naphthalene concentrations were less than the
ER-L value of 0.16 mg/kg dry weight. Detected concentrations of 2-methylnaphthalene were below the

ER-L value of 0.07 mg/kg dry weight (Long et al., 1995).
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In sediments collected from Lake O’ The Pines and Caddo Lake, chrysene, a listed priority pollutant, was
detected in concentrations below the ER-L value of 0.38 mg/kg dry and below the Ontario LEL of 0.34
mg/kg dry weight (Persaud et al., 1993; Long et al., 1995). Benzo(a)pyrene, another listed priority
pollutant, was detected below the ER-L value of 0.43 mg/kg dry weight and the Ontario LEL value 0.37
mg/kg dry weight (Persaud et al., 1993; Long et al., 1995). Fluoranthene and pyrene, both listed priority
pollutants, were detected below the respective ER-L values of 0.6 mg/kg dry weight and 0.67 mg/kg dry
weight (Long ef al., 1995) and below the respective Ontario LEL values of 0.75 mg/kg dry weight and
0.49 mg/kg dry weight (Persaud ef al., 1993).

In sediment collected in the vicinity of Lone Star Steel at Lake O’ The Pines, the detected phenanthrene
concentration was below the ER-L value of 0.24 mg/kg dry weight and the Ontario LEL value of 0.56
mg/kg dry weight (Persaud et al., 1993; Long er al., 1995). Phenanthrene is a component of coal tar that
is used in the manufacturing of dyes and explosives (Sax, 1987) and is also listed by the USEPA as a
priority pollutant. Acenaphthalene and anthracene, both listed as priority pollutants, were detected below
the respective ER-L values of 0.044 mg/kg dry weight and 0.085 mg/kg dry weight (Long ez al., 1995).
Dibenz(a, h)anthracene, also known as 1,2-5,6-dibenzanthracene, is a component of wood preservative
sludge, gasoline, and coal tar (Verschueren, 1983). The detected concentration exceeded the ER-L value
of 0.0634 mg/kg dry weight and the Ontario LEL value of 0.06 mg/kg dry weight. However, the detected
concentration was well below the ER-M value of 260.0 mg/kg dry weight and the Ontario SEL value of
130.0 mg/kg dry weight (Persaud er al., 1993; Long et al., 1995). Benzo(k)fluoranthene and
indeno(1,2,3-cd)pyrene concentrations were detected just above the respective Ontario LEL values of 0.24
mg/kg dry weight and 0.2 mg/kg dry weight (Persaud er al., 1993). Detected concentrations of
benzo(g, h,i)perylene, a component of motor oil, gasoline, and crude oil (Verschueren, 1983), were above
the Ontario LEL value of 0.17 mg/kg dry weight, but well below the Ontario SEL value of 320.0 mg/kg
dry weight (Persaud ef al., 1993).

ER-L, ER-M, LEL, and SEL screening guidelines have not been developed for the remaining detected
PAH compounds. Chronic aquatic life protection criteria for PAH compounds in sediments for lentic
systems within the Cypress Creek watershed have not been developed by the State of Texas. However,
the State has developed aquatic life criteria for lotic sediments for certain PAH compounds within the
watershed. For the priority pollutant benzo(d)fluoranthene, the lotic screening value for sediments is 0.67
mg/kg dry weight (TNRCC, 1996b). This compound was detected at concentrations below this value in
sediments collected in the vicinity of Lone Star Steel and from the SH 155 Marina at Lake O’ The Pines.
Of the remaining detected PAH compounds, 1-methylnaphthalene was detected at the detection limit in
sediments collected from Lake O’ The Pines. The listed priority pollutant 1,2-benzanthracene is a
component of crude oil, gasoline, and wood preserving sludge (Verschueren, 1983). This compound was
detected in sediments from Caddo Lake at the detection limit but above the analytical detection limits in
sediments collected from Lake O’ The Pines. Benzo(e)pyrene is a component of crude oil, gasoline, motor
oils, lubricating oils, coal tar, and asphalts (Verschueren, 1983). Perylene is a component of motor oils,
gasoline, coal tar, and crude oil (Verschueren, 1983). This compound was the only PAH compound that
was detected above the detection limits in all of the sediments sampled.

Aliphatic hydrocarbon concentrations in sediment samples collected from the three lentic bodies (for
results, see Appendix F, Table XVI), reported in dry weight, were statistically analyzed using a nested
ANOVA with multiple range tests. Where concentrations were below the analytical detection limits, the
conservative approach of selecting the numeric value immediately below the detection limit was employed
for statistical analyses. For each lentic body, the mean dry weight values for the aliphatic hydrocarbon
analytes are reported in mg/kg in Summary Table 5.
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Summary Table 5. Results Of Sediments - Aliphatic Hydrocarbon Analyses For The Three Lentic

Systems. (Note: bdl is below the detection limit)

Analyte Cypress Springs Lake O’ The Pines Caddo Lake
(mg/kg dry weight) (mg/kg dry weight) (mg/kg dry weight)

n-docosane 0.046 0.049 0.523
n-dotriacontane 0.063 0.040 bdl

n-eicosane 0.036 0.049 0.256
n-heneicosane 0.054 0.066 0.856
n-hentriacontane 0.480 0.576 1.478
n-heptacosane 0.267 0.284 1.745
n-heptadecane 0.141 0.099 0.811
n-hexacosane 0.099 0.129 0.667
n-hexadecane bdl 0.016 bdl

n-nonacosane 0.502 0.634 2.367
n-nonadecane 0.191 0.091 0.700
n-octacosane 0.189 0.163 1.589
n-octadecane bdl 0.016 0.156
n-pentacosane 0.138 0.179 1.478
n-pentadecane bdl 0.016 0.122
n-tetracosane 0.070 0.097 0.767
n-tetradecane bdl 0.024 bdl

n-tetratriacontane 0.026 0.096 0.411
n-triacontane 0.136 0.139 3.200
n-tricosane 0.175 0.179 1.622
n-tritriacontane 0.199 0.456 0.767
n-undecane bdl 0.016 bdl

phytane 0.046 0.041 0.889
pristane bdl 0.083 0.367

Both of the MRTs performed on this data demonstrated that there were no statistically significant
differences in n-docosane, n-eicosane, n-heneicosane, n-heptacosane, n-heptadecane, n-hexacosane, n-
hexadecane, n-octadecane, n-pentacosane, n-tetracosane, n-tetradecane, n-tricosane, n-undecane, phytane,
and pristane concentrations present in sediments among the three systems (p  0.05). Sediments collected
from Caddo Lake contained n-nonadecane and n-pentadecane concentrations which were statistically
significantly higher than in sediments collected from the other two systems (p < 0.05). The aliphatic
hydrocarbons n-decane, n-dodecane, and n-tridecane were not detected above the detection limits in
sediment samples collected from any of the three lentic systems. In Cypress Springs Reservoir and Caddo
Lake, n-hexadecane, n-tetradecane, and n-undecane concentrations were below the detection limits. In
addition, the compounds n-octadecane, n-pentadecane, and pristane were not detected above the detection
limits in Cypress Springs Reservoir. The compounds n-dotriacontane, n-hentriacontane, n-nonacosane,
n-octacosane, n-tetratriacontane, n-triacontane, and n-tritriacontane were excluded from the statistical
analyses and data interpretation because the values presented were considered estimates by the analytical
laboratory and could be off by as much as a factor of two (for explanation, see method code Appendix C,
MSCL004).

Aliphatic hydrocarbons are found in plants, crude oil, motor oil and almost all other petroleum products.
Concentrations of these compounds in sediment can be indicative of oil and/or petroleum spills and
contamination. These compounds can also be found in industrial and municipal wastewater, sludge and
even occur naturally in low concentrations (Irwin, 1988). Aliphatics tend to be less toxic and carcinogenic
than PAH compounds (Irwin, 1989). Even though only two of the compounds analyzed were statistically
higher in Caddo Lake than in the other two systems, 12 of the remaining 15 detected compounds were
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detected in greater concentrations in sediment from Caddo Lake which contains the largest number of
active gas and oil production wells. However, historically all three systems have experienced oil and brine
spills from production wells documented since the early 1970s (TPWD, 1998).

Organochlorines In Sediment

Sediment samples were also analyzed for 22 organochlorine compounds, including PCBs. None of these
compounds were detected in concentrations above the detection limits in any of the sediment samples
collected from the three lentic systems (for results, see Table XVII, Appendix G).

Metals In Fish

In aquatic trophic classifications, gizzard shad, channel catfish, and bullhead catfish can be considered
omnivorous species. Killifish, mosquitofish, bluegill sunfish, and redear sunfish are considered
insectivorous feeders, while spotted gar and bass are considered piscivorous (Kolbe and Luedke, 1993).
One hundred- sixteen whole body composite fish samples (15 from Cypress Springs Reservoir, 15 from
Lake O’ The Pines, and 86 from Caddo Lake) representing the three trophic levels were analyzed for 19
metal constituents (for results, see Appendix H, Tables XVI - XXVI). Metal concentrations from
omnivorous, insectivorous, and piscivorous fish species common to all three lentic bodies were statistically
analyzed using a nested ANOV A with multiple range tests. Where concentrations were not detected above
the detection limits, the conservative approach of selecting the numeric value immediately below the
detection limit was employed for statistical purposes. The mean wet weight values for the metal analytes
in the three species from each lentic body are reported in mg/kg in Summary Table 6.

For all three fish species, both Tukey’s Studentized Range Test (p  0.05) and the Student-Newman-
Keuls Test (p  0.05) demonstrated that there were no statistically significant differences in copper, iron,
nickel, or strontium concentrations among the three lentic systems. These MRTs also demonstrated that
among the three systems, there were no statistically significant differences in barium, boron, chromium,
iron, magnesium, manganese, and zinc concentrations in spotted gar samples, no statistically significant
differences in arsenic, lead, selenium, and zinc concentrations in gizzard shad, and no statistically
significant differences in chromium, magnesium, lead, and vanadium levels in redear sunfish samples (p
0.05).

In spotted gar samples, beryllium, cadmium, molybdenum, and vanadium were not detected above the
detection limits in any of the samples collected. Mean mercury and selenium concentrations were
statistically significantly higher in Caddo Lake than in the other two systems (p < 0.05). Arsenic levels
were statistically higher in gar collected from Cypress Springs Reservoir and Caddo Lake than in samples
from Lake O’ The Pines (p < 0.05). Mean aluminum and lead concentrations were statistically
significantly higher in samples collected from Cypress Springs Reservoir and Lake O’ The Pines than in
Caddo Lake (p < 0.05).

For gizzard shad, molybdenum concentrations were below the detection limits in all three lentic bodies.
Barium, cadmium, and manganese concentrations were statistically significantly higher in shad from
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Summary Table 6. Mean ( ) Results Of The Fish - Metals Analyses For The Three Lentic Systems
in mg/kg Wet Weight. (Note: bdl is below the analytical detection limit)

Analyte Cypress Springs Lake O’ The Pines Caddo Lake
Spotted | Gizzard | Redear | Spotted | Gizzard | Redear | Spotted | Gizzard | Redear
Gar Shad | Sunfish Gar Shad | Sunfish Gar Shad | Sunfish
Al 3.80 136.40 | 20.73 3.27 170.52 7.65 1.03 72.58 18.74
As 0.19 0.36 0.27 0.07 0.31 0.09 0.27 0.33 0.14
B 0.66 0.75 1.69 0.66 0.62 0.61 bdl 0.32 0.18
Ba 6.88 8.24 13.57 8.08 9.16 7.18 9.61 13.56 7.92
Be bdl bdl bdl bdl 0.02 bdl bdl 0.01 bdl
Cd bdl bdl bdl bdl bdl bdl bdl 0.04 bdl
Cr 1.10 0.84 0.66 1.16 0.87 0.63 1.31 0.65 1.51
Cu 1.13 0.92 0.44 0.66 1.27 0.50 2.10 5.36 2.04
Fe 51.58 | 278.17 | 51.10 | 54.00 | 451.17 | 38.03 50.66 | 441.53 | 46.53
Hg 0.20 0.044 0.060 0.21 0.030 0.049 0.38 0.035 0.133
Mg 3673.3 | 391.67 | 448.33 | 3770.0 | 354.83 | 450.33 | 2761.5 | 327.99 | 485.10
Mn 26.73 56.02 14.70 31.03 66.58 9.65 38.99 | 176.24 | 19.78
Mo bdl bdl bdl bdl bdl bdl bdl bdl 0.18
Ni 1.06 0.36 0.17 0.57 0.37 0.13 1.72 1.63 0.25
Pb bdl bdl bdl bdl 0.61 bdl 0.41 0.62 0.49
Se 0.19 0.25 0.22 0.19 0.20 0.23 0.37 0.28 0.53
Sr 96.70 32.15 59.60 99.85 29.70 71.97 | 135.02 | 38.10 64.43
\Y bdl 0.39 0.14 bdl 0.57 0.14 bdl 0.25 0.13
Zn 22.52 13.43 20.13 23.43 14.90 21.47 | 21.52 17.06 27.64

Caddo Lake than in the other two systems (p < 0.05). Aluminum, boron, and chromium levels were
statistically significantly higher in shad samples collected from Cypress Springs Reservoir and Lake O’
The Pines than in samples collected from Caddo Lake (p < 0.05). Beryllium and vanadium concentrations
were statistically higher in Lake O’ The Pines than in the other two systems (p < 0.05). Mercury
concentrations were statistically significantly higher in shad from Cypress Springs Reservoir and Caddo
Lake than shad collected from Lake O’ The Pines (p < 0.05). Magnesium concentrations in shad were
statistically higher in Cypress Springs Reservoir than in the other two lentic bodies (p < 0.05).

In redear sunfish samples, cadmium concentrations were not detected above the detection limits in any of
the three lentic systems. Beryllium concentrations were detected above the detection in only one sample.
This sample was collected at Clinton’s Chute and the detected value was 0.03 mg/kg wet weight
compared to a detection limit of 0.02 mg/kg wet weight. Arsenic, boron, and barium concentrations were
statistically significantly higher in Cypress Springs Reservoir than in the other two systems (p < 0.05).
Mercury, molybdenum, selenium, and zinc concentrations in redear sunfish were statistically significantly
higher in Caddo Lake than in Lake O’ The Pines and Cypress Springs Reservoir (p < 0.05). Aluminum
and manganese levels were statistically higher in Cypress Springs Reservoir and Caddo Lake than in Lake
O’ The Pines (p < 0.05).

Based on dietary thresholds, predator protection limits are recommended concentrations below which no
adverse toxicological effects are observed. As with the ER-L, ER-M, LEL, and SEL values previously
discussed, predator protection limits are non-enforceable guidelines developed to assist in determining
levels of contamination. Fish collected from Cypress Springs Reservoir and Lake O’ The Pines did not
contain chromium levels in excess of the predator protection limit of 4.0 mg/kg dry weight (Eisler,
1986a). Spotted gar collected from Caddo Lake at Harrison Bayou ( = 4.06 mg/kg dry weight), the
South Shore (= 4.23 mg/kg dry weight), Millers Point ( = 5.44 mg/kg dry weight), Goose Prairie
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(= 4.03 mg/kg dry weight), and Uncertain (one sample = 4.48 mg/kg dry weight) contained chromium
concentrations in excess of the avian predator protection limit. Redear sunfish collected from Harrison
Bayou ( = 6.84 mg/kg dry weight), the South Shore ( = 6.19 mg/kg dry weight), Millers Point (
= 4.5 mg/kg dry weight), Mossey Break ( = 5.02 mg/kg dry weight), Uncertain ( = 4.58 mg/kg dry
weight), and Little Green Break ( =10.38 mg/kg dry weight ) also contained levels exceeding the
predator protection limit (see Appendix H, Tables XXB - XXIIB, XXIVB, XXVIIB, and XXVIIIB).
Chromium is listed by the USEPA as a priority pollutant and is a known teratogen, mutagen, and
carcinogen. This element is used in metallurgy and chemical industries. Major anthropogenic sources
releasing chromium into the environment include tanning wastes, particulate emissions from the
incomplete combustion of coal, electroplating and metal finishing wastes, wastewater released from
municipal and industrial sources, iron and steel foundries emissions, and particulate emissions from
municipal incinerators. The amount of chromium released into an aquatic ecosystem by atmospheric
deposition can be four to six times greater than the volume attributed to direct discharges of liquid wastes.
Bioavailability and toxicity of chromium in an aqueous environment are more dependant on physical
processes such as hydrolysis, precipitation, pH, temperature, hardness, and salinity rather than direct
adsorption and bioaccumulation (Eisler, 1986a).

Mercury is toxic and has no known essential function in vertebrate organisms. Toxicologically, the target
organ for mercury in vertebrates is the central nervous system. In fish, 95% to 99% of mercury present
is in the form of methylmercury even though very little of the total mercury in water and sediment exists
as methylmercury. Inorganic mercury is absorbed much less efficiently and eliminated much more rapidly
than methylmercury. In addition, inorganic mercury does not readily methylate in tissues, but can be
methylated within the digestive tract. Fish tend to obtain the majority of methylmercury from their diet
and to a lesser extent, from water passing over the gills (Wiener and Spry, 1996). Spotted gar, the largest
piscivorus species collected within the watershed, contained mercury levels in excess of the avian predator
protection level of 0.1 mg/kg wet weight in all three lentic bodies. Redear sunfish collected from Caddo
Lake also contained mercury levels in excess of the avian predator protection limit. However, neither the
gar nor the redear sunfish samples contained mercury concentrations in excess of the recommended
mammalian predator protection limit of 1.1 mg/kg wet weight (Eisler, 1987a).

Redear sunfish collected from Caddo Lake contained concentrations of selenium in excess of the
recommended predator protection limit of 0.5 mg/kg wet weight (Irwin, 1988). Selenium is a trace
element that is present in coal, crude oil, oil shale, coal conversion materials and their waste products,
and is released into the environment principally through the procurement, processing, and combustion of
fossil fuels. It can be leached directly from coal mining, preparation, and storage sites and is highly
concentrated in fly and bottom ash. In fish, selenium tends to accumulate in hepatic and renal tissue.
Elevated levels can result in reduced growth, reproductive failure, and mortality (Lemly, 1996). Fish
consumption advisories for selenium were established by the State of Texas for Welsh Reservoir and
Martin Creek Reservoir in 1992. Welsh Reservoir is located in Titus County, Texas, within the Cypress
Creek watershed between Cypress Springs Reservoir and Lake O’ The Pines. Martin Creek Reservoir is
located within the Sabine River watershed, immediately south of the Cypress Creek drainage, in Rusk and
Panola Counties, Texas. These advisories state that adults should consume no more than one meal, not
to exceed 8.0 0z (226.80 g) of fish per serving per week, while children, older than six, should consume
no more than one meal, not to exceed 4.0 oz (113.40 g) of fish per serving per week. Children under six
and pregnant women should not consume any fish collected from either of these lentic bodies (TDH,
1997).

Whole body composite bass, bluegill sunfish, and mosquitofish samples collected from Caddo Lake were
also analyzed for the same metal constituents. Results from these analyses, with the exception of
mosquitofish data, were statistically analyzed with a one-way ANOV A and MRTs to determine differences
among sampling sites at Caddo Lake. Where concentrations were below the detection limits, the
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conservative approach of selecting the numeric value immediately below the detection limit was employed
for statistical purposes. Due to the limited sample size, no statistical analyses were conducted on the
mosquitofish samples. The mean wet weight values for the metal analytes are reported in mg/kg for each
of the three species in Summary Table 7.

Summary Table 7. Fish - Metals Analyses Results For Caddo Lake. (Note: bdl is below detection
limit)

Analyte Caddo Lake
Bass Bluegill Sunfish Mosquitofish
( in mg/kg wet weight) | ( in mg/kg wet weight) ( in mg/kg wet weight)

Al 1.31 10.44 6.20

As 0.19 0.27 0.22

B 0.41 bdl bdl

Ba 4.31 12.68 14.05

Cr 0.54 0.63 0.62

Cu 3.68 0.76 1.88

Fe 18.12 47.05 71.6

Hg 0.29 0.13 0.03

Mg 456.70 513.70 333.00
Mn 7.18 65.77 82.85

Ni 0.23 0.12 0.60

Pb 0.54 bdl bdl

Se 0.34 0.34 0.40

Sr 67.91 92.24 30.45

Vv bdl 0.07 bdl

Zn 16.04 27.20 38.55

Beryllium, cadmium, and molybdenum concentrations were below the analytical detection limits for all
three species sampled. In whole body composite bass samples, there were no statistically significant
differences in mean aluminum, boron, barium, chromium, copper, mercury, magnesium, manganese,
nickel, lead, selenium, strontium, and zinc concentrations among the sampling stations (p  0.05).
Statistically significant differences were demonstrated in arsenic and iron concentrations among the
sampling sites (p < 0.05). The samples collected at South Little Green Break contained the highest arsenic
levels (= 0.3 mg/kg wet weight) while samples collected at the South Shore contained the highest
concentrations of iron (= 30.15 mg/kg wet weight). Vanadium concentrations were not detected above
the analytical detection limits in any of the bass samples collected.

For bluegill sunfish samples, there were no statistically significant differences in arsenic, chromium,
copper, magnesium, nickel, selenium, strontium, and zinc concentrations among the sampling stations (p

0.05). There were statistically significant differences in barium, iron, mercury, manganese, and
vanadium concentrations among the sampling sites (p < 0.05). The samples collected at the South Shore

contained the highest concentrations of barium (= 17.05 mg/kg wet weight) while the samples collected
at Clintons Chute contained the highest levels of iron ( = 91.65 mg/kg wet weight). The highest
concentration of mercury was detected at Mossey Break (= 0.253 mg/kg wet weight) while the highest

concentration of manganese was detected at the South Shore (= 149.00 mg/kg wet weight). The highest
levels of vanadium were detected in samples collected from the South Shore and Taylor Island ( = 0.075
and 0.077 mg/kg wet weight, respectively). Boron and lead concentrations were not detected above the
analytical detection limits in any of the bluegill samples collected.
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Of these three species, one bluegill sunfish sample collected from Harrison Bayou at Caddo Lake ( =
4.63 mg/kg dry weight) was the only sample that contained chromium concentrations in excess of the
predator protection limit of 4.0 mg/kg dry weight (see Appendix H, Table XXB). Bass contained mercury
concentrations in excess of the avian predator protection limit of 0.1 mg/kg wet weight at all of the sites
collected except at the South Shore. Bluegill samples contained mercury levels in excess of the avian
predator protection limit at all sites collected except at Harrison Bayou, Millers Point, and the South
Shore.

All fish species sampled within the watershed contained aluminum, arsenic, boron, barium, copper, iron,
lead, manganese, molybdenum, nickel, strontium, and vanadium concentrations below recommended
predator protection limits. Spotted gar collected from Cypress Spring Reservoir and Lake O’ The Pines,
contained magnesium concentrations in excess of the recommended avian predator protection limit of
3,000 mg/kg wet weight (NRC, 1980). The concentrations of magnesium detected in gar may be attributed
to their natural physiology because gar sampled on the Rio Grande at Big Bend National Park, in south
Texas, also exhibited elevated levels of magnesium (Irwin, 1989). This element is usually present in
aquatic systems in large amounts relative to the needs of plants and typically does not play a major role
in limiting the growth or distribution or organisms in most aquatic environments (Goldman and Horne,
1983). The only fish species collected which had detectable concentrations of cadmium were gizzard shad
from Caddo Lake and these concentrations were well below the recommended predator protection limit
(for predator protection limits, see Table XL, Appendix J). For zinc, there is no established predator
protection level, however, Eisler (1993) stated that avian diets containing > 178.0 mg/kg dry weight of
zinc resulted in sublethal toxicological effects. All fish sampled within the watershed contained zinc
concentrations below this value (see Appendix H, Tables XVIIIB - XXVIIIB).

Human exposure to methylmercury is almost wholly due to consumption of contaminated fish (Wiener and
Spry, 1996). To address potential human health concerns, 15 bass fillet samples collected from Cypress
Springs Reservoir, five bass fillets and 10 catfish fillets collected from Lake O’ The Pines, and three
Catfish fillets collected from Caddo Lake were analyzed for mercury content. In addition, the three catfish
fillets collected from Caddo Lake were also analyzed for the same number of metal constituents as the
whole body composite fish samples previously mentioned (for results, see Tables XXIX - XXXI,
Appendix H). Mercury concentrations were statistically analyzed using a nested ANOVA with multiple
range tests. The mean wet weight mercury concentrations from the respective fish species for each lentic
system are reported in mg/kg in Summary Table 8.

Summary Table 8. Mean Fish Fillet - Mercury Analyses Results For The Three Lentic Systems.

Analyte Cypress Springs Lake O’ The Pines Caddo Lake
Bass Bass Catfish Catfish
(mg/kg wet wt) (mg/kg wet wt) (mg/kg wet wt) (mg/kg wet wt)
Hg 0.243 0.410 0.065 0.175

Both Tukey’s Studentized Range Test and the Student-Newman-Keuls Test demonstrated that mercury
concentrations retained in bass tissues were statistically significantly higher in samples collected from Lake
O’ The Pines than in samples collected from Cypress Springs Reservoir (p < 0.05). Within each lentic
system, the MRTs demonstrated that there were no statistically significant differences in mercury
concentrations present in bass tissue among the sampling sites at Cypress Springs Reservoir or at Lake
O’ The Pines (p  0.05). Statistically significant differences in mercury concentrations detected in catfish
tissues were demonstrated among the sampling sites at Lake O’ The Pines and Caddo Lake (p < 0.05).
In Lake O’ The Pines, catfish tissue samples collected from the SH 155 Marina sampling site demonstrated
the highest concentrations of mercury ( = 0.072 mg/kg wet weight). At Caddo Lake the highest
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concentrations of mercury were detected in tissue samples from the Little Green Break site (0.367 mg/kg
in one sample). Mercury concentrations were statistically higher in catfish collected from Caddo Lake than
in Lake O’ The Pines (p < 0.05). However, none of the fillet samples analyzed exceeded the USFDA
action level of 1.0 mg/kg wet weight for human consumption or the Canadian action level of 0.5 mg/kg
wet weight for human consumption (USEPA, 1989). In addition, none of the catfish fillets sampled from
Caddo Lake exceeded the human health criteria established by the State of Texas for arsenic, cadmium,
chromium, copper, lead, or selenium (for criteria, see Appendix J, Table XL). Beryllium, molybdenum,
nickel, and vanadium concentrations were all below the detection limits in these fillet samples.

Organochlorines In Fish

To determine the bioavailability of organochlorine pesticide residues within the watershed, 19 whole body
composite fish samples (one from Cypress Springs Reservoir, one from Lake O’ The Pines, and 17 from
Caddo Lake) were analyzed for organochlorine content (for results, see Appendix I, Table XXXVII -
XXXVIII). Largemouth bass were collected for this analysis in Cypress Springs Reservoir and Lake O’
The Pines, while in Caddo Lake, largemouth bass, gizzard shad, spotted gar, bluegill sunfish, redear
sunfish, and killifish were collected for the analysis. No statistical analyses were performed because of
the 20 compounds analyzed, only two organochlorine compounds, p,p’-DDE and total-PCBs, were
detected above the detection limits in fish collected from the three systems. The wet weight values for the
detected organochlorine analytes from the respective fish species for each lentic system are reported in
mg/kg in Summary Table 9.

Summary Table 9. Mean Fish - Organochlorine Analyses Results For The Three Lentic Systems in
mg/kg Wet Weight. (Note: bdl is below the analytical detection limit)

Analyte Cypress Springs | Lake O’ The Pines Caddo Lake
South Shore Millers Point
Largemouth Largemouth Spotted Spotted | Largemouth
Bass Bass Gar Gar Bass
Total-PCBs bdl 0.22 bdl bdl bdl
p,p’-DDE 0.02 0.02 0.038 0.039 0.02

Polychlorinated biphenyls (PCBs) were used extensively in electrical transformers, capacitors, and
electrical utilities as lubricants, insulators, and coolants until production was banned in the United States
in 1979. Total PCBs represent a quantification of 209 separate congeners and are stable compounds which
exhibit low water solubility, high heat capacity, low flammability, low electric conductivity, and low
vapor pressure (USEPA, 1994). PCBs are stored in fat, liver, and brain tissue, and can be found in trace
amounts in all tissues. These compounds are teratogenic and tumorigenic and demonstrate a trend to
bioaccumulate and biomagnify in succeeding trophic levels. The NAS/NAE recommended fish-eating
wildlife protection criteria is 0.5 mg/kg wet weight (Irwin, 1988). According to Eisler (1986b), total PCB
concentrations greater than 3 mg/kg in the diet of avian species and greater than 0.4 mg/kg wet weight
in whole body composites of fish would result in lethal and/or sublethal toxicological affects. Studies cited
by Niimi (1996), suggest that PCB concentrations > 25.0 mg/kg wet weight in macroinvertebrates and
> 50.0 mg/kg wet weight in fish tissues may adversely affect reproduction and growth. The detected
concentration in largemouth bass collected from Lake O’ The Pines was below all of these values.
However, the predator protection limit recommended by the Great Lakes International Joint Commission
for whole body fish is 0.1 mg/kg wet weight (Irwin, 1988), which the sample from Lake O’ The Pines
exceeded.
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DDE is a residual metabolite of the pesticide DDT which was banned in the United States in 1972.
Detection of DDT metabolites with a corresponding lack of DDT detections is indicative of a low rate of
influx and demonstrates a continued weathering of residual DDT (Moring, 1997). DDE has a biological
half life of eight years and is listed by the USEPA as a possible carcinogen (USEPA, 1994). Detected
levels of p,p’-DDE in piscivorous fish collected from the three lentic bodies were below the National
Academy of Sciences/National Academy of Engineering (NAS/NAE) recommended fish-eating wildlife
protection criteria of 1.0 mg/kg wet weight (Nowell and Resek, 1994).

In addition to the organochlorine analysis of whole body composite fish samples, two channel catfish fillet
samples collected from Goose Prairie and Little Green Break at Caddo Lake were analyzed for
organochlorine and PCB content to address human health concerns. The State of Texas aquatic life
protection screening criteria for PCBs present in tissues is 0.134 mg/kg wet weight (TNRCC, 1996b). The
USFDA action level for human consumption of PCB contaminated fish is 2.0 mg/kg wet weight. Chronic
exposure can result in dermal, hepatic, and renal damage (Niimi, 1996). However, no organochlorine
compounds, including PCBs, were detected in concentrations above the detection limits in any of the tissue
samples (for results, see Table Appendix I, XXXIX).

Metals In Macroinvertebrates

Nine composite grass shrimp (Palaemonetes sp.) samples collected from five sites at Caddo Lake, were
analyzed for the same 19 metals as previously discussed. Four composite samples collected from three
sites at Caddo Lake were analyzed for total mercury content (for results, see Appendix H, Tables XXXII
and XXXIII). Due to the limited sample size, statistical analyses were not employed to interpret the data.
Minimum, maximum, and calculated arithmetic mean values, reported in mg/kg wet weight, are presented
in Summary Table 10. Where concentrations were below the detection limits, the conservative approach
of selecting the numeric value immediately below the detection limit was employed in calculating the
arithmetic mean.

Beryllium, boron, cadmium, lead, and molybdenum concentrations were below the detection limits in all
samples collected. Vanadium concentrations were detected below the detection limits in all samples with
the exception that one sample collected from Harrison Bayou contained a detectable concentration equal
to the detection limit. Aluminum, arsenic, chromium, copper, iron, magnesium, nickel, and strontium
concentrations were all detected below recommended predator protection limits (for predator protection
limits, see Appendix J, Table XL). Barium levels exceeded the recommended predator protection limit
of 20.0 mg/kg wet weight in samples collected at Millers Point, Taylor Island, and Mossey Break (NRC,
1980). Barium exists naturally as barite which is used as a weighting agent in gas and oil well drilling
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Summary Table 10. Macroinvertebrates - Metals Analyses Results For Caddo Lake. (Note: bdl is

below the analytical detection limit)

Analyte Minimum Maximum Arithmetic
Concentration Concentration Mean
(mg/kg wet weight) (mg/kg wet weight) (mg/kg wet weight)
Al 1.33 17.0 5.30
As 0.03 1.75 0.61
Ba 14.50 30.10 21.70
Cr 0.16 0.27 0.20
Cu 6.05 17.30 11.22
Fe 14.20 87.70 47.41
Hg 0.018 0.106 0.059
Mg 124.00 241.00 204.00
Mn 23.40 77.50 44.60
Ni bdl 0.20 0.14
Se bdl 0.48 0.32
Sr 12.00 24.10 18.70
\Y bdl 0.05 0.04
Zn 7.45 14.50 12.55

muds (Cain, 1993). Barium is also a component of oil field brine (TWC, 1989b). Macroinvertebrates have
demonstrated a discrimination of calcium in favor of barium for uptake into the exoskeleton,
hepatopancreas, and abdominal tissues (Cain, 1993). Mercury levels approached or exceeded the predator
protection limit of 0.1 mg/kg wet weight in samples collected from Mossey Break and Uncertain (Eisler,
1987a). Selenium concentrations approached the predator protection limit of 0.5 mg/kg wet weight
recommended by Irwin (1988) in samples collected at Taylor Island.

Metals In Birds

Great blue herons, a colonial aquatic avian species, were selected for this study because they are
piscivorous and can feed on relatively large fish (Gamble ef al., 1994). This is a migratory species that
nests within the Cypress Creek watershed. Nestling herons obtain their food from their parents foraging
in the area surrounding the nests. Livers collected from seven heron nestlings at Caddo Lake were
analyzed for the same battery of 19 metals as discussed earlier, while kidney and feather samples collected
from these organisms were analyzed for total mercury content (For results, see Appendix H, Tables
XXXIV - XXXVI). Minimum, maximum, and calculated geometric mean values for metal content in the
livers, reported in mg/kg wet weight, are presented in Summary Table 11. The geometric mean was
calculated in place of an arithmetic mean due to the wide distribution of the data. Where concentrations
were below the detection limits, the conservative approach of selecting the numeric value immediately
below the detection limit was employed in calculating the geometric mean.

Arsenic, barium, beryllium, cadmium, and lead concentrations were below the analytical detection limits.
Vanadium was detected above the detection limit in only one sample. Selenium concentrations were
detected in sampled livers below 10.0 mg/kg wet weight, which according to Heinz (1996), is a level that
would be considered harmful to young and adult birds. Levels of zinc detected in normal avian livers range
from 21.0 to 33.0 mg/kg dry weight. The effects of zinc poisoning can be observed in livers which contain
zinc concentrations ranging from 75.0 mg/kg dry weight to above 156.0 mg/kg dry weight (Eisler,
1993). Only two of the seven specimens collected contained zinc concentrations below 75.0 mg/kg dry
weight, while one specimen contained a detectable zinc concentration of 181.0 mg/kg dry weight.
Summary Table 11. Great Blue Heron Liver - Metals Analyses Results For Caddo Lake. (Note: bdl
is below the analytical detection limit)
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Analyte Minimum Maximum Geometric
Concentration Concentration Mean
(mg/kg wet weight) (mg/kg wet weight) (mg/kg wet weight)

Al bdl 1.61 1.19
B 0.4 7.4 1.44
Cr 0.13 0.98 0.37
Cu 10.1 32.6 18.34

Fe 106.0 983.0 205.26
Hg 0.387 19.9 0.896

Mg 103.0 200.0 159.07
Mn 1.99 3.78 2.95
Mo 0.41 1.45 0.54
Ni bdl 0.86 0.33
Se bdl 9.38 1.01
Sr 0.08 0.24 0.12
\% bdl 0.26 0.05
Zn 24.0 58.1 39.44

Molybdenum concentrations detected in the livers were comparable to concentrations detected in livers
from American coots (Fulica americana) sampled from an un-impacted control site in the study of the
environmental effects of a coal-fired powered plant conducted by White and others (1986) in Goliad
County, Texas. However, detected copper and nickel concentrations were similar to concentrations
detected in livers collected from coots at the power plant site one year after operations were initiated
(White et al., 1986).

According to Welsh and Olson (1991), fish eating birds tend to have higher levels of mercury within the
liver than other avian species, but are not necessarily more likely to exhibit toxic effects. The liver plays
a major role in metabolism and elimination of methylmercury (Burger, 1993). In livers collected from
Caddo Lake, the calculated geometric mean for mercury was below 2.715 mg/kg wet weight, which was
the geometric mean determined in studies of livers in great blue heron nestlings collected from Lavaca
Bay, an area documented to have mercury contamination (Gamble ef al., 1994). However, the maximum
value of 19.9 mg/kg wet weight was 4.8 times higher than the highest value of 4.11 mg/kg wet weight
reported in the Lavaca Bay study (Gamble er al., 1994). Thompson (1996) stated that mercury
concentrations greater than 30.0 mg/kg wet weight detected in livers and kidneys of raptors resulted in
mercury intoxication.

Feathers were selected for mercury analysis because avian species deposit heavy metals, including
mercury, within the feathers during feather formation; the mineral profile of mercury remains stable
within the feathers; a large percentage of a bird’s body burden of mercury is incorporated into the
feathers; and the mercury incorporated into the feathers is almost 100 % methylmercury (Burger, 1993).
Feathers also serve as a major excretory pathway for mercury during molting (Burger, 1993). The detected
minimum values, maximum values, and geometric means of the feather and kidney mercury analyses,
reported in mg/kg dry weight, are presented in Summary Table 12. The geometric mean was calculated
in place of an arithmetic mean due to the wide distribution of the data.

In feathers, the calculated mean fell within the range of 1.1 - 2.5 mg/kg dry weight in feathers of nestling

great blue herons collected in a study conducted in Ohio in 1972 - 1973 (Burger, 1993). However, the
maximum value was 5.8 times higher than the highest level detected in the Ohio study.

28



Summary Table 12. Great Blue Heron Feather And Kidney - Mercury Analyses Results For Caddo

Lake in mg/kg Dry Weight.
Analyte Feathers Kidneys
Minimum Maximum Geometric Minimum Maximum Geometric
Mean Mean
Hg 1.23 14.50 2.16 0.513 2.37 0.76

Sections of spinal chords, livers, and kidneys from six of the fledglings were analyzed for lesions which
could be attributed to mercury toxicity. The histologic lesions indicative of mercury poisoning were not
present in any of the herons. Nephrogenetic and granulopoietic tissue was present in several of the herons.
This is considered normal in young nestlings. Mild degenerative and/or inflammatory lesions were present
in the liver and kidney of some of the herons, but these were non-specific lesions of unknown cause.

CONCLUSIONS & RECOMMENDATIONS

Based on the overall results of this study, Cypress Springs Reservoir was the least contaminated of the
three water bodies. Cadmium levels were detected in surface water samples in excess of the State of Texas
water quality criteria in all three systems. However, cadmium concentrations were not detected at levels
of concern in any of the fish samples collected. All three lentic bodies contained fish that were detected
to have mercury levels which exceeded recommended wildlife protection levels.

Identifying all potential sources transporting contaminants into the Cypress Creek watershed and targeting
point source dischargers was not within the scope of this study. However, levels of lead and mercury in
excess of the State of Texas aquatic life protection criteria were detected in sediment samples collected
at Goose Prairie in Caddo Lake down gradient from the Longhorn Army Ammunition Plant NPL Site. At
Lake O’ The Pines, concentrations of cadmium, lead, mercury, and zinc in sediment in excess of the State
aquatic life protection criteria were detected in samples collected in the vicinity of Lone Star Steel. Further
studies of sediments in these two systems is warranted because of the toxicological effects of these metals
on benthic communities and aquatic ecosystems. In addition, in the case of Lake O’ The Pines, the
regulatory community may wish to consider re-evaluating permitted discharge limits of metals and other
wastes in order to address cumulative impacts on the surrounding sediments and benthic communities.

Chromium levels in bass, spotted gar, bluegill sunfish, and redear sunfish collected from Caddo Lake
exceeded the recommended wildlife protection values. These chromium levels represent a point of concern
and warrant further studies. Selenium levels in redear sunfish collected from Caddo Lake exceeded the
recommended wildlife protection limits. Even though only one species in one lentic system exhibited
elevated levels of selenium it is recommended that periodic monitoring of this analyte be maintained
because of selenium contamination documented elsewhere within the watershed. Zinc levels detected in
great blue heron nestlings from Caddo Lake were elevated to a point of concern and warrant further study.
Barium concentrations were slightly elevated in macroinvertebrates collected from Caddo Lake.
Magnesium levels were slightly elevated in spotted gar samples collected throughout the watershed.
However, at this time neither of these elements warrant further study.

In Caddo Lake, elevated levels of mercury were detected in macroinvertebrates, bass, bluegill sunfish,
and redear sunfish. In addition, spotted gar collected from all three lentic systems contained elevated
mercury levels. Bass, followed by spotted gar, contained the highest concentrations of mercury of any fish
tested. Elevated levels of mercury were also detected in nestling great blue herons. Based on these results
it appears that mercury is being absorbed by macroinvertebrates and prey fish then biomagnifying in
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piscivorous fish and piscivorous avian species within Caddo Lake. Considering that Caddo Lake is a
Ramsar designated wetland of international importance, a more intensive study is warranted to define the
physical and biological extent of contamination within the lake, especially in the Goose Prairie and
Harrison Bayou areas which are immediately down gradient of the Longhorn Army Ammunition NPL
Site.

All fish fillets analyzed for metals were below the established action levels for human consumption.
However, established fish consumption advisories must be maintained until further testing can be
conducted, increasing the sampling size to verify these results. It is suggested that in any future studies
conducted within the watershed to address contaminant concerns in fish, whole body composite catfish
samples be analyzed as well as catfish fillet samples. As benthic species, catfish would be expected to
come into contact with contaminants present in the sediments more readily than pelagic species such as
gizzard shad. Analyses of just the fillets does not indicate the whole body burden of a particular
contaminant within the fish. It is further recommended that future studies incorporate benthic turtles into
the sampling strategy. These organisms are long-lived, resident species which function as tertiary
predators and scavengers within the watershed. Whole body analyses of contaminants within these
organisms should yield samples representative of chronic exposure to a contaminants of concern over an
extended period of time.

Aliphatic compounds were detected in the sediments at low concentrations throughout all three systems.
Polycyclic aromatic hydrocarbons were detected in sediments from Cypress Springs Reservoir and Caddo
Lake in concentrations below levels of concern, whereas sediment samples collected from Lake O’ The
Pines contained elevated PAHs which may be affecting the health of the benthic community. With the
presence of so many active gas/oil production wells and other potential point sources in the watershed,
it is recommended that periodic monitoring of PAH concentrations in sediments be conducted, especially
in Lake O’ The Pines.

Based on the results of the study, residues of organochlorine pesticides and PCBs retained in sediment do
not appear to represent an area of further concern. In fish, organochlorine pesticide residues do not appear
to warrant further action at this time. Polychlorinated biphenyls in fish do not appear to be a point of
concern except at Lake O’ The Pines, where concentrations were detected at levels of concern in the one
fish sample that was analyzed. It is recommended that additional sampling be conducted within this
reservoir, increasing the sample size, to determine the status of PCB contaminants within the fish
communities.

With this study, valid statistical correlations to establish more definitive causative relationships between
sampled media and fauna could not be performed due to the limited sample size of certain media, ie.,
surface water. It is recommended that in any future studies conducted within the watershed, at least three
replicate samples of a given medium be collected at a particular sampling site.
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APPENDIX A
(VERTEBRATE FAUNA INHABITING THE CYPRESS CREEK WATERSHED)



TABLE IA. FISH SPECIES INHABITING THE CYPRESS CREEK WATERSHED (Hubbs, 1976; Robison and Buchanan,

1988).

Chestnut Lamprey -
Paddlefish* -
Longnose Gar -
Alligator Gar -
Skipjack Herring -
Threadfin Shad -
Chain Pickerel -
Golden Shiner -
Creek Chub -

Pallid Shiner -
Blackspot Shiner -
Striped Shiner -
Pugnose Minnow -
Bluehead Shiner* -
Taillight Shiner -
Sabine Shiner -
Weed Shiner -
Blacktail Shiner -
Cypress Minnow -
Fathead Minnow -
Central Stoneroller -
Smallmouth Buffalo -
Black Buffalo -
Spotted Sucker -
Creek Chubsucker* -
Blue Catfish -
Yellow Bullhead -
Flathead Catfish -
Freckled Madtom -
Pirate Perch -
Golden Topminnow -
Blackspotted Topminnow -
Brook Silverside -
Spotted Bass -

White Bass -

Green Sunfish -
Orangespotted Sunfish -
Dollar Sunfish -
Redear Sunfish -
Bantam Sunfish -
Black Crappie -

Flier -

Blackside Darter* -
River Darter -

Scaly Sand Darter -
Bluntnose Darter -
Slough Darter -
Goldstripe Darter -
Freshwater Drum -

Ichthymyzon castaneus
Polydon spathula
Lepiosteus osseus
Lepiosteus spatula
Alosa chrysochloris
Dorosoma petenense
Esox niger

Notemigonus crysoleucas
Semotilus atromaculatus
Notropis amnis
Notropis atrocaudalis
Notropis chrysocephalus
Notropis emiliae
Notropis hubbi

Notropis maculatus
Notropis sabinae
Notropis texanus
Notropis venustus
Hybognathus hayi
Pimephales promelas
Campostoma anomalum
Ictiobus bubalus
Ictiobus niger
Minytrema melanops
Erimyzon oblongus
Ictalurus furcatus
Ictalurus natalis
Pylodictis olivaris
Noturus nocturnus
Aphredoderus sayanus
Fundulus chrysotus
Fundulus olivaceus
Labidesthes sicculus
Micropterus punctulatus
Morone chrysops
Lepomis cyanellus
Lepomis humilis
Lepomis marginatus
Lepomis microlophus
Lepomis symmetricus
Pomoxis nigromaculatus
Centrarchus macropterus
Percina maculatus
Percina shumardi
Ammocryopta vivax
Etheostoma chlorosomum
Etheostoma gracile
Etheostoma parvipinne
Aplodinotus grunniens
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Southern Brook Lamprey -
Spotted Gar -
Shortnose Gar -
Bowfin -

Gizzard Shad -

Grass Pickerel -

Carp -

Silver Chub -
Suckermouth Minnow -
Emerald Shiner -
Ghost Shiner -
Ironcolor Shiner -
Ribbon Shiner -

Red Shiner -

Chub Shiner -

Silver Band Shiner -
Redfin Shiner -
Mimic Shiner -
Silvery Minnow -
Bullhead Minnow -
Blue Sucker* -
Bigmouth Buffalo -
River Carpsucker -
Blacktail Redhorse -
Lake Chubsucker -
Black Bullhead -
Channel Catfish -
Tadpole Madtom -
American Eel -
Blair’s Topminnow -
Blackstripe Topminnow -
Mosquitofish -

Inland Silverside -
Largemouth Bass -
Yellow Bass -
Warmouth -

Bluegill -

Longear Sunfish -
Spotted Sunfish -
White Crappie -
Banded Pygmy Sunfish -
Logperch -

Dusky Darter -
Western Sand Darter -
Mud Darter -

Swamp Darter -
Harlequin Darter -
Cypress Darter -
Striped Mullet -

Ichthymyzon gagei
Lepiosteus oculatus
Lepiosteus platostomus
Amia calva

Dorosoma cepedianum
Esox americanus
Cyprinus carpio
Hybopsis storeriana
Phenacobius mirabilis
Notropis atherinoides
Notropis buchanani
Notropis chalybaeus
Notropis fumeus
Notropis lutrensis
Notropis potteri
Notropis shumardi
Notropis umbratilis
Notropis volucellus
Hybognathus nuchalis
Pimephales vigilax
Cycleptus elongatus
Ictiobus cyprinellus
Carpiodes carpio
Moxostoma poecilurum
Erimyzon sucetta
Ictalurus melas
Ictalurus punctatus
Noturus gyrinus
Anguilla rostrata
Fundulus blairae
Fundulus notatus
Gambusia affinis
Menidia beryllina
Micropterus salmoides
Morone mississippiensis
Lepomis gulosus
Lepomis macrochirus
Lepomis megalotis
Lepomis punctatus
Pomoxis annularis
Elassoma zonatum
Percina caprodes
Percina sciera
Ammocryopta clara
Etheostoma asprigene
Etheostoma fusiforme
Etheostoma histrio
Etheostoma proeliare
Mugil cephalus



TABLE IB. AMPHIBIAN SPECIES INHABITING THE CYPRESS CREEK WATERSHED (Dixon, 1987).

Spotted Salamander -
Mole Salamander -

Eastern Tiger Salamander -
Southern Dusky Salamander-

Gulf Coast Water Dog -
Slimy Salamander -
Northern Cricket Frog -
Green Treefrog -
Squirrel Treefrog -
Spotted Chorus Frog -
Upland Chorus Frog -
Bronze Frog -

Southern Leopard Frog -
Gulf Coast Toad -

Eastern Narrowmouth Toad -

Hurter’s Spadefoot -

Ambystoma maculatum
Ambystoma talpoideum
Ambystoma tigrinum
Desmognathus auriculatus
Necturus beyeri
Plethodon glutinosus
Acris crepitans

Hyla cinerea

Hyla squirella

Pseudacris clarki
Pseudacris triseriata feriarum
Rana clamitans clamitans
Rana sphenocephala

Bufo valliceps valliceps
Gastrophryne carolinensis
Scaphiopus holbrooki

Marbled Salamander -

Smallmouth Salamander -

Three-toed Amphiuma -
Dwarf Salamander -
Central Newt -

Western Lesser Siren -
Cope’s Gray Treefrog -
Northern Spring Peeper -
Gray Treefrog -
Strecker’s Chorus Frog -
Bullfrog -

Pickerel Frog -

Dwarf American Toad -
East Texas Toad -

Plains Narrowmouth Toad -

Ambystoma opacum
Ambystoma texanum
Amphiuma tridactylum
Eurycea quadridigitata
Notophthalmus viridescens
Siren intermedia nettingi
Hyla chrysoscelis

Hyla crucifer

Hyla versicolor
Pseudacris streckeri
Rana catesbeiana

Rana grylio

Bufo americanus

Bufo woodhousei
Gastrophryne olivacea

TABLE IC. REPTILE SPECIES INHABITING THE CYPRESS CREEK WATERSHED (Dixon, 1987).

Snapping Turtle -
Yellow Mud Turtle -
Razorback Musk Turtle -
Southern Painted Turtle -
Sabine Map Turtle -
Metter’s River Cooter -
Ornate Box Turtle -
Smooth Softshell -
American Alligator -
Texas Spiny Lizard -
Five-lined Skink -
Southern Prairie Skink -
Six-lined Racerunner -
Slender Glass Lizard -

Northern Scarlet Snake* -
Mississippi Ringneck Snake -

Texas Rat Snake -
Dusky Hognose Snake -
Prairie Kingsnake -
Louisiana Milk Snake -
Eastern Coachwhip -

Yellowbelly Water Snake -
Diamondback Water Snake -

Louisiana Pine Snake* -
Florida Redbelly Snake -
Flathead Snake -

Central Lined Snake -
Western Earth Snake -
Copperhead -

Canebrake Rattlesnake* -

Chelydra serpentina
Kinosternon flavescens
Sternotherus carinatus
Chrysemys picta

Graptemys pseudogeographica
Pseudemys concinna
Terrapene ornata

Trionyx muticus

Alligator mississippiensis
Sceloporus olivaceus

Eumeces fasciatus

Eumeces septentrionalis
Cnemidophorus sexlineatus
Ophisaurus attenuatus
Cemophora coccinea
Diadophis punctatus

Elaphe obsoleta

Heterodon nasicus
Lampropeltis calligaster
Lampropeltis triangulum
Masticophis flagellum
Nerodia erythrogaster
Nerodia rhombifera

Pituophis melanoleucus ruthveni
Storeria occipitomaculata
Tantilla gracilis
Tropidoclonion lineatum
Virginia valeriae

Agkistrodon contortrix
Crotalus horridus atricaudatus

Alligator Snapping Turtle* -

Mississippi Mud Turtle -
Stinkpot Musk Turtle -
Western Chicken Turtle -
Mississippi Map Turtle -
Three-toed Box Turtle -
Red-eared Slider -

Pallid Spiny Softshell -
Green Anole -

Northern Fence Lizard -
Broadhead Skink -
Ground Skink -

Texas Spotted Whiptail -
Western Worm Snake -
Racer -

Corn Snake -

Western Mud Snake -
Eastern Hognose Snake -
Speckeld Kingsnake -
Texas Night Snake -
Green Water Snake -

Broad-banded Water Snake -

Gulf Crayfish Snake -
Rough Green Snake -
Texas Brown Snake -
Western Ribbon Snake -
Rough Earth Snake -
Texas Coral Snake -
Western Cottonmouth -

Western Pigmy Rattlesnake -

Macroclemys temmincki
Kinosternon subrubrum
Sternotherus odoratus
Deirochelys reticularia
Graptemys kohni
Terrapene carolina
Trachemys scripta
Trionyx spiniferus
Anolis carolinensis
Sceloporus undulatus
Eumeces laticeps
Scincella lateralis
Cnemidophorus gularis
Carphophis amoenus
Coluber constrictor
Elaphe guttata
Farancia abacura
Heterodon platyrhinos
Lampropeltis getulus
Hypsiglena torquata
Nerodia cyclopion
Nerodia fasciata
Regina rigida
Opheodrys aestivus
Storeria dekayi
Thamnophis proximus
Virginia striatula
Micrurus fulvius
Agkistrodon piscivorus
Sistrurus miliarus
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TABLE ID. MAMMAL SPECIES INHABITING THE CYPRESS CREEK WATERSHED (Davis and Schmidly, 1994).

Virginia opossum -
Least Shrew -
Southeastern Myotis -
Eastern Pipistrelle -
Eastern Red Bat -
Seminole Bat -

Spotted Bat -

Brazilian Free-tailed Bat -
Swamp Rabbit -
Black-tailed Jackrabbit -
Eastern Fox Squirrel -
Baird’s Pocket Gopher -
American Beaver -
Fulvous Harvest Mouse -
White-footed Mouse -
Golden Mouse -

Hispid Cotton Rat -
Norway Rat -

House Mouse -

Muskrat -

Coyote -

Gray Fox -

Raccoon -

Mink -

Eastern Spotted Skunk -
River Otter -

Louisiana Black Bear* -
White-tailed Deer -

Didelphis virginiana
Cryptotis parva

Mbyotis austroriparius
Pipistrellus subflavus
Lasiurus borealis
Lasiurus seminolus
Euderma maculatum
Tadarida brasiliensis
Sylvilagus aquaticus
Lepus californicus
Sciurus niger

Geomys breviceps

Castor canadensis
Reithrodontomys fulvescens
Peromyscus leucopus
Ochrotomys nuttalli
Sigmodon hispidus

Rartus norvegicus

Mus musculus

Ondatra zibethicus

Canis latrans

Urocyon cinereoargenteus
Procyon lotor

Mustela vison

Spilogale putorius

Lutra canadensis

Ursus americanus luteolus
Odocoileus virginianus

Short-tailed Shrew -
Eastern Mole -
Silver-haired Bat -
Big Brown Bat -
Hoary Bat -
Evening Bat -

Rafinesque’s Big-eared Bat* -

Nine-banded Armadillo -
Eastern Cottontail -
Eastern Gray Squirrel -
Eastern Flying Squirrel -
Hispid Pocket Mouse -
Marsh Rice Rat -
Eastern Harvest Mouse -
Deer Mouse -

Northern Pygmy Mouse -
Eastern Woodrat -

Roof Rat -

Woodland Vole -

Nutria -

Red Fox -

Ringtail -

Long-tailed Weasel -
American Badger -
Striped Skunk -
Mountain Lion -

Bobcat -

Blarina carolinensis
Scalopus aquaticus
Lasionycteris noctivagans
Eptesicus fuscus
Lasiurus cinereus
Nyctceius humeralis
Plecotus rafinesquii
Dasypus novemcinctus
Sylvilagus floridanus
Sciurus carolinensis
Glaucomys volans
Chaetodipus hispidus
Oryzomys palustris
Reithrodontomys humulis
Peromyscus maniculatus
Baiomys taylori
Neotoma floridana
Rattus rattus

Microtus pinetorum
Mpyocastor coypus
Vulpes vulpes
Bassariscus astutus
Mustela frenata

Taxidea taxus

Mephitis mephitis

Felis concolor

Lynx rufus

TABLEIE. AVIAN SPECIES OBSERVED IN THE CYPRESS CREEK WATERSHED (Hardy and Raymond, 1994; Ingold, 1995;

TPWD, 1996).

Red-throated Loon -
Pacific Loon -
Pied-billed Grebe -
Eared Grebe -
Western Grebe -
Double-crested Cormorant -
Anhinga -

Least Bittern -
Great Egret -
Reddish Egret* -
Tricolored Heron -
Green Heron -

Gavia stellata

Gavia pacifica
Podilymbus podiceps
Podiceps nigricollis
Aechmophorus occidentalis
Phalacrocorax auritus
Anhinga anhinga
Ixobrychus exilis
Casmerodius albus
Egretta rufescens
Egretta tricolor
Butorides virescens

Yellow-crowned Night Heron - Nyctanassa violacea

‘White-faced Ibis* -
Wood Stork* -

Plegadis chihi
Moycteria americana

Black-bellied Whistling Duck - Dendrocygna autumnalis
Greater White-fronted Goose - Anser albifrons
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Yellow-billed Loon -
Common Loon -
Horned Grebe -
Red-necked Grebe -

American White Pelican -

Neotropic Cormorant -
American Bittern -
Great Blue Heron -
Snowy Egret -

Little Blue Heron -
Cattle Egret -

Black-crowned Night Heron -

White Ibis -
Roseate Spoonbill -
Tundra Swan -
Snow Goose -
Canada Goose -

Gavia adamsii

Gavia immer

Podiceps auritus
Podiceps grisegena
Pelecanus erythrorhynchos
Phalacrocorax brasilanus
Botaurus lentiginosus
Ardea herodias

Egrerta thula

Egretta caerulea
Bubulcus ibis
Nycticorax nycticorax
Eudocimus albus

Ajaia ajaja

Cygnus columbianus
Chen caerulescens
Branta canadensis



Wood Duck -
Green-winged Teal -
Mallard -

Northern Pintail -
Northern Shoveler -
American Wigeon -
Redhead -

Greater Scaup -
Oldsquaw -
White-winged Scoter -
Common Goldeneye -
Bufflehead -

Common Merganser -
Ruddy Duck -

Turkey Vulture -
Swallow-tailed Kite* -
Bald Eagle* -
Sharp-shinned Hawk -
Red-shouldered Hawk -
Swainson’s Hawk -
Ferruginous Hawk -
American Kestrel -
Peregrine Falcon -
Wild Turkey -
Northern Bobwhite -
King Rail -

Purple Gallinule -
American Coot -
Lesser Golden Plover -
Semipalmated Plover -
Killdeer -

Willet -

Lesser Yellowlegs -
Spotted Sandpiper -
Long-blled Curlew -
Whimbrel -

Sanderling -

Least Sandpiper -
Baird’s Sandpiper -
Dunlin -

Buff-breasted Sandpiper -
Common Snipe -
Wilson’s Phalarope -
Laughing Gull -
Bonaparte’s Gull -
California Gull -
Caspian Tern -

Least Tern -
Mourning Dove -
Yellow-billed Cuckoo -
Greater Roadrunner -
Eastern Screech Owl -
Barred Owl -
Long-eared Owl -

Aix sponsa

Anas crecca

Anas platyrhynchos
Anas acuta

Anas clypeata

Anas americana
Aythya americana
Aythya marila
Clangula hyemalis
Melanitta fusca
Bucephala clangula
Bucephala albeola
Mergus merganser
Oxyura jamaicensis
Cathartes aura
Elanoides forficatus
Haliaeetus leucocephalus
Accipiter striatus
Buteo lineatus

Buteo swainsoni
Buteo regalis

Falco sparverius
Falco peregrinus
Meleagris gallopavo
Colinus virginianus
Rallus elegans
Porphyrula martinica
Fulica americana
Pluvialis dominica
Charadrius semipalmatus
Charadrius vociferus

Catoptrophorus semipalmatus

Tringa flavipes
Actitis macularia
Numenius americanus
Numenius phaeopus
Calidris alba

Calidris minutilla
Calidris bairdii
Calidris alpina
Tryngites subruficollis
Gallinago gallinago
Phalaropus tricolor
Larus atricilla

Larus philadelphia
Larus californicus
Sterna caspia

Sterna antillarum
Zenaida macroura
Coccyzus americanus
Geococcyx californianus
Otus asio

Strix varia

Asio otus
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American Black Duck -
Mottled Duck -
Blue-winged Teal -
Gadwall -
Canvasback -
Ring-necked Duck -
Lesser Scaup -

Black Scoter -

Surf Scoter -
Barrow’s Goldeneye -
Hooded Merganser -

Red-breasted Merganser -

Black Vulture -
Osprey -

Mississippi Kite -
Northern Harrier -
Cooper’s Hawk -
Broad-winged Hawk -
Red-tailed Hawk -
Rough-legged Hawk -
Merlin -

Sora -

Common Moorhen -
Black-bellied Plover -
Wilson’s Plover -
Piping Plover* -
American Avocet -
Greater Yellowlegs -
Upland Sandpiper -
Hudsonian Godwit -
Ruddy Turnstone -

Semipalmated Sandpiper -
White-rumped Sandpiper -

Pectoral Sandpiper -
Stilt Sandpiper -
Long-billed Dowithcer -
American Woodcock -
Franklin’s Gull -
Ring-billed Gull -
Herring Gull -
Black-legged Kittiwake -
Forster’s Tern -

Black Tern -
White-winged Dove -
Common Ground Dove -

Great Black-backed Gull -

Common Tern -

Rock Dove -

Inca Dove -
Black-billed Cuckoo -
Barn Owl -

Great Horned Owl -
Short-eared Owl -
Common Nighthawk -

Anas rubripes

Anas fulvigula

Anas discors

Anas strepera

Aythya valisineria
Aythya collaris
Aythya affinis
Melanitta nigra
Melanitta persicillata
Bucephala islandica
Lophodytes cucullatus
Mergus serrator
Coragyps atratus
Pnadion haliaetus
Ictinia mississippiensis
Circus cyaneus
Accipiter cooperii
Buteo platypterus
Buteo jamaicensis
Buteo lagopus

Falco columbarius
Porzana carolina
Gallinula chloropus
Pluvialis squatarola
Charadrius wilsonia
Charadrius melodus
Recurvirostra americana
Tringa melanoleuca
Bartramia longicauda
Limosa haemastica
Arenaria interpres
Calidris pusilla
Calidris fuscicollis
Calidris melanotos
Calidris himantopus
Limnodromus scolopaceus
Scolopax minor
Larus pipixan

Larus delawarensis
Larus argentatus
Rissa tridactyla
Sterna forsteri
Chlidonias niger
Zenaida asiatica
Columbina passerina
Larus marinus

Sterna hirundo
Columba livia
Columbina inca
Coccyzus erythropthalmus
Tyto alba

Bubo virginianus
Asio flammeus
Chordeiles minor



Chuck-will’s-widow -
Chimney Swift -

Broad-tailed Hummingbird -

Belted Kingfisher -
Red-bellied Woodpecker -
Downy Woodpecker -
Northern Flicker -
Pileated Woodpecker -
Eastern Wood Pewee -
Least Flycatcher -

Say’s Phoebe -

Great Crested Flycatcher -
Eastern Kingbird -
Horned Lark -

Tree Swallow -

Bank Swallow -

Barn Swallow -
American Crow -
Carolina Chickadee -
Red-breasted Nuthatch -
Brown-headed Nuthatch -
Bewick’s Wren -

House Wren -

Marsh Wren -

Rock Wren -
Ruby-crowned Kinglet -
Blue-gray Gnatcatcher -
Veery -

Hermit Thrush -
American Robin -
Northern Mockingbird -
American Pipit -

Cedar Waxwing -
European Starling -
Bell’s Vireo -
Philadelphia Vireo -
Red-eyed Vireo -
Golden-winged Warbler -

Orange-crowned Warbler -

Northern Parula -
Chestnut-sided Warbler -
Cape May Warbler -

Black-throated Blue Warbler -

Blackburnian Warbler -
Pine Warbler -

Palm Warbler -
Blackpoll Warbler -
Black-and-white Warbler -
Prothonotary Warbler -
Swainson’s Warbler -
Northern Waterthrush -
Kentucky Warbler -
Mourning Warbler -
Hooded Warbler -

Caprimulgus carolinensis
Chaetura pelagica
Selasphorus platycercus
Ceryle alcyon
Melanerpes carolinus
Picoides pubescens
Colaptes auratus
Dryocopus pileatus
Contopus virens
Empidonax minimus
Sayornis saya
Myiarchus crinitus
Tyrannus tyrannus
Eremophila alpestris
Tachycineta bicolor
Riparia riparia
Hirundo rustica

Corvus brachyrhynchos
Parus carolinensis
Sitta canadensis

Sitta pusilla
Thryomanes bewickii
Troglodytes aedon
Cistothorus palustris
Salpinctes obsoletus
Regulus calendula
Polioptila caerulea
Catharus fuscescens
Catharus guttatus
Turdus migratorius
Mimus polyglottos
Anthus rubescens
Bombycilla cedrorum
Sturnus vulgaris

Vireo bellii

Vireo philadelphicus
Vireo olivaceus
Vermivora chrysoptera
Vermivora celata
Parula americana
Dendroica pensylvanica
Dendroica tigrina
Dendroica caerulescens
Dendroica fusca
Dendroica pinus
Dendroica palmarum
Dendroica striata
Mhniotilta varia
Protonotaria citrea
Limnothlypis swainsonii
Seiurus noveboracensis
Oporornis formosus
Oporornis philadelphia
Wilsonia citrina
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Whip-poor-will -

Ruby-throated Hummingbird -

Rufous Hummingbird -
Red-headed Woodpecker -

Yellow-bellied Sapsucker -

Hairy Woodpecker -
Alder Flycatcher -
Olive-sided Flycatcher -

Yellow-bellied Flycatcher -

Eastern Phoebe -
Vermilion Flycatcher -
Western Kingbird -
Scissor-tailed Flycatcher -
Purple Martin -
Rough-winged Swallow -
Cliff Swallow -

Blue Jay -

Fish Crow -

Tufted Titmouse -
White-breasted Nuthatch -
Brown Creeper -
Carolina Wren -

Winter Wren -

Sedge Wren -
Golden-crowned Kinglet -
Eastern Bluebird -
Gray-cheeked Thrush -
Wood Thrush -

Gray Catbird -

Brown Thrasher -
Sprague’s Pipit -
Loggerhead Shrike -
White-eyed Vireo -
Yellow-throated Vireo -
Warbling Vireo -
Blue-winged Warbler -
Tennessee Warbler -
Nashville Warbler -
Yellow Warbler -
Magnolia Warbler -
Yellow-rumped Warbler -

Black-throat Green Warbler -

Yellow-throated Warbler -
Prairie Warbler -
Bay-breasted Warbler -
Cerulean Warbler -
American Redstart -
Worm-eating Warbler -
Ovenbird -

Louisiana Waterthrush -
Connecticut Warbler -
Common Yellowthroat -
Wilson’s Warbler -
Canada Warbler -

Caprimulgus vociferus
Archilochus colubris
Selasphorus rufus
Melanerpes erythrocephalus
Sphyrapicus varius
Picoides villosus
Empidonax alnorum
Contopus borealis
Empidonax virescens
Sayornis phoebe
Pyrocephalus rubinus
Tyrannus verticalis
Tyrannus forficatus
Progne subis
Stelgidopteryx serripennis
Hirundo pyrrhonota
Cyanocitta cristata
Corvus ossifragus
Parus bicolor

Sitta carolinensis
Certhia americana
Thryothorus ludovicianus
Troglodytes troglodytes
Cistothorus platensis
Regulus satrapa

Sialia sialis

Catharus minimus
Hylocichla mustelina
Dumetella carolinensis
Toxostoma rufum
Anthus spragueii
Lanius ludovicianus
Vireo griseus

Vireo flavifrons

Vireo gilvus
Vermivora pinus
Vermivora peregrina
Vermivora ruficapilla
Dendroica petechia
Dendroica magnolia
Dendroica coronata
Dendroica virens
Dendroica dominica
Dendroica discolor
Dendroica castanea
Dendroica cerulea
Setophaga ruticilla
Helmitheros vermivorus
Seiurus aurocapillus
Seiurus motacilla
Oporornis agilis
Geothlypis trichas
Wilsonia pusilla
Wilsonia canadensis



Yellow-breasted Chat -
Summer Tanager -
Evening Grosbeak -
Black-headed Grosbeak -
Indigo Bunting -

Painted Bunting -
Rufous-sided Towhee -
Lark Bunting -

American Tree Sparrow -
Clay-colored Sparrow -
Vesper Sparrow -
Savannah Sparrow -
Henslow’s Sparrow -
LeConte’s Sparrow -
Song Sparrow -

Swamp Sparrow -
White-crowned Sparrow -
Dark-eyed Junco -
Smith’s Longspur -
Bobolink -

Eastern Meadowlark -
Yellow-headed Blackbird -
Brewer’s Blackbird -
Common Grackle -
Orchard Oriole -

House Finch -

American Goldfinch -

Icteria virens

Piranga rubra
Coccothraustes verpertinus
Pheucticus melanocephalus
Passerina cyanea
Passerina ciris

Pipilo erythrophthalmus
Calamospiza melanocorys
Spizella arborea

Spizella pallida

Pooecetes gramineus
Passerculus sandwichensis
Ammodramus henslowii
Ammospiza leconteii
Melospiza melodia
Melospiza georgiana
Zonotrichia leucophrys
Junco hyemalis

Calcarius pictus
Dolichonyx oryzivorus
Sturnella magna

Xanthocephalus xanthocephalus

Euphagus cyanocephalus
Quiscalus quiscula
Icterus spurius
Carpodacus mexicanus
Carduelis tristis

Scarlet Tanager -
Northern Cardinal -

Rose-breasted Grosbeak -

Blue Grosbeak -
Dickcissel -
Green-tailed Towhee -
Bachman’s Sparrow* -
Chipping Sparrow -
Field Sparrow -

Lark Sparrow -
Grasshopper Sparrow -
Sharp-tailed Sparrow -
Fox Sparrow -
Lincoln’s Sparrow -

White-throated Sparrow -

Harris Sparrow -
Lapland Lonspur -

Chestnut-collared Longspur -

Red-winged Blackbird -
Western Meadowlark -
Rusty Blackbird -
Great-tailed Grackle -

Brown-headed Cowbird -

Northern Oriole -
Purple Finch -
Pine Siskin -
House Sparrow -

Piranga olivacea
Cardinalis cardinalis
Pheucticus ludovicianus
Guiraca caerulea

Spiza americana

Piplo chlorurus
Aimophila aestivalis
Spizella passerina
Spizella pusilla
Chondestes grammacus
Ammodramus savannarum
Ammodramus caudacutus
Passerella iliaca
Melospiza lincolnii
Zonotrichia albicollis
Zonotrichia querula
Calcarius lapponicus
Calcarius ornatus
Agelaius phoeniceus
Sturnella neglecta
Euphagus carolinus
Quiscalus mexicanus
Molothrus ater

Icterus galbula
Carpodacus purpureus
Carduelis pinus

Passer domesticus

*Species listed by the State of Texas as threatened as of 1998.
Federally listed endangered species as of 1998.
Federally listed threatened species as of 1998. Note - the american alligator is listed as threatened because of its simularity to other endangered species.

TABLEII. HUMAN POPULATION INHABITING THE TEXAS COUNTIES AND LOUISIANA PARISH
ENCOMPASSED BY THE CYPRESS CREEK WATERSHED

COUNTY/PARISH 1990 CENSUS 1997 POPULATION ESTIMATE
Camp 9,904 11,051
Cass 29,982 30,745
Franklin 7,802 8,888
Gregg 104,948 112,482
Harrison 57,483 61,309
Hopkins 28,833 31,100
Marion 9,984 10,414
Morris 13,200 13,661
Rains 6,715 7,509
Titus 24,009 26,533
Upsher 31,370 34,929
Caddo 248,253 244 943
TOTAL 572,483 593,564

A6

(TAMU, 1997; Deseran pers. comm.)



APPENDIX B
(SAMPLE KEYS)



TABLE III. KEY TO WATER SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS
CREEK WATERSHED.

CSWMO1 - sample collected at Cypress Springs Reservoir above FM 115.
CSWMO02 - sample collected at Cypress Springs Reservoir at Panther Creek.
CSWMO03 - sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
LOPWMO1 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LOPWMO02 - sample collected at Lake O’ The Pines at SH 155 Marina.

LOPWMO3 - sample collected at Lake O’ The Pines at Copeland Creek.

CLWMO1 - sample collected at Caddo Lake at Harrison Bayou.

CLWMO2 - sample collected at Caddo Lake at South Little Green Break.

CLWMO3 - sample collected at Caddo Lake at Clintons Chute.

TABLEIV. KEY TO SEDIMENT SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS
CREEK WATERSHED.

CS1S01 - sample collected at Cypress Springs Reservoir above FM 115.

CS1504 - sample collected at Cypress Springs Reservoir above FM 115.

CS1506 - sample collected at Cypress Springs Reservoir above FM 115.

CS1S09 - sample collected at Cypress Springs Reservoir above FM 115.

CS1S514 - sample collected at Cypress Springs Reservoir above FM 115.

CS2502 - sample collected at Cypress Springs Reservoir at Panther Creek.
CS2507 - sample collected at Cypress Springs Reservoir at Panther Creek.
CS2S815 - sample collected at Cypress Springs Reservoir at Panther Creek.
CS3S03 - sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3S08 - sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3S10 - sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3S16 - sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
LP1S21 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LP1S25 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LP1S26 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LP1S29 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LP1S34 - sample collected at Lake O’ The Pines in the vicinity of Lone Star Steel.
LP2S22 - sample collected at Lake O’ The Pines at SH 155 Marina.

LP2S27 - sample collected at Lake O’ The Pines at SH 155 Marina.

LP2S35 - sample collected at Lake O’ The Pines at SH 155 Marina.

LP3S23 - sample collected at Lake O’ The Pines at Copeland Creek.

LP3S28 - sample collected at Lake O’ The Pines at Copeland Creek.

LP3S30 - sample collected at Lake O’ The Pines at Copeland Creek.

LP3S36 - sample collected at Lake O’ The Pines at Copeland Creek.

CL2S42 - sample collected at Caddo Lake at Harrison Bayou.

CL2S45 - sample collected at Caddo Lake at Harrison Bayou.

CL2547 - sample collected at Caddo Lake at Harrison Bayou.

CL2S50 - sample collected at Caddo Lake at Harrison Bayou.

CL2S55 - sample collected at Caddo Lake at Harrison Bayou.

CL9S41 - sample collected at Caddo Lake at Goose Prairie.

CL9S46 - sample collected at Caddo Lake at Goose Prairie.

CL9S49 - sample collected at Caddo Lake at Goose Prairie.

CL9S54 - sample collected at Caddo Lake at Goose Prairie.

CL11543 - sample collected at Caddo Lake at South Little Green Break.

CL11S48 - sample collected at Caddo Lake at South Little Green Break.

CL11S56 - sample collected at Caddo Lake at South Little Green Break.
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TABLE V. KEY TO FISH SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS CREEK
WATERSHED.

CS1GARO1 - spotted gar composite sample collected at Cypress Springs Reservoir above FM 115,
CS1GARO2 - spotted gar composite sample collected at Cypress Springs Reservoir above FM 115.
CS1GS01 - gizzard shad composite sample collected at Cypress Springs Reservoir above FM 115.
CS1GS02 - gizzard shad composite sample collected at Cypress Springs Reservoir above FM 115.
CSI1LMBO03 - largemouth bass composite sample collected at Cypress Springs Reservoir above FM 115.
CS1LMBO06 - largemouth bass sample collected at Cypress Springs Reservoir above FM 115.
CS1ILMBO7 - largemouth bass sample collected at Cypress Springs Reservoir above FM 115.
CS1LMBO08 - largemouth bass sample collected at Cypress Springs Reservoir above FM 115.
CS1LMBO09 - largemouth bass sample collected at Cypress Springs Reservoir above FM 115.

CS1SF04 - redear sunfish composite sample collected at Cypress Springs Reservoir above FM 115.
CS1SPB10 - spotted bass sample collected at Cypress Springs Reservoir above FM 115.

CS2GARO1 - spotted gar composite sample collected at Cypress Springs Reservoir at Panther Creek
CS2GARO02 - spotted gar composite sample collected at Cypress Springs Reservoir at Panther Creek.
CS2GS01 - gizzard shad composite sample collected at Cypress Springs Reservoir at Panther Creek.
CS2GS02 - gizzard shad composite sample collected at Cypress Springs Reservoir at Panther Creek.

CS2LMBO1 - largemouth bass sample collected at Cypress Springs Reservoir at Panther Creek.
CS2LMBO02 - largemouth bass sample collected at Cypress Springs Reservoir at Panther Creek.
CS2LMBO03 - largemouth bass sample collected at Cypress Springs Reservoir at Panther Creek.
CS2LMB04 - largemouth bass sample collected at Cypress Springs Reservoir at Panther Creek.
CS2LMBO05 - largemouth bass sample collected at Cypress Springs Reservoir at Panther Creek.

CS2SF04 - redear sunfish composite sample collected at Cypress Springs Reservoir at Panther Creek.
CS3GARO1 - spotted gar composite sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3GARO02 - spotted gar composite sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3GS01 - gizzard shad composite sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3GS02 - gizzard shad composite sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3LMB04 - largemouth bass sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3LMBO05 - largemouth bass sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3LMB06 - largemouth bass sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3LMBO07 - largemouth bass sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3LMBO08 - largemouth bass sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
CS3SF04 - redear sunfish composite sample collected at Cypress Springs Reservoir at Whippoorwill Bay.
LP1GARO1 - spotted gar composite sample collected at Lake O' The Pines at Lone Star Steel.
LP1GARO2 - spotted gar composite sample collected at Lake O' The Pines at Lone Star Steel.

LP1GSO1 - gizzard shad composite sample collected at Lake O' The Pines at Lone Star Steel.

LP1GS02 - gizzard shad composite sample collected at Lake O' The Pines at Lone Star Steel.
LPILMBO1 - largemouth bass sample collected at Lake O' The Pines at Lone Star Steel.

LPILMB02 - largemouth bass sample collected at Lake O' The Pines at Lone Star Steel.

LPILMB03 - largemouth bass composite sample collected at Lake O' The Pines at Lone Star Steel.
LP1LMBO5 - largemouth bass sample collected at Lake O' The Pines at Lone Star Steel.

LPILMBO0O6 - largemouth bass sample collected at Lake O' The Pines at Lone Star Steel.

LP1SF04 - redear sunfish composite sample collected at Lake O' The Pines at Lone Star Steel.
LP1WBO03 - white bass sample collected at Lake O' The Pines at Lone Star Steel.

LP2CCO1 - channel catfish sample collected at Lake O' The Pines at SH 155 Marina.
LP2CC02 - channel catfish sample collected at Lake O' The Pines at SH 155 Marina.
LP2CCO03 - channel catfish sample collected at Lake O' The Pines at SH 155 Marina.
LP2CC04 - channel catfish sample collected at Lake O' The Pines at SH 155 Marina.
LP2CCO06 - channel catfish sample collected at Lake O' The Pines at SH 155 Marina.

LP2GARO1 - spotted gar composite sample collected at Lake O' The Pines at SH 155 Marina.
LP2GAR0O2 - spotted gar composite sample collected at Lake O' The Pines at SH 155 Marina.
LP2GS01 - gizzard shad composite sample collected at Lake O' The Pines at SH 155 Marina.
LP2GS02 - gizzard shad composite sample collected at Lake O' The Pines at SH 155 Marina.
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TABLE V. KEY TO FISH SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS CREEK
WATERSHED (continued).

LP2SF04 - redear sunfish composite sample collected at Lake O' The Pines at SH 155 Marina.
LP3CCO1 - channel catfish sample collected at Lake O' The Pines from Copeland Creek.
LP3CC02 - channel catfish sample collected at Lake O' The Pines from Copeland Creek.
LP3CCO03 - channel catfish sample collected at Lake O' The Pines from Copeland Creek.
LP3CC04 - channel catfish sample collected at Lake O' The Pines from Copeland Creek.
LP3CCO05 - channel catfish sample collected at Lake O' The Pines from Copeland Creek.

LP3GARO1 - spotted gar composite sample collected at Lake O' The Pines from Copeland Creek.
LP3GARO2 - spotted gar composite sample collected at Lake O' The Pines from Copeland Creek.

LP3GS01 - gizzard shad composite sample collected at Lake O' The Pines from Copeland Creek.
LP3GS02 - gizzard shad composite sample collected at Lake O' The Pines from Copeland Creek.
LP3SF04 - redear sunfish composite sample collected at Lake O' The Pines from Copeland Creek.
S2B1 - largemouth bass composite sample collected at Caddo Lake at Harrison Bayou.
S2B2 - largemouth bass composite sample collected at Caddo Lake at Harrison Bayou.
S2B3 - largemouth bass composite sample collected at Caddo Lake at Harrison Bayou.
S2BG1 - largemouth bass composite sample collected at Caddo Lake at Harrison Bayou.
S2BG2 - largemouth bass composite sample collected at Caddo Lake at Harrison Bayou.
S2G1 - spotted gar composite sample collected at Caddo Lake at Harrison Bayou.
S2G2 - spotted gar composite sample collected at Caddo Lake at Harrison Bayou.
S2R1 - redear sunfish composite sample collected at Caddo Lake at Harrison Bayou.
S2R2 - redear sunfish composite sample collected at Caddo Lake at Harrison Bayou.
S2R3 - redear sunfish composite sample collected at Caddo Lake at Harrison Bayou.
S2S1 - gizzard shad composite sample collected at Caddo Lake at Harrison Bayou.
5252 - gizzard shad composite sample collected at Caddo Lake at Harrison Bayou.
S283 - gizzard shad composite sample collected at Caddo Lake at Harrison Bayou.
S254 - gizzard shad composite sample collected at Caddo Lake at Harrison Bayou.
S2S5 - gizzard shad composite sample collected at Caddo Lake at Harrison Bayou.
S4B1 - largemouth bass composite sample collected at Caddo Lake at South Shore.
S4B2 - largemouth bass composite sample collected at Caddo Lake at South Shore.
S4BG1 - bluegill sunfish composite sample collected at Caddo Lake at South Shore.
S4BG2 - bluegill sunfish composite sample collected at Caddo Lake at South Shore.
S4BG3 - bluegill sunfish composite sample collected at Caddo Lake at South Shore.
S4G1 - spotted gar composite sample collected at Caddo Lake at South Shore.

S4G2 - spotted gar composite sample collected at Caddo Lake at South Shore.

S4G3 - spotted gar composite sample collected at Caddo Lake at South Shore.

S4R1 - redear sunfish composite sample collected at Caddo Lake at South Shore.

S4S1 - gizzard shad composite sample collected at Caddo Lake at South Shore.

5482 - gizzard shad composite sample collected at Caddo Lake at South Shore.

S5B1 - largemouth bass composite sample collected at Caddo Lake at Millers Point.
S5B2 - largemouth bass composite sample collected at Caddo Lake at Millers Point.
S5B3 - largemouth bass composite sample collected at Caddo Lake at Millers Point.
S5B4 - largemouth bass composite sample collected at Caddo Lake at Millers Point.
S5BG1 - bluegill sunfish composite sample collected at Caddo Lake at Millers Point.
S5BG2 - bluegill sunfish composite sample collected at Caddo Lake at Millers Point.
S5G1 - spotted gar composite sample collected at Caddo Lake at Millers Point.

S5G2 - spotted gar composite sample collected at Caddo Lake at Millers Point.

S5G3 - spotted gar composite sample collected at Caddo Lake at Millers Point.

S5R1 - redear sunfish composite sample collected at Caddo Lake at Millers Point.
S5R2 - redear sunfish composite sample collected at Caddo Lake at Millers Point.
S5R3 - redear sunfish composite sample collected at Caddo Lake at Millers Point.
S5S1 - gizzard shad composite sample collected at Caddo Lake at Millers Point.

S5S2 - gizzard shad composite sample collected at Caddo Lake at Millers Point.
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TABLE V. KEY TO FISH SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS CREEK
WATERSHED (continued).

S6B1 - largemouth bass composite sample collected at Caddo Lake at Taylor Island.
S6B2 - largemouth bass composite sample collected at Caddo Lake at Taylor Island.
S6BG1 - bluegill sunfish composite sample collected at Caddo Lake at Taylor Island.
S6BG2 - bluegill sunfish composite sample collected at Caddo Lake at Taylor Island.
S6BG3 - bluegill sunfish composite sample collected at Caddo Lake at Taylor Island.
S6R1 - redear sunfish composite sample collected at Caddo Lake at Taylor Island.
S6R2 - redear sunfish composite sample collected at Caddo Lake at Taylor Island.
S6S1 - gizzard shad composite sample collected at Caddo Lake at Taylor Island.
S6S3 - gizzard shad composite sample collected at Caddo Lake at Taylor Island.
S654 - gizzard shad composite sample collected at Caddo Lake at Taylor Island.
S6S5 - gizzard shad composite sample collected at Caddo Lake at Taylor Island.
S6S6 - gizzard shad composite sample collected at Caddo Lake at Taylor Island.
S7B1 - largemouth bass composite sample collected at Caddo Lake at Mossey Break.
S7BG1 - bluegill sunfish composite sample collected at Caddo Lake at Mossey Break.
S7BG2 - bluegill sunfish composite sample collected at Caddo Lake at Mossey Break.
S7BG3 - bluegill sunfish composite sample collected at Caddo Lake at Mossey Break.
S7TR2 - redear sunfish composite sample collected at Caddo Lake at Mossey Break.
S7R3 - redear sunfish composite sample collected at Caddo Lake at Mossey Break.
S7R4 - redear sunfish composite sample collected at Caddo Lake at Mossey Break.
S7S1 - gizzard shad composite sample collected at Caddo Lake at Mossey Break.
S7S2 - gizzard shad composite sample collected at Caddo Lake at Mossey Break.
S754 - gizzard shad composite sample collected at Caddo Lake at Mossey Break.
S7S5 - gizzard shad composite sample collected at Caddo Lake at Mossey Break.
S7S6 - gizzard shad composite sample collected at Caddo Lake at Mossey Break.
S8B1 - largemouth bass composite sample collected at Caddo Lake at Clintons Chute.
S8B2 - largemouth bass composite sample collected at Caddo Lake at Clintons Chute.
S8B3 - largemouth bass composite sample collected at Caddo Lake at Clintons Chute.
S8BG1 - bluegill sunfish composite sample collected at Caddo Lake at Clintons Chute.
S8BG2 - bluegill sunfish composite sample collected at Caddo Lake at Clintons Chute.
S8G1 - spotted gar composite sample collected at Caddo Lake at Clintons Chute.
S8R1 - redear sunfish composite sample collected at Caddo Lake at Clintons Chute.
S8R2 - redear sunfish composite sample collected at Caddo Lake at Clintons Chute.
S8R3 - redear sunfish composite sample collected at Caddo Lake at Clintons Chute.
S8S1 - gizzard shad composite sample collected at Caddo Lake at Clintons Chute.
S9C1 - channel catfish sample collected at Caddo Lake at Goose Prairie.

S9C2 - channel catfish composite sample collected at Caddo Lake at Goose Prairie.
S9G1 - spotted gar composite sample collected at Caddo Lake at Goose Prairie.
S9G2 - spotted gar composite sample collected at Caddo Lake at Goose Prairie.
S9K1 - killifish composite sample collected at Caddo Lake at Goose Prairie.

SOM1 - mosquitofish composite sample collected at Caddo Lake at Goose Prairie.
SOM2 - mosquitofish composite sample collected at Caddo Lake at Goose Prairie.
S10B1 - largemouth bass composite sample collected at Caddo Lake at Uncertain.
S10B2 - largemouth bass composite sample collected at Caddo Lake at Uncertain.
S10B3 - largemouth bass composite sample collected at Caddo Lake at Uncertain.
S10BG1 - bluegill sunfish composite sample collected at Caddo Lake at Uncertain.
S10BH1 - black bullhead sample collected at Caddo Lake at Uncertain.

S10G1 - spotted gar composite sample collected at Caddo Lake at Uncertain.

S10G2 - spotted gar composite sample collected at Caddo Lake at Uncertain.

S10R1 - redear sunfish composite sample collected at Caddo Lake at Uncertain.
S10R2 - redear sunfish composite sample collected at Caddo Lake at Uncertain.
S10R3 - redear sunfish composite sample collected at Caddo Lake at Uncertain.
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TABLE V. KEY TO FISH SAMPLES COLLECTED WITHIN THREE LENTIC SYSTEMS IN THE CYPRESS CREEK
WATERSHED (continued).

S10S1 - gizzard shad composite sample collected at Caddo Lake at Uncertain.

S10S2 - gizzard shad composite sample collected at Caddo Lake at Uncertain.

S10S3 - gizzard shad composite sample collected at Caddo Lake at Uncertain.

S11B1 - largemouth bass composite sample collected at Caddo Lake at South Little Green Break.
S11B2 - largemouth bass composite sample collected at Caddo Lake at South Little Green Break.
S11B3 - largemouth bass composite sample collected at Caddo Lake at South Little Green Break.
S11BG2 - bluegill sunfish composite sample collected at Caddo Lake at South Little Green Break.
S11BG3 - bluegill sunfish composite sample collected at Caddo Lake at South Little Green Break.
S11C1 - channel catfish sample collected at Caddo Lake at South Little Green Break.

S11C2 - channel catfish composite sample collected at Caddo Lake at South Little Green Break.
S11G1 - spotted gar composite sample collected at Caddo Lake at South Little Green Break.
S11G2 - spotted gar composite sample collected at Caddo Lake at South Little Green Break.
S11R1 - redear sunfish composite sample collected at Caddo Lake at South Little Green Break.
S11R2 - redear sunfish composite sample collected at Caddo Lake at South Little Green Break.
S11S1 - gizzard shad composite sample collected at Caddo Lake at South Little Green Break.
S1182 - gizzard shad composite sample collected at Caddo Lake at South Little Green Break.
S1154 - gizzard shad composite sample collected at Caddo Lake at South Little Green Break.

TABLE VI. KEY TO MACROINVERTEBRATE SAMPLES COLLECTED FROM CADDO LAKE.

S2IM1 - grass shrimp collected at Harrison Bayou.
S2IM2 - grass shrimp collected at Harrison Bayou.
S4IM1 - grass shrimp collected at South Shore.
S5IM1 - grass shrimp collected at Millers Point.
S5IM2 - grass shrimp collected at Millers Point.
S6IM1 - grass shrimp collected at Taylor Island.
S6IM2 - grass shrimp collected at Taylor Island.
S7IM1 - grass shrimp collected at Mossey Break.
S7IM2 - grass shrimp collected at Mossey Break.
S9IM1 - grass shrimp collected at Goose Prairie.
S9IM2 - grass shrimp collected at Goose Prairie.
S10IM1 - grass shrimp collected at Uncertain.
S10IM2 - grass shrimp collected at Uncertain.
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APPENDIX C
(ANALYTICAL METHODS)



Method Code 001: Elemental Analysis By Inductively Coupled Plasma Spectroscopy
Laboratory: Hazleton Laboratories America, Inc.

For Samples: CSWMO01, CSWMO02, CSWMO03, LOPWMO01, LOPWMO02, LOPWMO03, CLWMO1, CLWMO02, CLWMO03,
CS1S01, CS1S14, CS2S02, CS2S15, CS3S03, CS3S16, LP1S21, LP1S34, LP2S22, LP2S35, LP3S23, LP3S36, CL2542,
CL2S55, CL9S41, CL9S54, CL11S43, CL11S56, CS1IGARO1, CS1GARO02, CS1GS01, CS1GS02, CS1SF04, CS2GARO1,
CS2GARO02, CS2GS01, CS2GS02, CS2SF04, CS3GARO1, CS3GARO02, CS3GS01, CS3GS02, CS3SF04, LP1GAROI1,
LP1GARO2, LP1GSO1, LP1GS02, LP1SF04, LP2GARO1, LP2GARO02, LP2GSO01, LP2GS02, LP2SF04, LP3GARO1,
LP3GARO2, LP3GSO01, LP3GS02, LP3SF04, S2B1, S2BS, S2BG1, S2BG2, S2G1, S2G2, S2R1, S251, S252, S4B1, S4B2,
S4BG2, S4BG3, S4G1, S4G2, S4S1, S4S2, S5B1, S5B2, S5B4, S5BG1, S5BG2, S5G1, S5G2, S551, S5S2, S6B1, S6B2, S6BG1,
SGBG2, S6BG3, S6S3, S6S4, S7TB1, STBG2, STBG3, S7S1, S7S4, S8B1, S8B3, SEBG1, S8BG2, S8G1, S8R2, S8R3, S8S1,
S9G1, S9G2, SOM1, SOM2, S10B1, S10B3, S10BG1, S10G1, S10G2, S10S1, S10S2, S10S3, S11B1, S11B3, S11BG2, S11BG3,
S11G1, S11G2, S11S1, S11S2, S2IM1, S2IM2, S4IM1, S5IM1, S5IM2, S6IM1, S6IM2, S7TIM1, S7IM2, S9IM1, S9IM2,
S10IM1, S10IM2, CLMSLO01-CLMSLO07

I. Scope:
This method (MC 001) is applicable to plant and animal tissue, soil/sediment, and water.

II. Sample Preparation:

(1) Plant and Animal Tissue:
Digest 5.00 g of tissue in Teflon vessel with 5 ml nitric acid in microwave digester. Transfer into 5 ml volumetric flask and dilute
to volume with 0.005% Triton X-100 solution. Filter.

(2) Soil/Sediment:
Digest 1.00 g in covered Teflon beaker on hot plate using 10 ml nitric acid. Add 30% hydrogen peroxide in 1 ml aliquots until
effervescence no longer occurs. Add 1.25 ml hydrochloric acid, heat 10 minutes, and transfer to a 50 ml volumetric flask. Dilute
to volume with DDI water. Filter.

(3) Water:
Digest 100.0 ml sample in Teflon beaker on hot plate with 0.5 ml nitric acid and 2.5 ml hydrochloric acid. Reduce volume to
15 - 20 ml. Transfer into 50 ml volumetric flask. Dilute to volume with DDI water. Filter.

1. Principle:

Each analyte concentration in the sample solution is determined by comparing its emission intensity with the emission intensities
of a known series of analyte standards. The analytical wavelengths are tabulated with the raw concentration data. Analytical data
is corrected for background and interfering element effects by the spectrometer program. The detection limit of each analyte is
listed in the data report with each respective unknown value, it is the function of the instrument detection limit (IDL), and the
sample mass and volume to which it is diluted. With each batch of 20 samples of the same matrix type, at least one duplicate,
one sample spike, one analytical blank, and one appropriate reference material are assayed.

IVv. Reference:

(1) Test Methods For Evaluating Solid Waste USEPA Publication No. SW-846, 3rd Edition, Methods 3030, 3040 or
3050, and 6010, USEPA, Washington, D.C. (revised December 1987).

(2) Dahlquist, R.L. and Knoll, J.W., “Inductively Coupled Plasma - Atomic Emission Spectrometry: Analysis Of
Biological Materials And Soils For Major, Trace, and Ultra-Trace Elements,” Applied Spectroscopy, 32 (1) 1-29
(January/February 1978).

(3) Official Methods Of Analysis - 14th Edition, Method 43.292-43.296, AOAC: Arlington, Virginia (1984). @Ofd
Methods Of Analysis - 1st Supplement, 14th Edition, Method 3.A01-3.A04, AOAC: Arlington, Virginia (1985).

(5) USEPA Contract Laboratory Program, Statement Of Work, Inorganic Analysis, Multimedia, Multiconcentration,
SOW 7/88.

(6) “Inductively Coupled Plasma-Atomic Emission Spectrometric Method Of Trace Element Analysis Of Water and
Wastes” Method 200.7, edited by T.D. Martin and J.F. Kopp, USEPA, Environmental Monitoring and Support Laboratory,
Cincinnati, Ohio.

(7) “Method Procedures, Analytical Chemistry Department, Inorganic Chemistry.” Method MP-ICPS-MA, Hazelton
Laboratories America, Inc., Madison, Wisconsin.

Method Code 003: Mercury In Water By Cold Vapor Atomic Absorption
Laboratory: Hazleton Laboratories America, Inc.

For Samples: CSWMO01, CSWMO02, CSWMO03, LOPWMO1, LOPWMO02, LOPWMO03, CLWMO1, CLWMO02, CLWMO03

L Scope:
This method is applicable to drinking, surface, saline, and waste waters, and effluents.
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IL. Principle:

Sample volume for digest: 50 ml Final volume: 100 ml

Samples are digested with sulfuric acid, potassium permanganate, and potassium per sulfate. Mercury is reduced with sodium
borohydride for determination. The amount of mercury is determined at a wavelength of 253.7 nm by comparing the signal of
the unknown sample, measured by the atomic absorption spectrophotometer with the MHS-20 hydride generation unit, with the
signal of the standard solutions. Using a 50 ml sample, the lowest detection limit of this assay is 0.0004 mg/1.

III. References:

(1) Method For Chemical Analysis Of Water And Wastes, USEPA Publication No. 600/4-79-020, Metals 1-19 and
Method 245.2, USEPA: Cincinnati Ohio.

(2) Test Methods For Evaluating Solid Waste USEPA Publication No. SW-846, 2nd Edition, Methods 3020 and 7470,
USEPA, Washington, D.C. (revised April 1984).

Method Code 005: Arsenic In Water By Graphite Furnace
Laboratory: Hazleton Laboratories America, Inc.

For Samples: CSWMO01, CSWMO02, CSWMO03, LOPWMO1, LOPWMO02, LOPWMO03, CLWMO01, CLWMO02, CLWMO03

I. Scope:

This method is applicable to waters and aqueous wastes.

II. Sample Preparation:

Sample volume: 25 ml (minimum) Final volume: 25 ml

Digest the sample with nitric acid and 30% hydrogen peroxide using covered glass beakers and hot plates. Transfer to 25 ml.

III. Principle:

The amount of arsenic is determined at a wavelength of 193.7 nm by comparing the signal of the unknown sample, measured by
the graphite furnace atomic absorption spectrophotometer, with the signal of the standard solutions. The method of standard
additions is used where interference are indicated. Nickel matrix modification is employed in the analysis. Using a 25 ml sample,
the lowest detection limit of this assay is 1 mg/1.

IV. References:

(1) Method For Chemical Analysis Of Water And Wastes, USEPA Publication No. 600/4-79-020, Metals 1-19 and
Method 206.2, USEPA: Cincinnati Ohio.

(2) Test Methods For Evaluating Solid Waste USEPA Publication No. SW-846, 2nd Edition, Methods 3020 and 7060,
USEPA, Washington, D.C. (revised April 1984).

Method Code 007: Selenium In Water By Graphite Furnace
Laboratory: Hazleton Laboratories America, Inc.

For Samples: CSWMO01, CSWMO02, CSWMO03, LOPWMO1, LOPWMO02, LOPWMO03, CLWMO01, CLWMO02, CLWMO03

I. Scope:
This method is applicable to waters and aqueous wastes.

II. Sample Preparation: ~ Sample volume: 25 ml (minimum) Final volume: 25 ml
Digest the sample with nitric acid and 30% hydrogen peroxide using covered glass beakers and hot plates. Transfer to 25 ml.

II1. Principle:

The amount of selenium is determined at a wavelength of 196.0 nm by comparing the signal of the unknown sample, measured
by the graphite furnace atomic absorption spectrophotometer, with the signal of the standard solutions. The method of standard
additions is used where along with nickel matrix modification in the analysis. Using a 25 ml sample, the lowest detection limit
of this assay is 1 mg/l.

IV. References:

(1) Method For Chemical Analysis Of Water And Wastes, USEPA Publication No. 600/4-79-020, Metals 1-19 and
Method 270.2, USEPA: Cincinnati Ohio.

(2) Test Methods For Evaluating Solid Waste USEPA Publication No. SW-846, 2nd Edition, Methods 3020 and 7060,
USEPA, Washington, D.C. (revised April 1984).

C2



Method Code 002: Mercury By Cold Vapor Atomic Absorption
Laboratory: Hazleton Laboratories America, Inc.

For Samples:  CS1S01, CS1S14, CS2502, CS2S15, CS3S03, CS3S16, LP1S21, LP1S34, LP2S22, LP2S35, LP3S23, LP3S36,
CL2S42, CL2S55, CL9S41, CL9S54, CL11S43, CL11S56, CS1GARO1, CS1GARO02, CS1GS01, CS1GS02, CS1LMBO6,
CS1LMBO07, CS1ILMBO08, CSILMBO09, CS1SPB10, CS1SF04, CS2GARO01, CS2GARO02, CS2GS01, CS2GS02, CS2LMBO1,
CS2LMBO02, CS2LMBO03, CS2LMBO04, CS2LMBO05, CS2SF04, CS3GARO1, CS3GARO02, CS3GS01, CS3GS02, CS3LMB04,
CS3LMBO05, CS3LMB06, CS3LMB07, CS3LMBO08, CS3SF04, LP1GARO1, LP1GARO02, LP1GS01, LP1GS02, LP1LMBO1,
LP1LMBO02, LP1LMBO05, LP1LMBO06, LP1SF04, LP1WB03, LP2CCO01, LP2CC02, LP2CC03, LP2CC04, LP2CCO06,
LP2GARO1, LP2GARO2, LP2GS01, LP2GS02, LP2SF04, LP3CCO01, LP3CC02, LP3CCO03, LP3CC04, LP3CCO05, LP3GARO1,
LP3GARO02, LP3GS01, LP3GS02, LP3SF04, S2B1, S2BS, S2BG1, S2BG2, S2G1, S2G2, S2R1, S251, S2S2, S4B1, S4B2,
S4BG2, S4BG3, S4G1, S4G2, S4S1, S4S2, S5B1, S5B2, S5B4, S5BG1, S5BG2, S5G1, S5G2, S551, S552, S6B1, S6B2, S6BG1,
SGBG2, S6BG3, S6S3, S654, S7B1, S7TBG2, STBG3, S7S1, S7S4, S8B1, S8B3, S8BG1, S8BG2, S8G1, S8R2, S8R3, S8S1,
S9G1, S9G2, SOM1, SOM2, S10B1, S10B3, S10BG1, S10G1, S10G2, S10S1, S10S2, S10S3, S11B1, S11B3, S11BG2, S11BG3,
S11G1, S11G2, S11S1, S11S2, S2IM1, S2IM2, S4IM1, S5IM1, S5IM2, S6IM1, S6IM2, S7IM1, S7IM2, S9IM1, S9IM2,
S10IM1, S10IM2, CLMSFO01-CLMSFO07, CLMSKO01-CLMSK07, CLMSLO01-CLMSLO07

L Scope:
This method (MC 002) is applicable to most materials including animal tissues, plants, and soils.

IL. Principle:

Sample weight: 2.00 g Sample volume: 100 ml
Samples are digested with a mixture of sulfuric and nitric acid. Mercury is reduced with sodium borohydride for determination.
The amount of mercury is determined at a wavelength of 253.7 nm by comparing the signal of the unknown sample, measured
by the atomic absorption spectrophotometer with the MHS-20 hydride generation unit, with the signal of the standard solutions.
Using a 2.0 g sample, the lowest detection limit of this assay is 0.025 ppm.

III. References:

(1) Digestion: Analyst, 86:608 (1961) with modifications.

(2) Determination: Analytical Chemistry, 40:2085 (1968).

(3) Test Methods For Evaluating Solid Waste, USEPA Publication No. SW-846, 2nd Edition, Methods 3030, 3040 or
3050, and 7470, USEPA: Washington , D.C. (Revised April 1984).

Method Code 004: Arsenic By Graphite Furnace
Laboratory: Hazleton Laboratories America, Inc.

For Samples:  CS1S01, CS1S14, CS2S02, CS2S15, CS3S03, CS3S16, LP1S21, LP1S34, LP2S22, LP2S35, LP3S23, LP3S36,
CL2S42, CL2S55, CL9S41, CL9S54, CL11S43, CL11S56, CS1GARO1, CS1GARO02, CS1GS01, CS1GS02, CS1SF04,
CS2GARO1, CS2GARO02, CS2GS01, CS2GS02, CS2SF04, CS3GARO1, CS3GARO02, CS3GS01, CS3GS02, CS3SF04,
LP1GARO1, LP1GARO2, LP1GSO01, LP1GS02, LP1SF04, LP2GARO1, LP2GARO02, LP2GSO01, LP2GS02, LP2SF04,
LP3GARO1, LP3GARO2, LP3GS01, LP3GS02, LP3SF04, S2B1, S2BS, S2BG1, S2BG2, S2G1, S2G2, S2R1, S2S1, S252,
S4B1, S4B2, S4BG2, S4BG3, S4G1, S4G2, S4S1, S452, S5B1, S5B2, S5B4, S5BG1, S5BG2, S5G1, S5G2, S5S51, S5S2, S6B1,
S6B2, S6BG1, SGBG2, S6BG3, S6S3, S6S4, S7TB1, STBG2, STBG3, S7S1, S7S4, S8B1, S&B3, S8BG1, S8BG2, S8G1, S&R2,
S8R3, S8S1, S9G1, S9G2, SOM1, SOM2, S10B1, S10B3, S10BG1, S10G1, S10G2, S10S1, S10S2, S10S3, S11B1, S11B3,
S11BG2, S11BG3, S11G1, S11G2, S11S1, S11S2, S2IM1, S2IM2, S4IM1, S5IM1, S5IM2, S6IM1, S6IM2, S7IM1, S7TIM2,
S9IM1, S9IM2, S10IM1, S10IM2, CLMSLO1-CLMSLO07

L. Scope:
This method (MC 004) is applicable to animal tissues, plants, sediments, sludges, and soils.

IL. Sample Preparation:
(1) Animal or Plant Tissue:
Digest 1.00 g with nitric acid in a microwave digester. Transfer to 100 ml.
(2) Sediment or Soil:
Digest 1.00 g with nitric acid and 30% hydrogen peroxide using covered glass beakers on hot plates. Transfer to 100 ml.

I1I. Principle:

The amount of arsenic is determined at a wavelength of 193.7 nm by comparing the signal of the unknown sample, measured by
the graphite furnace atomic absorption spectrophotometer, with the signal of the standard solutions. The method of standard
additions is used where interferences are indicated. Nickel matrix modification is employed in the analysis. Using a 1.00 g
sample, the lowest detection limit of this assay is 0.1 ppm.
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IV. References:

(1) Test Methods For Evaluating Solid Waste, USEPA Publication No. SW-846, 2nd Edition, Methods 3030, 3040 or
3050, and 7060, USEPA: Washington , D.C. (Revised April 1984).

(2) USEPA Contract Laboratory Program, Statement Of Work No. 785, Method 206.2 CLP-M, USEPA: Cincinnati,
Ohio.

Method Code 006: Selenium By Graphite Furnace
Laboratory: Hazleton Laboratories America, Inc.

For Samples:  CS1S01, CS1S14, CS2S02, CS2S15, CS3S03, CS3S16, LP1S21, LP1S34, LP2S22, LP2S35, LP3S23, LP3S36,
CL2S42, CL2S55, CL9S41, CL9S54, CL11S43, CL11S56, CS1GARO1, CS1GARO02, CS1GSO01, CS1GS02, CS1SF04,
CS2GARO1, CS2GARO02, CS2GS01, CS2GS02, CS2SF04, CS3GARO1, CS3GARO02, CS3GS01, CS3GS02, CS3SF04,
LP1GARO1, LP1GARO2, LP1GSO1, LP1GS02, LP1SF04, LP2GARO1, LP2GARO02, LP2GS01, LP2GS02, LP2SF04,
LP3GARO1, LP3GARO2, LP3GS01, LP3GS02, LP3SF04, S2B1, S2BS, S2BG1, S2BG2, S2G1, S2G2, S2R1, S2S1, S2S2,
S4B1, S4B2, S4BG2, S4BG3, S4G1, S4G2, S4S1, S4S2, S5B1, S5B2, S5B4, S5BG1, S5BG2, S5G1, S5G2, S5S1, S5S2, S6B1,
S6B2, S6BG1, SGBG2, S6BG3, S6S3, S6S4, S7TB1, STBG2, STBG3, S7S1, S7S4, S8B1, S8B3, S8BG1, S8BG2, S8G1, S8R2,
S8R3, S8S1, S9G1, S9G2, SOM1, SOM2, S10B1, S10B3, S10BG1, S10G1, S10G2, S10S1, S10S2, S10S3, S11B1, S11B3,
S11BG2, S11BG3, S11G1, S11G2, S1181, S11S2, S2IM1, S2IM2, S4IM1, S5IM1, S5IM2, S6IM1, S6IM2, S7TIM1, S7TIM2,
SOIM1, S9IM2, S10IM1, S10IM2, CLMSLO1-CLMSLO7

L Scope:
This method (MC 006) is applicable to animal tissues, plants, sediments, sludges, and soils.

II. Sample Preparation:
(1) Animal or Plant Tissue:
Digest 1.00 g with nitric acid in a microwave digester. Transfer to 100 ml.
(2) Sediment or Soil:
Digest 1.00 g with nitric acid and 30% hydrogen peroxide using covered glass beakers on hot plates. Transfer to 100 ml.

1. Principle:
The amount of selenium is determined at a wavelength of 196.0 nm by comparing the signal of the unknown sample, measured
by the graphite furnace atomic absorption spectrophotometer, with the signal of the standard solutions. The method of standard
additions is used along with nickel matrix modification in the analysis. Using a 1.00 g sample, the lowest detection limit of this
assay is 0.1 ppm.

IV. References:
(1) Test Methods For Evaluating Solid Waste, USEPA Publication No. SW-846, 2nd Edition, Methods 3030, 3040 or
3050, and 7740, USEPA: Washington , D.C. (Revised April 1984).

Method Code 019: Moisture Determination
Laboratory: Hazleton Laboratories America, Inc.

For Samples:  CS1S01, CS1S14, CS2S02, CS2S15, CS3S03, CS3S16, LP1S21, LP1S34, LP2S22, LP2S35, LP3S23, LP3S36,
CL2S42, CL2S55, CL9S41, CL9S54, CL11S43, CL11S56, CS1GARO1, CS1GARO02, CS1GS01, CS1GS02, CS1SF04,
CS2GARO1, CS2GAR02, CS2GS01, CS2GS02, CS2SF04, CS3GARO1, CS3GARO02, CS3GS01, CS3GS02, CS3SF04,
LP1GARO1, LP1GARO2, LP1GSO1, LP1GS02, LP1SF04, LP2GARO1, LP2GARO02, LP2GS01, LP2GS02, LP2SF04,
LP3GARO1, LP3GARO02, LP3GS01, LP3GS02, LP3SF04, S2B1, S2BS, S2BG1, S2BG2, S2G1, S2G2, S2R1, S2S1, S2S2,
S4B1, S4B2, S4BG2, S4BG3, S4G1, S4G2, S4S1, S4S2, S5B1, S5B2, S5B4, S5BG1, S5BG2, S5G1, S5G2, S5S1, S5S2, S6B1,
S6B2, S6BG1, SGBG2, S6BG3, S6S3, S6S4, S7TB1, STBG2, STBG3, S7S1, S7S4, S8B1, S8B3, S8BG1, S8BG2, S8G1, S8R2,
S8R3, S8S1, S9G1, S9G2, SOM1, SOM2, S10B1, S10B3, S10BG1, S10G1, S10G2, S10S1, S10S2, S10S3, S11B1, S11B3,
S11BG2, S11BG3, S11G1, S11G2, S11S81, S11S2, S2IM1, S2IM2, S4IM1, S5IM1, S5IM2, S6IM1, S6IM2, S7TIM1, S7TIM2,
S9IM1, S9IM2, S10IM1, S10IM2, CLMSF01-CLMSF07, CLMSK01-CLMSK07, CLMSLO01-CLMS07

L Scope:
This method (MC 019) is applicable to plant tissue, animal tissue, and soil/sediment.

IL. Principle:
The prepared sample is weighed in a tared aluminum dish and dried in an oven to constant weight (apprx. 12-18 hr) at 100 C.

III. Sensitivity:
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This method is capable of detecting 0.1% moisture.

IV. References:
(1) Official Methods Of Analysis - 15th Edition, Methods 926.08, 925.09, AOAC: Arlington, Virginia (1990) modified.
(2) USEPA Contract Laboratory Program, Statement Of Work For Inorganics Analysis, Exhibit D, SOW 03/90,
Document No. ILMO01.0.

Method Code 010: Extraction By Soxhlet
Laboratory: Hazleton Laboratories America, Inc.

For Samples: S2B3, S2S5, S4BG1, S4G3, S5B3, S5G3, S6R1, S6S1, S7TBG1, S7S2, S8B2, S8R1, S9C2, S9K1, S11C2

L Scope:
This method (MC 010) covers the extraction of Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) in biological
tissues.

II. Sample Preparation:

Blend 20 g of ground tissue with 40 g of anhydrous sodium sulfate in a 250 ml beaker. If there is not 20 g of sample available
then remove at least 1 g for % moisture and weigh the remainder for extracting. For wet samples, more sodium sulfate may be
required. If a sufficient amount has been added, the sample will appear granular. Add 500 ul of the pesticide spiking solution to
the matrix spike and the control spike. Add 100 ul of the 2,4,5,6-terachloro-m-xylene (TMX) surrogate spiking solution to all
samples and QC samples. Allow the ground tissue/sodium sulfate to dry under a hood for a couple of hours, stirring it
occasionally.

I1I. Procedure:

Load the prepared sample into the soxhlet extractor between two plugs of pre-extracted glass wool. Place 250 ml of methylene
chloride into a pre-rinsed 500 ml Erlenmeyer flask containing 3 - 5 Teflon boiling chips. Attach the flask to the extractor. Add
100 ml of methylene chloride to the mixing beaker, swirl, and add the solvent to the extractor prior to attaching the condenser.
Adjust the temperature of the heating mantle so that the extractors cycle at a rate of 12 - 15 cycles per hour. Allow the system
to cycle for 16 - 20 hours. Allow the extract to cool after the extraction is complete. Rinse the condenser with extraction solvent
and drain the soxhlet apparatus into the bottom collection flask. Pour the extract through a Whatman No.4 filter into a 500 ml
K-D flask fitted with a 10 ml concentrator tube. Attach a 3-ball snyder column to the K-D flask and concentrate the extract on
a hot water bath, adjusting the temperature so that the concentration is completed within 15 - 20 minutes. When the apparent
volume reaches approximately 5.0 ml, remove the K-D apparatus from the water bath and allow it to drain and cool for at least
10 minutes. Bring up to a volume of 10 ml with methylene chloride.

IV. QA/QC Comments:
Spike Recovery results were somewhat lower than normal. However, this appears to have had little effect on the sample results
since all results were reported as less than the detection limit except for three samples which had low levels of p,p’DDE.

V. References:

(1) Test Methods For Evaluating Solid Waste, USEPA Publication No. SW-846, 2nd Edition, Method 3050, USEPA:
Washington , D.C. (September, 1986).

(2) “Determination Of Organochlorine Pesticides And Polychlorinated Biphenyls (PCBs) In Biological Tissues.” Method
MP-FWST-MA, Hazleton Laboratories America, Inc., Madison, Wisconsin.

Method Code 011: Determination of % Lipids
Laboratory: Hazleton Laboratories America, Inc.

For Samples: S2B3, S2S5, S4BG1, S4G3, S5B3, S5G3, S6R1, S6S1, STBG1, S7S2, S8B2, S8R1, S9C2, S9K1, S11C2

L Scope:
This method (MC 011) covers the gravimetric determination of % lipids in biological tissue samples.

IL. Procedure:

1 ml of the 10 ml extract is placed into a preweighed aluminum weighing pan. The pan is allowed to sit lightly covered in a hood
overnight to allow the solvent to evaporate. The pan is weighed again. The following equation is then used to calculate the %
lipid: ((weight (g) of pan + lipid) - weight (g) of pan) x 10 ml x 100 = % lipid (g) extracted.

III. References:
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(1) “Determination Of Organochlorine Pesticides And Polychlorinated Biphenyls (PCBs) In Biological Tissues.” Method
MP-FWST-MA, Hazleton Laboratories America, Inc., Madison, Wisconsin.

Method Code 012: Determination of % Moisture
Laboratory: Hazleton Laboratories America, Inc.

For Samples: S2B3, S2S5, S4BG1, S4G3, S5B3, S5G3, S6R1, S6S1, S7TBG1, S7S2, S8B2, S8R1, S9C2, S9K1, S11C2

L Scope:
This method covers the gravimetric determination of % moisture in soil, sediment and biological tissue samples.

IL. Procedure:

1 to 10 g of the sample is placed into a preweighed aluminum weighing pan. The pan is weighed again with the sample in it. The
pan and sample are then placed into an oven at 105 C for 16 hours. The sample is allowed to cool in a desiccator and then
weighed again. The following equation is used to calculate the % moisture: ((mass (g) pan + wet sample) - mass (g) pan + dry
sample) x 100 = % moisture. If samples are to be calculated based on dry weight, the % moisture is converted to a correction
factor (M). The calculation of the factor is: 100/(100 - % moisture) = M.

III. References:

(1) Test Methods For Evaluating Solid Waste, USEPA Publication No. SW-846, 2nd Edition, Method 3550, USEPA:
Washington , D.C. (September, 1986).

(1) "Determination Of Organochlorine Pesticides And Polychlorinated Biphenyls (PCBs) In Soils And Sediments."
Method MP-FWSS-MA, Hazleton Laboratories America, Inc., Madison, Wisconsin.

Method Code 013: Gel-Permeation Chromatography Cleanup
Laboratory: Hazleton Laboratories America, Inc.

For Samples: S2B3, S2S5, S4BG1, S4G3, S5B3, S5G3, S6R1, S6S1, STBG1, S7S2, S8B2, S8R1, S9C2, S9K1, S11C2

I. Scope:
This method covers the cleanup of soil, sediment and biological samples by gel-permeation chromatography (GPC).

I Procedure:

After extraction, the sample extracts are concentrated in Kuderna-Danish (K-D) apparatus and the volume is adjusted to 10 ml
with methylene chloride. 5 ml of this extract is then injected on an ABC Laboratories Model 1002B GPC system using a column
packed with 70 g of S-X3 Bio-beads and methylene chloride as the carrier solvent. A dump, collect, and rinse cycle is then run
which is consistent with exhibit D, section 7.1 of reference 1 below. The collected fraction is then quantitatively transferred to
a 500 ml K-D apparatus fitted with a 10 ml concentrator tube. A 3 ball snyder column is attached and the extract is concentrated
on a hot water bath, adjusting the temperature such that the concentration is completed within 15 - 20 minutes. When the apparent
volume reaches approximately 5.0 ml, the K-D apparatus is removed from the water bath and allowed to cool for at least 10
minutes. 50 ml of hexane is added to the flask and it is returned to the hot water bath and the extract is concentrated to 5.0 ml.

II. References:

(1) USEPA Contract Laboratory Program, "Statement Of Work For Organic Analysis, Multi-media,
Multi-concentration”, Doc. No. OLMO01.0 (March 1990) including revisions OLMO1.1 (Dec 1990) and OLMO01.2 (Jan 1991).

(2) "Determination Of Organochlorine Pesticides And Polychlorinated Biphenyls (PCBs) In Biological Tissues." Method
MP-FWST-MA, Hazleton Laboratories America, Inc., Madison, Wisconsin.

(3) Instrument Operating Procedure For Gel-Permeation Chromatograph, Method OP-6004-36, Hazleton Laboratories
America, Inc., Madison, Wisconsin.

Method Code 017: Silica Gel Cleanup And Separation
Laboratory: Hazleton Laboratories America, Inc.

For Samples: S2B3, S2S5, S4BG1, S4G3, S5B3, S5G3, S6R1, S6S1, S7TBG1, S7S2, S8B2, S8R1, S9C2, S9K1, S11C2
L Scope:
This method is applicable to any sample extract in hexane which requires additional cleanup and the separation of polychlorinated

biphenyls (PCBs) from many of the organochlorine pesticides.

IL. Sample Preparation:
The sample extract should be at a volume of 5.0 ml in hexane.
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III. Procedure:

The silica gel (100/200 mesh) is prepared by swirling it in a slurry of 40% acetonitrile and 60% methylene chloride, vacuum
filtering, and then rinsing it successively with methylene chloride and hexane. It is then dyed at 140 C overnight and deactivated
with 0.5% (w/v) distilled water. 15 g of this silica gel is then slurried in petroleum ether, poured into a chromatography column,
and topped with anhydrous sodium sulfate. The sample extracts are then drawn into the top of the column. The first fraction is
eluted with 250 ml of a mixture of 1% acetonitrile, 19% hexane, and 80% methylene chloride (v/v). The first fraction should
include all PCBs, p,p"-DDE, hexachlorobenzene, and mirex. It may also include some portion of p,p'-DDT, o,p'-DDE,
0,p'-DDT, and trans-nonachlor. The remaining portion of these 4 pesticides, along with all other organochlorine pesticides, will
be found in the second fraction. Both fractions are then quantitatively transferred to a 500 ml K-D apparatus fitted with a 10 ml
concentrator tube. A 3 ball snyder column is attached and the extract is concentrated on a hot water bath, adjusting the
temperature such that the concentration is completed within 15 - 20 minutes. When the apparent volume reaches approximately
5.0 ml, the K-D apparatus is removed from the water bath and allowed to cool for at least 10 minutes. 50 ml of hexane is added
to the flask and it is returned to the hot water bath. If the extract was cleaned by gel-permeation chromatography (GPC), it is
concentrated to 5.0 ml. If it did not undergo GPC cleanup then it is concentrated to 10.0 ml.

Iv. References:
(1)Technical Operating Procedure, "Silica Gel Cleanup And Separation Of Organochlorine Pesticides And PCBs",
Method OP-6004-45, Hazleton Laboratories America, Inc., Madison, Wisconsin.

Method Code MSCLO001: Analysis For Organochlorine Pesticides And PCBs In Animal and Plant Tissue
Laboratory: Mississippi State Chemical Laboratory

For Samples: CS1LMB03 & LP1LMBO03

L Procedure:

10 g tissue samples are thoroughly mixed with anhydrous sodium sulfate and soxhlet extracted with hexane for 7 hours. The
extract is concentrated by rotary evaporation; transferred to a tared test tube, and further concentrated to dryness for lipid
determination. The weighed lipid sample is dissolved in petroleum ether and extracted 4 times with acetonitrile saturated with
petroleum ether. Residues are partitioned into petroleum ether which is washed, concentrated, and transferred to a glass
chromatographic column containing 20 grams of Florisil. The column is eluted with 200 m1 6 % diethyl ether/94 % petroleum ether
(Fraction I) followed by 200 ml 15% diethyl ether/85% petroleum ether (Fraction II). Fraction II is concentrated to appropriate
volume for quantification of residues by packed or capillary column electron gas chromatography. Fraction I is concentrated and
transferred to a Silicic acid chromatographic column for additional cleanup required for separation of PCBs from other
organochlorines. 3 fractions are eluted from the silicic acid column. Each is concentrated to appropriate volume for quantification
of residues by packed or megabore column, electron capture gas chromatography. PCBs are found in Fraction II.

Method Code MSCL004: Analysis For Organochlorine Pesticides And PCBs, Aliphatic And Polynuclear Aromatic
Hydrocarbons In Soil And Sediment
Laboratory: Mississippi State Chemical Laboratory

For Samples:  CS1S04, CS1S06, CS1S09, CS2S07, CS3S08, CS3S10, LP1S25, LP1S26, LP1S29, LP2S27, LP3S28, LP3S30,
CL2S545, CL2S47, CL2S50, CL9S46, CL9S49, CL11S48

L. Procedure:

20 g soil or sediment samples are extracted with acetone, followed by petroleum ether, by allowing to soak one hour in each with
intermittent shaking. A final acetone/petroleum ether extraction is done, and the extracts are combined, centrifuged, and
transferred to a separatory funnel containing sufficient water to facilitate partitioning of residues into petroleum ether portion.
The petroleum ether is washed twice with water and concentrated by Kuderna-Danish to appropriate volume. An aliquot of the
concentrated extract for pesticide determination is transferred to a 1.6 g Florisil mini-column topped with 1.6 g sodium sulfate.
Residues are eluted from the column in two elution fractions. Fraction I consists of 12 ml hexane followed by 12 ml of 1%
methanol in hexane, and Fraction II consists of an additional 24 ml of 1% methanol in hexane. If additional cleanup is required
to separate PCBs from other organochlorines in Fraction I, further chromatography on a Silicic acid column is performed.
Quantification of residues in the two Florisil fractions and three Silicic acid fractions is packed or megabore column, electron
capture gas chromatography. A second aliquot of the concentrated extract for hydrocarbon determination is transferred to a 20
g 1% deactivated silica gel column topped with 5 g neutral alumina. Aliphatic and polynuclear aromatic hydrocarbon residues
are fractioned by eluting aliphatics from the column with 100 ml petroleum ether (Fraction I) followed by elution of aromatics
using first 100 ml 40 % methylene chloride/60 % petroleum ether, then 50 ml methylene chloride (combined eluates, Fraction II).
If needed, Fraction I containing aliphatics is subjected to additional cleanup by concentration and transferred to a deactivated (2%
water) Florisil column. Aliphatic residues are eluted from the Florisil column using 200 ml 6% diethyl ether/94 % petroleum
ether. The eluate is concentrated to appropriate volume for quantification by capillary column, flame ionization gas
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chromatography. The silica gel Fraction II containing aromatic hydrocarbons is concentrated, reconstituted in methylene chloride,
and subjected to gel permeation chromatographic (GPC) cleanup prior to quantification by capillary, flame ionization gas
chromatography and fluorescence HPLC.

II. QA/QC Comments:

Organochlorine and aromatic hydrocarbon results were acceptable. Spike recovery and degree of agreement between duplicates
were unacceptable for the high molecular weight aliphatic hydrocarbons. The laboratory repeated these analyses with similar
results. It appeared that the problem was a matrix effect that could not be resolved. Results for n-dotriacontane, n-hentriacontane,
n-nonacosane, n-octacosane, n-teratriacontane, and n-tritriacontane should be considered estimates which could be off by as much
as a factor of 2.

Method Code MSCLO019: Grain Size
Laboratory: Mississippi State Chemical Laboratory

For Samples:  CS1S04, CS1S06, CS1S09, CS2S07, CS3S08, CS3S10, LP1S25, LP1S26, LP1S29, LP2S27, LP3S28, LP3S30,
CL2S45, CL2S47, CL2S50, CL9S46, CL9S49, CL11S48

L Procedure:

Disperse sample of soil or sediment to pass 2 mm sieve and place weighed 40 g sample in 600 ml beaker. Take additional 30 g
sample for moisture determination so that air dried weight may be corrected to oven dried weight. Add 50 ml 10% “Calgon”
solution (sodium metaphosphate with sufficient sodium carbonate to give a pH of approximately 8.3 in a 10% solution) to a 40
g sample and allow to soak for at least 10 minutes. After soaking, quantitatively transfer sample with distilled water to Waring
blender cup so that cup is approximately half full. Blend for 4 minutes and transfer suspension to sedimentation cylinder adjusting
liquid level to 1000 ml mark with distilled water. Place cylinder in constant temperature water bath (approximately 38 C). Prepare
sample "blank" by adding 50 ml 10% "Calgon" solution to second sedimentation cylinder and add distilled water to the 1000 ml
mark. When the suspension reaches water bath temperature, the mixture is thoroughly stirred prior initiation of sedimentation.
The time that stirring ceases is noted as the zero settling time. At the end of 8 hours, lower the hydrometer (ASTM 152 H) gently
into the suspension and read the scale at the end of the meniscus. Record the time of hydrometer reading, the hydrometer reading,
and water bath temperature. After thorough mixing, record the hydrometer reading in the sample "blank" solution of water and
"Calgon". After hydrometer readings are recorded, pour the suspension onto a 270 mesh, 53 micron sieve and wash all silt and
clay out of the water. Transfer sample material remaining on the sieve into an evaporating dish; place in 110 C oven and allow
to dry for 24 hours. After cooling, weigh the sample to determine the weight of oven-dry sand left on the sieve. Using moisture
data determined, correct sample air-dry weight to oven-dry weight. Calculate the concentration of suspension in g/L from the
following equation: C = R - R<; where C = concentration (g/L), R = hydrometer reading in suspension, R < = hydrometer
reading in "Calgon" solution. Calculate the Clay percentage, PC from the following: Pc = C/100/Co; where Co represents the
oven-dry weight of soil/L of suspension. Calculate the Sand percentage, Ps from the following: Ps = S/100/Co; where S is the
weight of the oven-dry sand left on the screen and Co is as in the Clay formula. Silt percentage = 100 - Pc - Ps.

Method Code RTI001: Homogenization
Laboratory: Research Triangle Institute

For Samples: S2R1, S2R2, S2R3, S253, S254, S4R1, S5R1, S5R2, S5R3, S6R2, S6S5, S6S6, STR2, STR3, STR4, S7S5,
S7S6, S9C1, S10BH1, S10R2, S10R3, S11C1, S11R1, S11R2

I Procedure:
Tissue samples are prehomogenized using a food processor. A portion of the tissue sample (or sediment) is then freeze dried for
determination of moisture content and ground to 100 mesh with a mill.

Method Code RTI002: Preconcentration Digestion For Inductively Coupled Plasma Emission Measurement (ICP)
Laboratory: Research Triangle Institute

For Samples: S2R1, S2R2, S2R3, S253, S254, S4R1, S5R1, S5R2, S5R3, S6R2, S6S5, S6S6, STR2, STR3, STR4, S7S5,
S7S6, S9C1, S10BH1, S10R2, S10R3, S11C1, S11R1, S11R2

L. Procedure:

Using a CEM microwave oven, 0.5 g of freeze dried tissue is heated in a capped 120 ml Teflon vessel in the presence of 5 ml
of Baker Instra-Analyzed nitric acid for 3 minutes at 120 watts, 3 minutes at 300 watts, and 35 minutes at 450 watts. The vessel
contents are then allowed to cool and the cap is removed and rinsed carefully with 3 ml of HNO3 adding the rinsings to the
vessels contents. The uncapped vessel is then returned to the microwave oven and heated until the vessel contents are less than
1 ml in volume. The contents are carefully rinsed with laboratory pure water into a 5 ml glass volumetric vessel and made to
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volume with additional laboratory pure water. The flask contents are then immediately transferred to a clean plastic centrigure
or auto sampler tube and centrifuged for 1 minute to precipitate the suspended matter. The sample is now ready for ICP analysis.

Method Code RTI006: ICP

I. Procedure:
ICP measurements are made using a Leeman Labs Plasma Spec I sequential or ES2000 simultaneous spectrometer.

Method Code RTI004: Digestion For Graphite Furnace And Cold Vapor Atomic Absorption Measurement
Laboratory: Research Triangle Institute

For Samples: S2R1, S2R2, S2R3, S2S3, S254, S4R1, S5R1, S5R2, S5R3, S6R2, S6S5, S6S6, STR2, STR3, S7TR4, S7S5,
S7S6, S9C1, S10BH1, S10R2, S10R3, S11C1, S11R1, S11R2

I. Procedure:

Using a CEM microwave oven, 0.25 - 0.5 g of freeze dried sample is heated in a capped 120 ml Teflon vessel in the presence
of 5 ml of Baker Instra-Analyzed nitric acid for 3 minutes at 120 watts, 3 minutes at 300 watts, and 15 minutes at 450 watts. The
residue is then diluted to 50 ml with laboratory pure water.

Method Code RTIO07: Graphite Furnace Atomic Absorption (GFAA)

L. Procedure:
GFAA measurements are made using a Perkin-Elmer Zeeman 3030 or 4100ZL atomic absorption spectrometer.

Method Code RTIO08: Cold Vapor Atomic Absorption (CVAA)

I. Procedure:
Hg measurements are conducted using SnCl4 as the reducing agent. A Leeman PS200 Hg Analyzer is employed.
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APPENDIX D
(SURFACE WATER ANALYTICAL RESULTS)



TABLE VII. RESULTS OF METALS ANALYSIS FOR SURFACE WATER COLLECTED FROM
CYPRESS SPRINGS RESERVOIR.

SAMPLE: CSWMO1 CSWMO02 CSWMO03
Al (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.02 0.02 0.02
As (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
B (mg/1 wet wt.): 0.031 0.113 0.084
d.l. (mg/1): 0.008 0.008 0.008
Ba (mg/l wet wt.): 0.026 0.029 0.028
d.l. (mg/1): 0.004 0.004 0.004
Be (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0 0 0
Cd (mg/1 wet wt.): 0.008 0.006 0.005
d.l. (mg/1): 0.001 0.001 0.001
Cr (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Cu (mg/1 wet wt.): 0.003 bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Fe (mg/1 wet wt.): 0.038 0.035 bdl
d.l. (mg/1): 0.02 0.02 0.02
Hg (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.0002 0.0002 0.0002
Mg (mg/l wet wt.): 3.67 3.81 3.61
d.l. (mg/1): 0.02 0.02 0.02
Mn (mg/l wet wt.): bdl 0.003 bdl
d.l. (mg/1): 0.002 0.002 0.002
Mo (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.008 0.008 0.008
Ni (mg/l1 wet wt.): bdl 0.003 bdl
d.l. (mg/1): 0.002 0.003 0.002
Pb (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.01 0.01 0.01
Se (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Sr (mg/l wet wt.): 0.071 0.073 0.07
d.l. (mg/1): 0.001 0.001 0.001
V (mg/l1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
Zn (mg/l wet wt.): 0.005 0.004 bdl
d.l. (mg/1): 0.004 0.004 0.004
CSWMO1 = sample collected above FM 115. d.l. = detection limit.
CSWMO02 = sample collected at Panther Creek. bdl = below detection limit.

CSWMO03 = sample collected at Whipporwill Bay.
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TABLE VIII. RESULTS OF METALS ANALYSIS FOR SURFACE WATER COLLECTED FROM
LAKE O' THE PINES.

SAMPLE: LOPWMOL1 LOPWMO02 LOPWMO3
Al (mg/1 wet wt.): 0.044 bdl bdl
d.l. (mg/l): 0.02 0.02 0.02
As (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
B (mg/1 wet wt.): 0.095 0.077 0.082
d.l. (mg/1): 0.008 0.008 0.008
Ba (mg/l wet wt.): 0.066 0.037 0.036
d.l. (mg/1): 0.004 0.004 0.004
Be (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0 0 0
Cd (mg/1 wet wt.): 0.007 0.005 0.006
d.l. (mg/1): 0.001 0.001 0.001
Cr (mg/l wet wt.): 0.002 0.003 bdl
d.l. (mg/1): 0.002 0.002 0.002
Cu (mg/1 wet wt.): 0.004 bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Fe (mg/l wet wt.): 0.905 0.184 0.021
d.l. (mg/l): 0.02 0.02 0.02
Hg (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/l): 0.0002 0.0002 0.0002
Mg (mg/1 wet wt.): 4.22 4.72 3.22
d.l. (mg/l): 0.02 0.02 0.02
Mn (mg/1 wet wt.): 0.53 0.004 0.007
d.l. (mg/l): 0.002 0.002 0.002
Mo (mg/l wet wt.): bdl bdl bdl
d.l. (mg/l): 0.008 0.008 0.008
Ni (mg/l1 wet wt.): 0.004 bdl 0.003
d.l. (mg/1): 0.002 0.002 0.002
Pb (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.01 0.01 0.01
Se (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Sr (mg/l wet wt.): 0.114 0.071 0.082
d.l. (mg/1): 0.001 0.001 0.001
V (mg/l1 wet wt.): 0.001 bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
Zn (mg/l wet wt.): 0.008 0.005 bdl
d.l. (mg/1): 0.004 0.004 0.004
LOPWMO1 = sample collected at Lone Star Steel. d.l. = detection limit.
LOPWMO2 = sample collected at SH 155 Marina. bdl = below detection limit.

LOPWMO03 = sample collected at Copeland Creek.
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TABLE IX. RESULTS OF METALS ANALYSIS FOR SURFACE WATER COLLECTED FROM
CADDO LAKE.

SAMPLE: CLWMO1 CLWMO02 CLWMO03
Al (mg/1 wet wt.): 0.021 bdl 0.04
d.l. (mg/l): 0.02 0.02 0.02
As (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
B (mg/1 wet wt.): 0.078 0.078 0.083
d.l. (mg/l): 0.008 0.008 0.008
Ba (mg/l wet wt.): 0.057 0.052 0.06
d.l. (mg/1): 0.004 0.004 0.004
Be (mg/l wet wt.): bdl bdl bdl
d.l. (mg/l): 0 0 0
Cd (mg/1 wet wt.): 0.006 0.005 0.006
d.l. (mg/1): 0.001 0.001 0.001
Cr (mg/1 wet wt.): 0.002 bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Cu (mg/l wet wt.): bdl bdl bdl
d.l. (mg/1): 0.002 0.002 0.002
Fe (mg/1 wet wt.): 0.817 0.403 0.93
d.l. (mg/l): 0.02 0.02 0.02
Hg (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/l): 0.0002 0.0002 0.0002
Mg (mg/l wet wt.): 2.17 2.1 2.6
d.l. (mg/1): 0.02 0.02 0.02
Mn (mg/l wet wt.): 0.161 0.005 0.14
d.l. (mg/l): 0.002 0.002 0.002
Mo (mg/l wet wt.): bdl bdl bdl
d.l. (mg/l): 0.008 0.008 0.008
Ni (mg/l1 wet wt.): 0.003 bdl 0.003
d.l. (mg/1): 0.002 0.002 0.002
Pb (mg/1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.01 0.01 0.01
Se (mg/l wet wt.): bdl bdl bdl
d.l. (mg/l): 0.002 0.002 0.002
Sr (mg/l wet wt.): 0.69 0.066 0.082
d.l. (mg/1): 0.001 0.001 0.001
V (mg/l1 wet wt.): bdl bdl bdl
d.l. (mg/1): 0.001 0.001 0.001
Zn (mg/1 wet wt.): 0.005 bdl 0.006
d.l. (mg/1): 0.004 0.004 0.004
CLWMO1 = sample collected at Harrison Bayou. d.l. = detection limit.
CLWMO2 = sample collected at South Little Green Break. bdl = below detection limit.

CLWMO03 = sample collected at Clintons Chute.
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APPENDIX E
(ANALYTICAL RESULTS FOR METALS IN SEDIMENTS)



TABLE XA. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM CYPRESS
SPRINGS RESERVOIR (WET WEIGHT).

SAMPLE: CS1501 CS1S14 CS2S02 CS2S15 CS3S03 CS3S16
SAMPLE WT. (g): 488 458 471 429 553 209
% MOISTURE: 41.4 35.9 38.1 34.5 35.8 23.9
Al (mg/kg wet wt.): 3160 5330 3400 4340 4740 7190
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
As (mg/kg wet wt.):  0.99 1.76 1.29 1.48 2.07 1.45
d.l. (mg/kg): 0.1 0.1 0.1 0.1 0.1 0.1
B (mg/kg wet wt.): bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 1.0 0.97 0.97 0.98 0.97 0.97
Ba (mg/kg wet wt.):  66.3 83.9 50.8 67 54 55.7
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
Be (mg/kg wet wt.):  0.38 0.46 0.34 0.4 0.28 0.35
d.l. (mg/kg): 0.05 0.05 0.05 0.05 0.05 0.05
Cd (mg/kg wet wt.):  0.38 0.38 0.32 0.34 0.31 0.2
d.l. (mg/kg): 0.15 0.15 0.15 0.15 0.15 0.15
Cr (mg/kg wet wt.):  4.82 6.56 4.64 5.13 7.67 9.17
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Cu (mg/kg wet wt.):  4.95 5.19 4.11 4.2 5.63 4.33
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Fe (mg/kg wet wt.): 6020 6560 5870 5530 9860 8790
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Hg (mg/kg wet wt.):  0.044 bdl bdl bdl 0.042 0.052
d.l. (mg/kg): 0.02 0.04 0.04 0.04 0.02 0.02
Mg (mg/kg wet wt.): 505 614 561 613 694 639
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Mn (mg/kg wet wt.): 149 195 198 214 371 130
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Mo (mg/kg wet wt.):  bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 1.0 0.97 0.97 0.97 0.97 0.97
Ni (mg/kg wet wt.):  6.06 8.14 4.89 5.78 6.33 4.65
d.l. (mg/kg): 0.3 0.3 0.3 0.3 0.3 0.3
Pb (mg/kg wet wt.):  7.22 8.54 6.5 7.2 6.8 7.13
d.l. (mg/kg): 1.25 1.25 1.25 1.25 1.25 1.25
Se (mg/kg wet wt.):  bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 0.2 0.2 0.2 0.2 0.2 0.2
Sr (mg/kg wet wt.):  9.08 9.55 10.1 11.1 10.2 9.4
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
V (mg/kg wet wt.): 11.6 14.9 9.8 11.4 15.9 18.8
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
Zn (mg/kg wet wt.):  20.8 23.1 18.4 19.4 16.2 14.1
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
CS1S01 - CS1S14= samples collected from above FM 115. d.l. = detection limit.
CS2S02 - CS2S15= samples collected from the Panther Creek Arm. bdl = below detection limit.

CS3S03 - CS3S16= samples collected from Whippoorwill Bay.
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TABLE XB. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM CYPRESS

SPRINGS RESERVOIR (DRY WEIGHT).

SAMPLE:

SAMPLE WT. (g):

% MOISTURE:

Al (mg/kg dry wt.):
d.l. (mg/kg):

As (mg/kg dry wt.):
d.l. (mg/kg):

B (mg/kg dry wt.):
d.l. (mg/kg):

Ba (mg/kg dry wt.):
d.l. (mg/kg):

Be (mg/kg dry wt.):
d.l. (mg/kg):

Cd (mg/kg dry wt.):

d.l. (mg/kg):
Cr (mg/kg dry wt.):
d.l. (mg/kg):

Cu (mg/kg dry wt.):

d.l. (mg/kg):
Fe (mg/kg dry wt.):
d.l. (mg/kg):

Hg (mg/kg dry wt.):

d.l. (mg/kg):

Mg (mg/kg dry wt.):

d.l. (mg/kg):

Mn (mg/kg dry wt.):

d.l. (mg/kg):

Mo (mg/kg dry wt.):

d.l. (mg/kg):

Ni (mg/kg dry wt.):
d.l. (mg/kg):

Pb (mg/kg dry wt.):
d.l. (mg/kg):

Se (mg/kg dry wt.):
d.l. (mg/kg):

Sr (mg/kg dry wt.):
d.l. (mg/kg):

V (mg/kg dry wt.):
d.l. (mg/kg):

Zn (mg/kg dry wt.):
d.l. (mg/kg):

CS1S501
488
41.4
5392.49
4.27
1.69
0.17
bdl

1.7
113.14
0.85
0.65
0.09
0.66
0.26
8.23
0.43
8.45
0.43
10273.04
4.27
0.075
0.034
861.77
4.27
254.27
0.43
bdl

1.7
10.34
0.51
12.32
2.13
bdl
0.34
15.49
0.21
19.8
0.21
35.49
0.85

CS1514
458
35.9
8315.13
3.9
2.75
0.16
bdl
1.51
130.89
0.78
0.72
0.08
0.59
0.23
10.23
0.39
8.1
0.39
10234.01
3.9
bdl
0.062
947.88
3.9
304.21
0.39
bdl
1.51
12.7
0.47
13.32
1.95
bdl
0.31
14.9
0.2
23.24
0.2
36.04
0.78

CS2502
471
38.1
5492.73
4.04
2.08
0.16
bdl
1.56
82.07
0.81
0.55
0.08
0.53
0.24
7.5
0.4
6.64
0.4
9483.04
4.04
bdl
0.065
906.3
4.04
319.87
0.4
bdl
1.56
7.9
0.48
10.5
2.02
bdl
0.32
16.32
0.2
15.83
0.2
29.73
0.81

CS2S815
429
34.5
6625.95
3.82
2.26
0.15
bdl
1.49
102.29
0.76
0.61
0.08
0.52
0.23
7.83
0.38
6.41
0.38
8442.75
3.82
bdl
0.061
935.88
3.82
326.72
0.38
bdl
1.48
8.82
0.46
10.99
1.91
bdl
0.31
16.95
0.19
17.4
0.19
29.62
0.76

CS3S503
553
35.8
7383.18
3.89
3.22
0.16
bdl
1.51
84.11
0.78
0.43
0.08
0.48
0.23
11.95
0.39
8.77
0.39
15358.26
3.89
0.065
0.031
1081
3.89
577.88
0.39
bdl
1.51
9.86
0.47
10.59
1.95
bdl
0.31
15.89
0.19
24.77
0.19
25.23
0.78

CS3S16
209
23.9
9448.09
3.29
1.91
0.13
bdl
1.28
73.19
0.66
0.46
0.07
0.26
0.2
12.05
0.33
5.69
0.33
11550.59
3.29
0.068
0.026
839.68
3.29
170.83
0.33
bdl
1.28
6.11
0.39
9.37
1.64
bdl
0.26
12.35
0.16
24.7
0.16
18.53
0.66

CS1S01 - CS1S14= samples collected from above FM 115.

CS2S02 - CS2S15= samples collected from the Panther Creek Arm.

CS3S03 - CS3S16= samples collected from Whippoorwill Bay.
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TABLE XIA. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM LAKE O' THE
PINES (WET WEIGHT).

SAMPLE: LP1S21 LP1S34 LP2S22 LP2S35 LP3S23 LP3S36
SAMPLE WT. (g): 454 490 268 444 509 585
% MOISTURE: 32.7 322 48.5 43.4 28.3 25.5
Al (mg/kg wet wt.): 3260 6710 4710 4440 1400 2870
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
As (mg/kg wet wt.):  3.01 4.51 3.19 1.89 1.18 1.29
d.l. (mg/kg): 0.1 0.1 0.1 0.1 0.1 0.1
B (mg/kg wet wt.): bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 0.98 1.0 0.98 0.97 1.0 1.0
Ba (mg/kg wet wt.):  62.7 100 90.4 61.7 28.5 40.7
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
Be (mg/kg wet wt.):  0.56 0.93 0.66 0.57 0.16 0.24
d.l. (mg/kg): 0.05 0.05 0.05 0.05 0.05 0.05
Cd (mg/kg wet wt.):  1.17 1.69 0.59 0.47 0.19 0.28
d.l. (mg/kg): 0.15 0.15 0.15 0.15 0.15 0.15
Cr (mg/kg wet wt.):  7.68 9.72 6.36 5.52 2.56 4.04
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Cu (mg/kg wet wt.):  6.68 7.02 6.13 4.23 1.61 2
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Fe (mg/kg wet wt.): 14600 15700 12400 8650 3650 4700
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Hg (mg/kg wet wt.):  0.15 0.102 0.05 bdl bdl bdl
d.l. (mg/kg): 0.02 0.02 0.02 0.04 0.04 0.04
Mg (mg/kg wet wt.): 261 430 422 347 109 184
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Mn (mg/kg wet wt.): 300 259 343 331 78.1 57.3
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Mo (mg/kg wet wt.):  bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 0.98 1.0 0.98 0.97 1.0 1.0
Ni (mg/kg wet wt.):  6.18 7.3 8.05 5.66 1.96 2.12
d.l. (mg/kg): 0.3 0.3 0.3 0.3 0.3 0.3
Pb (mg/kg wet wt.): 55 57.5 16.7 14.2 3.78 4.93
d.l. (mg/kg): 1.25 1.25 1.25 1.25 1.25 1.25
Se (mg/kg wet wt.):  bdl bdl 0.3 0.24 bdl bdl
d.l. (mg/kg): 0.2 0.5 0.2 0.2 1.0 0.2
Sr (mg/kg wet wt.):  7.56 10.3 15.3 7.73 4.03 4.41
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
V (mg/kg wet wt.): 22.9 28.1 16.4 15.9 5.9 9.8
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
Zn (mg/kg wet wt.): 249 258 64.6 48.6 8.14 8.29
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
LP1S21 - LP1S34 = samples collected at Lone Star Steel. d.l. = detection limit.
LP2S22 - LP2S35 = samples collected from SH 155 Marina. bdl = below detection limit.

LP3S23 - LP3S36 = samples collected from Copeland Creek.
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TABLE XIB. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM LAKE O' THE
PINES (DRY WEIGHT).

SAMPLE: LP1S21 LP1S34 LP2S22 LP2S35 LP3S23 LP3S36
SAMPLE WT. (g): 454 490 268 444 509 585
% MOISTURE: 32.7 322 48.5 43.4 28.3 25.5
Al (mg/kg dry wt.):  4843.98 9896.76 9145.63 7844.52 1952.58 3852.35
d.l. (mg/kg): 3.71 3.69 4.85 4.42 3.49 3.36
As (mg/kg dry wt.):  4.47 6.65 6.19 3.34 1.65 1.73
d.l. (mg/kg): 0.15 0.15 0.19 0.18 0.14 0.13
B (mg/kg dry wt.): bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 1.45 1.47 1.9 1.72 1.39 1.34
Ba (mg/kg dry wt.):  93.16 147.49 175.53 109.01 39.75 54.63
d.l. (mg/kg): 0.74 0.74 0.97 0.88 0.7 0.67
Be (mg/kg dry wt.):  0.83 1.37 1.28 1.01 0.22 0.33
d.l. (mg/kg): 0.07 0.07 0.1 0.09 0.07 0.07
Cd (mg/kg dry wt.):  1.74 2.49 1.15 0.83 0.27 0.37
d.l. (mg/kg): 0.22 0.22 0.29 0.27 0.21 0.2
Cr (mg/kg dry wt.):  11.41 14.34 12.35 9.75 3.57 5.42
d.l. (mg/kg): 0.37 0.37 0.49 0.44 0.35 0.34
Cu (mg/kg dry wt.):  9.93 10.35 11.9 7.47 2.25 2.68
d.l. (mg/kg): 0.37 0.37 0.49 0.44 0.35 0.34
Fe (mg/kg dry wt.):  21693.91 23156.34 24077.67 15282.69 5090.66 6308.72
d.l. (mg/kg): 3.71 3.69 4.85 4.42 3.49 3.36
Hg (mg/kg dry wt.):  0.223 0.15 0.097 bdl bdl bdl
d.l. (mg/kg): 0.03 0.029 0.039 0.071 0.056 0.054
Mg (mg/kg dry wt.): 387.82 634.22 819.42 613.07 152.02 246.98
d.l. (mg/kg): 3.71 3.69 4.85 4.42 3.49 3.36
Mn (mg/kg dry wt.):  445.77 382.01 666.02 584.81 108.93 76.91
d.l. (mg/kg): 0.37 0.37 0.49 0.44 0.35 0.34
Mo (mg/kg dry wt.):  bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 1.45 1.47 1.9 1.72 1.39 1.34
Ni (mg/kg dry wt.):  9.18 10.77 15.63 10 2.73 2.85
d.l. (mg/kg): 0.45 0.44 0.58 0.53 0.42 0.4
Pb (mg/kg dry wt.):  81.72 84.81 32.43 25.09 5.27 6.62
d.l. (mg/kg): 1.86 1.84 2.43 2.21 1.74 1.68
Se (mg/kg dry wt.):  bdl bdl 0.58 0.42 bdl bdl
d.l. (mg/kg): 0.3 0.74 0.39 0.35 1.39 0.27
Sr (mg/kg dry wt.): 11.23 15.19 29.71 13.66 5.62 5.92
d.l. (mg/kg): 0.19 0.18 0.24 0.22 0.17 0.17
V (mg/kg dry wt.): 34.03 41.45 31.84 28.09 8.23 13.15
d.l. (mg/kg): 0.19 0.18 0.24 0.22 0.17 0.17
Zn (mg/kg dry wt.):  369.99 380.53 125.44 85.87 11.35 11.13
d.l. (mg/kg): 0.74 0.74 0.97 0.88 0.7 0.67
LP1S21 - LP1S34 = samples collected at Lone Star Steel. d.l. = detection limit.
LP2S22 - LP2S35 = samples collected from SH 155 Marina. bdl = below detection limit.

LP3S23 - LP3S36 = samples collected from Copeland Creek.
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TABLE XIIA. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM CADDO
LAKE (WET WEIGHT).

SAMPLE: CL2S42 CL2S55 CL9S41 CL9S54 CL11S43 CL11S56
SAMPLE WT. (g): 318 440 220 403 437 425
% MOISTURE: 76.2 48.5 65 41.6 32.9 28.9
Al (mg/kg wet wt.): 4530 7180 6590 4040 6280 9150
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
As (mg/kg wet wt.):  1.54 1.67 1.68 1.73 1.98 0.38
d.l. (mg/kg): 0.1 0.1 0.1 0.1 0.1 0.1
B (mg/kg wet wt.): 1.07 0.98 1.18 1.25 bdl 1.34
d.l. (mg/kg): 1.0 0.98 1.0 1.0 0.97 1.0
Ba (mg/kg wet wt.):  57.8 92.4 74 89.6 60.7 71.1
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
Be (mg/kg wet wt.):  0.32 0.54 0.46 0.61 0.42 0.52
d.l. (mg/kg): 0.05 0.05 0.05 0.05 0.05 0.05
Cd (mg/kg wet wt.):  0.32 0.29 0.4 0.32 0.35 0.19
d.l. (mg/kg): 0.15 0.15 0.15 0.15 0.15 0.15
Cr (mg/kg wet wt.):  4.77 7.63 10.5 8.66 6.34 8.59
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Cu (mg/kg wet wt.):  4.11 5.22 7.85 6.39 4.65 5.87
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Fe (mg/kg wet wt.): 4910 7260 6610 6300 7540 8570
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Hg (mg/kg wet wt.):  0.057 0.052 0.229 0.182 0.041 bdl
d.l. (mg/kg): 0.02 0.02 0.02 0.02 0.02 0.04
Mg (mg/kg wet wt.): 433 670 467 522 470 597
d.l. (mg/kg): 2.5 2.5 2.5 2.5 2.5 2.5
Mn (mg/kg wet wt.):  93.7 99.9 103 71.5 130 104
d.l. (mg/kg): 0.25 0.25 0.25 0.25 0.25 0.25
Mo (mg/kg wet wt.):  bdl bdl bdl bdl bdl bdl
d.l. (mg/kg): 0.97 0.97 0.99 1.0 0.97 0.96
Ni (mg/kg wet wt.): 5.7 6.85 7.72 7.78 6.23 3.31
d.l. (mg/kg): 0.3 0.3 0.3 0.3 0.3 0.3
Pb (mg/kg wet wt.):  8.83 10.8 51.3 47 7.19 8.27
d.l. (mg/kg): 1.25 1.25 1.25 1.25 1.25 1.25
Se (mg/kg wet wt.):  bdl bdl 0.2 bdl bdl 0.32
d.l. (mg/kg): 0.2 0.2 0.2 0.2 0.2 0.2
Sr (mg/kg wet wt.):  13.5 17.6 12.1 12.1 11.6 14.9
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
V (mg/kg wet wt.): 10.3 17.9 16.7 17.9 17.7 22.3
d.l. (mg/kg): 0.13 0.13 0.13 0.13 0.13 0.13
Zn (mg/kg wet wt.): 19 21.9 45.8 27.6 22.2 17.6
d.l. (mg/kg): 0.5 0.5 0.5 0.5 0.5 0.5
CL2S42 - CL2S55 = samples collected from Harrison Bayou. d.l. = detection limit.
CL9S41 - CL9S54 = samples collected from Goose Prairie. bdl = below detection limit.

CL11S43 - CL11S56 = samples collected from Little Green Break.
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TABLE XIIB. ANALYTICAL RESULTS OF METALS IN SEDIMENT SAMPLES COLLECTED FROM CADDO

LAKE (DRY WEIGHT).

SAMPLE:

SAMPLE WT. (g):

% MOISTURE:

Al (mg/kg dry wt.):
d.l. (mg/kg):

As (mg/kg dry wt.):
d.l. (mg/kg):

B (mg/kg dry wt.):
d.l. (mg/kg):

Ba (mg/kg dry wt.):
d.l. (mg/kg):

Be (mg/kg dry wt.):
d.l. (mg/kg):

Cd (mg/kg dry wt.):

d.l. (mg/kg):
Cr (mg/kg dry wt.):
d.l. (mg/kg):

Cu (mg/kg dry wt.):

d.l. (mg/kg):
Fe (mg/kg dry wt.):
d.l. (mg/kg):

Hg (mg/kg dry wt.):

d.l. (mg/kg):

Mg (mg/kg dry wt.):

d.l. (mg/kg):

Mn (mg/kg dry wt.):

d.l. (mg/kg):

Mo (mg/kg dry wt.):

d.l. (mg/kg):

Ni (mg/kg dry wt.):
d.l. (mg/kg):

Pb (mg/kg dry wt.):
d.l. (mg/kg):

Se (mg/kg dry wt.):
d.l. (mg/kg):

Sr (mg/kg dry wt.):
d.l. (mg/kg):

V (mg/kg dry wt.):
d.l. (mg/kg):

Zn (mg/kg dry wt.):
d.l. (mg/kg):

CL2542
318
76.2
19033.61
10.5
6.47
0.42
4.5

4.2
242.86
2.1
1.35
0.21
1.36
0.63
20.04
1.05
17.27
1.05
20630.25
10.5
0.239
0.084
1819.33
10.5
393.7
1.05
bdl
4.08
23.95
1.26
37.1
5.25
bdl
0.84
56.72
0.53
43.28
0.53
79.83
2.1

CL2S55
440
48.5
13941.75
4.85
3.24
0.19
1.89
1.89
179.42
0.97
1.05
0.1
0.55
0.29
14.82
0.49
10.14
0.49
14097.09
4.85
0.101
0.039
1300.97
4.85
193.98
0.49
bdl
1.89
13.3
0.58
20.97
2.43
bdl
0.39
34.17
0.24
34.76
0.24
42.52
0.97

CL9S541
220

65
18828.57
7.14
4.8
0.29
3.37
2.86
211.43
1.43
1.31
0.14
1.14
0.43
30
0.71
22.43
0.71
18885.71
7.14
0.654
0.057
1334.29
7.14
294.29
0.71
bdl
2.81
22.06
0.86
146.57
3.57
0.57
0.57
34.57
0.36
47.71
0.36
130.86
1.43

CL9S54
403
41.6
12054.79
4.28
2.96
0.17
2.14
1.71
153.42
0.86
1.05
0.09
0.55
0.26
14.83
0.43
10.94
0.43
10787.67
4.28
0.312
0.034
893.84
4.28
122.43
0.43
bdl

1.7
13.32
0.51
80.48
2.14
bdl
0.34
20.72
0.21
30.65
0.21
47.26
0.86

CL11S43
437
32.9
9359.17
3.73
2.95
0.15
bdl
1.44
90.46
0.75
0.62
0.07
0.52
0.22
9.45
0.37
6.93
0.37
11236.96
3.73
0.061
0.03
700.45
3.73
193.74
0.37
bdl
1.44
9.28
0.45
10.72
1.86
bdl

0.3
17.29
0.19
26.38
0.19
33.08
0.75

CL11S56
425
28.9
12869.2
3.52
0.53
0.14
1.88
1.41
100
0.7
0.73
0.07
0.27
0.21
12.08
0.35
8.26
0.35
12053.45
3.52
bdl
0.056
839.66
3.52
146.27
0.35
bdl
1.35
4.66
0.42
11.63
1.76
0.45
0.28
20.96
0.18
31.36
0.18
24.75
0.7

CL2S42 - CL2S55 = samples collected from Harrison Bayou.
CL9S41 - CL9S54 = samples collected from Goose Prairie.

CL11S43 - CL11S56 = samples collected from Little Green Break.
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APPENDIX F
(ANALYTICAL RESULTS FOR HYDROCARBONS IN SEDIMENTS)



TABLE XIIIA. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM CYPRESS SPRINGS RESERVOIR (WET WEIGHT).

SAMPLE: CS1S06 CS2S07 CS3S08
SAMPLE WT. (g): 283.0 491.0 321.0
% MOISTURE: 47.0 45.5 32.0
% TOC: 0.86 0.97 0.45
1,2,5,6-dibenzanthracene (mg/kg wet wt.): bdl bdl bdl
1,2-benzanthracene (mg/kg wet wt.): bdl bdl bdl
1-methylnaphthalene (mg/kg wet wt.): bdl bdl bdl
1-methylphenanthrene (mg/kg wet wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg wet wt.): 0.01 0.01 0.01
C1-fluoranthenes & pyrenes (mg/kg wet wt.): bdl bdl bdl
C1-chrysenes (mg/kg wet wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C1-fluorenes (mg/kg wet wt.): bdl bdl bdl
Cl-naphthalenes (mg/kg wet wt.): 0.01 0.01 0.03
C1-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C2-chrysenes (mg/kg wet wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C2-fluorenes (mg/kg wet wt.): bdl bdl bdl
C2-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C3-chrysenes (mg/kg wet wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C3-fluorenes (mg/kg wet wt.): bdl bdl bdl
C3-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C4-chrysenes (mg/kg wet wt.): bdl bdl bdl
C4-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
acenaphthalene (mg/kg wet wt.): bdl bdl bdl
acenaphthene (mg/kg wet wt.): bdl bdl bdl
anthracene (mg/kg wet wt.): bdl bdl bdl
benzo (a) pyrene (mg/kg wet wt.): bdl bdl bdl
benzo (b) fluoranthene (mg/kg wet wt.): bdl bdl bdl
benzo (e) pyrene (mg/kg wet wt.): bdl bdl bdl
benzo (g,h,i) perylene (mg/kg wet wt.): bdl bdl bdl
benzo (k) fluoranthene (mg/kg wet wt.): bdl bdl bdl
biphenyl (mg/kg wet wt.): bdl bdl bdl
chrysene (mg/kg wet wt.): bdl bdl bdl
dibenzothiophene (mg/kg wet wt.): bdl bdl bdl
fluoranthene (mg/kg wet wt.): bdl bdl bdl
fluorene (mg/kg wet wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg wet wt.): bdl bdl bdl
naphthalene (mg/kg wet wt.): 0.01 0.01 0.01
perylene (mg/kg wet wt.): 0.37 0.18 0.04
phenanthrene (mg/kg wet wt.): bdl bdl bdl
pyrene (mg/kg wet wt.): bdl bdl bdl
CS1S06 = sample collected above FM 115; detection limit = 0.01 mg/kg. bdl = below detection limit.

CS2S07 = sample collected from the Panther Creek Arm; detection limit = 0.01 mg/kg.
CS3S08 = sample collected from Whippoorwill Bay; detection limit = 0.01 mg/kg.
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TABLE XIIIB. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM CYPRESS SPRINGS RESERVOIR (DRY WEIGHT).

SAMPLE: CS1S06 CS2S07 CS3S508
SAMPLE WT. (g): 283.0 491.0 321.0
% MOISTURE: 47.0 45.5 32.0
% TOC: 0.86 0.97 0.45
1,2,5,6-dibenzanthracene (mg/kg dry wt.): bdl bdl bdl
1,2-benzanthracene (mg/kg dry wt.): bdl bdl bdl
1-methylnaphthalene (mg/kg dry wt.): bdl bdl bdl
1-methylphenanthrene (mg/kg dry wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg dry wt.): 0.019 0.018 0.015
C1-fluoranthenes & pyrenes (mg/kg dry wt.): bdl bdl bdl
C1-chrysenes (mg/kg dry wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C1-fluorenes (mg/kg dry wt.): bdl bdl bdl
C1-naphthalenes (mg/kg dry wt.): 0.019 0.018 0.044
C1-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C2-chrysenes (mg/kg dry wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C2-fluorenes (mg/kg dry wt.): bdl bdl bdl
C2-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C3-chrysenes (mg/kg dry wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C3-fluorenes (mg/kg dry wt.): bdl bdl bdl
C3-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C4-chrysenes (mg/kg dry wt.): bdl bdl bdl
C4-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
acenaphthalene (mg/kg dry wt.): bdl bdl bdl
acenaphthene (mg/kg dry wt.): bdl bdl bdl
anthracene (mg/kg dry wt.): bdl bdl bdl
benzo (a) pyrene (mg/kg dry wt.): bdl bdl bdl
benzo (b) fluoranthene (mg/kg dry wt.): bdl bdl bdl
benzo (e) pyrene (mg/kg dry wt.): bdl bdl bdl
benzo (g,h,i) perylene (mg/kg dry wt.): bdl bdl bdl
benzo (k) fluoranthene (mg/kg dry wt.): bdl bdl bdl
biphenyl (mg/kg dry wt.): bdl bdl bdl
chrysene (mg/kg dry wt.): bdl bdl bdl
dibenzothiophene (mg/kg dry wt.): bdl bdl bdl
fluoranthene (mg/kg dry wt.): bdl bdl bdl
fluorene (mg/kg dry wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg dry wt.): bdl bdl bdl
naphthalene (mg/kg dry wt.): 0.019 0.018 0.015
perylene (mg/kg dry wt.): 0.698 0.330 0.059
phenanthrene (mg/kg dry wt.): bdl bdl bdl
pyrene (mg/kg dry wt.): bdl bdl bdl
CS1S06 = sample collected above FM 115; detection limit = 0.019 mg/kg. bdl = below detection limit.

CS2S07 = sample collected from the Panther Creek Arm; detection limit = 0.018 mg/kg.
CS3S08 = sample collected from Whippoorwill Bay; detection limit = 0.015 mg/kg.
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TABLE XIVA. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM LAKE O' THE PINES (WET WEIGHT).

SAMPLE: LP1S26 LP2S27 LP3S28
SAMPLE WT. (g): 457.0 252.0 389.0
% MOISTURE: 38.0 72.5 40.5
% TOC: 1.0 1.34 0.86
1,2,5,6-dibenzanthracene (mg/kg wet wt.): 0.05 bdl bdl
1,2-benzanthracene (mg/kg wet wt.): 0.13 bdl bdl
1-methylnaphthalene (mg/kg wet wt.): 0.01 bdl bdl
1-methylphenanthrene (mg/kg wet wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg wet wt.): 0.02 0.01 0.01
C1-fluoranthenes & pyrenes (mg/kg wet wt.): bdl bdl bdl
C1-chrysenes (mg/kg wet wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C1-fluorenes (mg/kg wet wt.): bdl bdl bdl
Cl-naphthalenes (mg/kg wet wt.): 0.03 0.01 0.01
C1-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C2-chrysenes (mg/kg wet wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C2-fluorenes (mg/kg wet wt.): bdl bdl bdl
C2-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C3-chrysenes (mg/kg wet wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C3-fluorenes (mg/kg wet wt.): bdl bdl bdl
C3-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C4-chrysenes (mg/kg wet wt.): bdl bdl bdl
C4-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
acenaphthalene (mg/kg wet wt.): 0.02 bdl bdl
acenaphthene (mg/kg wet wt.): bdl bdl bdl
anthracene (mg/kg wet wt.): 0.06 bdl bdl
benzo (a) pyrene (mg/kg wet wt.): 0.16 bdl bdl
benzo (b) fluoranthene (mg/kg wet wt.): 0.17 0.02 bdl
benzo (e) pyrene (mg/kg wet wt.): 0.12 bdl bdl
benzo (g,h,i) perylene (mg/kg wet wt.): 0.13 bdl bdl
benzo (k) fluoranthene (mg/kg wet wt.): 0.15 bdl bdl
biphenyl (mg/kg wet wt.): bdl bdl bdl
chrysene (mg/kg wet wt.): 0.18 bdl bdl
dibenzothiophene (mg/kg wet wt.): bdl bdl bdl
fluoranthene (mg/kg wet wt.): 0.18 bdl bdl
fluorene (mg/kg wet wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg wet wt.): 0.13 bdl bdl
naphthalene (mg/kg wet wt.): 0.04 0.01 0.01
perylene (mg/kg wet wt.): 0.16 0.32 0.15
phenanthrene (mg/kg wet wt.): 0.05 bdl bdl
pyrene (mg/kg wet wt.): 0.14 bdl bdl
LP1S26 = sample collected at Lone Star Steel; detection limit = 0.01 mg/kg. bdl = below detection limit.

LP2S27 = sample collected at SH 155 Marina;detection limit = 0.01 mg/kg.
LP3S28 = sample collected from Copeland Creek; detection limit = 0.01 mg/kg.
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TABLE XIVB. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM LAKE O' THE PINES (DRY WEIGHT).

SAMPLE: LP1S26 LP2S27 LP3S28
SAMPLE WT. (g): 457.0 252.0 389.0
% MOISTURE: 38.0 72.5 40.5
% TOC: 1.0 1.34 0.86
1,2,5,6-dibenzanthracene (mg/kg dry wt.): 0.081 bdl bdl
1,2-benzanthracene (mg/kg dry wt.): 0.210 bdl bdl
1-methylnaphthalene (mg/kg dry wt.): 0.016 bdl bdl
1-methylphenanthrene (mg/kg dry wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg dry wt.): 0.032 0.036 0.017
C1-fluoranthenes & pyrenes (mg/kg dry wt.): bdl bdl bdl
C1-chrysenes (mg/kg dry wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C1-fluorenes (mg/kg dry wt.): bdl bdl bdl
Cl-naphthalenes (mg/kg dry wt.): 0.048 0.036 0.017
C1-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C2-chrysenes (mg/kg dry wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C2-fluorenes (mg/kg dry wt.): bdl bdl bdl
C2-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C3-chrysenes (mg/kg dry wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C3-fluorenes (mg/kg dry wt.): bdl bdl bdl
C3-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C4-chrysenes (mg/kg dry wt.): bdl bdl bdl
C4-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
acenaphthalene (mg/kg dry wt.): 0.032 bdl bdl
acenaphthene (mg/kg dry wt.): bdl bdl bdl
anthracene (mg/kg dry wt.): 0.098 bdl bdl
benzo (a) pyrene (mg/kg dry wt.): 0.258 bdl bdl
benzo (b) fluoranthene (mg/kg dry wt.): 0.274 0.073 bdl
benzo (e) pyrene (mg/kg dry wt.): 0.194 bdl bdl
benzo (g,h,i) perylene (mg/kg dry wt.): 0.210 bdl bdl
benzo (k) fluoranthene (mg/kg dry wt.): 0.242 bdl bdl
biphenyl (mg/kg dry wt.): bdl bdl bdl
chrysene (mg/kg dry wt.): 0.290 bdl bdl
dibenzothiophene (mg/kg dry wt.): bdl bdl bdl
fluoranthene (mg/kg dry wt.): 0.290 bdl bdl
fluorene (mg/kg dry wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg dry wt.): 0.210 bdl bdl
naphthalene (mg/kg dry wt.): 0.065 0.036 0.017
perylene (mg/kg dry wt.): 0.258 1.164 0.252
phenanthrene (mg/kg dry wt.): 0.081 bdl bdl
pyrene (mg/kg dry wt.): 0.226 bdl bdl
LP1S26 = sample collected at Lone Star Steel; detection limit = 0.016 mg/kg. bdl = below detection limit.

LP2S27 = sample collected at SH 155 Marina; detection limit = 0.036 mg/kg.
LP3S28 = sample collected from Copeland Creek; detection limit = 0.017 mg/kg.
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TABLE XVA. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM CADDO LAKE (WET WEIGHT).

SAMPLE: CL2S47 CL9S46 CL11S48
SAMPLE WT. (g): 282.0 267.0 389.0
% MOISTURE: 81.5 77.5 42.0
% TOC: 1.22 1.28 0.76
1,2,5,6-dibenzanthracene (mg/kg wet wt.): bdl bdl bdl
1,2-benzanthracene (mg/kg wet wt.): bdl bdl 0.01
1-methylnaphthalene (mg/kg wet wt.): bdl bdl bdl
1-methylphenanthrene (mg/kg wet wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg wet wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg wet wt.): 0.01 0.01 0.01
C1-fluoranthenes & pyrenes (mg/kg wet wt.): bdl bdl bdl
C1-chrysenes (mg/kg wet wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C1-fluorenes (mg/kg wet wt.): bdl bdl bdl
Cl-naphthalenes (mg/kg wet wt.): 0.01 0.01 0.01
C1-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C2-chrysenes (mg/kg wet wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C2-fluorenes (mg/kg wet wt.): bdl bdl bdl
C2-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C3-chrysenes (mg/kg wet wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg wet wt.): bdl bdl bdl
C3-fluorenes (mg/kg wet wt.): bdl bdl bdl
C3-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
C4-chrysenes (mg/kg wet wt.): bdl bdl bdl
C4-naphthalenes (mg/kg wet wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg wet wt.): bdl bdl bdl
acenaphthalene (mg/kg wet wt.): bdl bdl bdl
acenaphthene (mg/kg wet wt.): bdl bdl bdl
anthracene (mg/kg wet wt.): bdl bdl bdl
benzo (a) pyrene (mg/kg wet wt.): bdl bdl 0.01
benzo (b) fluoranthene (mg/kg wet wt.): bdl bdl bdl
benzo (e) pyrene (mg/kg wet wt.): bdl bdl bdl
benzo (g,h,i) perylene (mg/kg wet wt.): bdl bdl bdl
benzo (k) fluoranthene (mg/kg wet wt.): bdl bdl bdl
biphenyl (mg/kg wet wt.): bdl bdl bdl
chrysene (mg/kg wet wt.): bdl bdl 0.01
dibenzothiophene (mg/kg wet wt.): bdl bdl bdl
fluoranthene (mg/kg wet wt.): bdl bdl 0.01
fluorene (mg/kg wet wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg wet wt.): bdl bdl bdl
naphthalene (mg/kg wet wt.): 0.01 0.01 0.01
perylene (mg/kg wet wt.): 0.17 0.08 0.99
phenanthrene (mg/kg wet wt.): bdl bdl bdl
pyrene (mg/kg wet wt.): bdl bdl 0.03
CL2S47 = sample collected from Harrison Bayou; detection limit = 0.01 mg/kg. bdl = below detection limit.

CL9S46 = sample collected from Goose Prairie; detection limit = 0.01 mg/kg.
CL11S48 = sample collected from Little Green Break; detection limit = 0.01 mg/kg.
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TABLE XVB. ANALYTICAL RESULTS OF POLYCYCLIC AROMATIC HYDROCARBONS IN SEDIMENT
SAMPLES COLLECTED FROM CADDO LAKE (DRY WEIGHT).

SAMPLE: CL2S47 CL9S46 CL11S48
SAMPLE WT. (g): 282.0 267.0 389.0
% MOISTURE: 81.5 77.5 42.0
% TOC: 1.22 1.28 0.76
1,2,5,6-dibenzanthracene (mg/kg dry wt.): bdl bdl bdl
1,2-benzanthracene (mg/kg dry wt.): bdl bdl 0.017
1-methylnaphthalene (mg/kg dry wt.): bdl bdl bdl
1-methylphenanthrene (mg/kg dry wt.): bdl bdl bdl
2,3,5-trimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2,6-dimethylnaphthalene (mg/kg dry wt.): bdl bdl bdl
2-methylnaphthalene (mg/kg dry wt.): 0.054 0.044 0.017
C1-fluoranthenes & pyrenes (mg/kg dry wt.): bdl bdl bdl
C1-chrysenes (mg/kg dry wt.): bdl bdl bdl
C1-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C1-fluorenes (mg/kg dry wt.): bdl bdl bdl
Cl-naphthalenes (mg/kg dry wt.): 0.054 0.044 0.017
C1-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C2-chrysenes (mg/kg dry wt.): bdl bdl bdl
C2-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C2-fluorenes (mg/kg dry wt.): bdl bdl bdl
C2-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C2-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C3-chrysenes (mg/kg dry wt.): bdl bdl bdl
C3-dibenzothiophenes (mg/kg dry wt.): bdl bdl bdl
C3-fluorenes (mg/kg dry wt.): bdl bdl bdl
C3-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C3-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
C4-chrysenes (mg/kg dry wt.): bdl bdl bdl
C4-naphthalenes (mg/kg dry wt.): bdl bdl bdl
C4-phenanthrenes (mg/kg dry wt.): bdl bdl bdl
acenaphthalene (mg/kg dry wt.): bdl bdl bdl
acenaphthene (mg/kg dry wt.): bdl bdl bdl
anthracene (mg/kg dry wt.): bdl bdl bdl
benzo (a) pyrene (mg/kg dry wt.): bdl bdl 0.017
benzo (b) fluoranthene (mg/kg dry wt.): bdl bdl bdl
benzo (e) pyrene (mg/kg dry wt.): bdl bdl bdl
benzo (g,h,i) perylene (mg/kg dry wt.): bdl bdl bdl
benzo (k) fluoranthene (mg/kg dry wt.): bdl bdl bdl
biphenyl (mg/kg dry wt.): bdl bdl bdl
chrysene (mg/kg dry wt.): bdl bdl 0.017
dibenzothiophene (mg/kg dry wt.): bdl bdl bdl
fluoranthene (mg/kg dry wt.): bdl bdl 0.017
fluorene (mg/kg dry wt.): bdl bdl bdl
indeno (1,2,3-cd) pyrene (mg/kg dry wt.): bdl bdl bdl
naphthalene (mg/kg dry wt.): 0.054 0.044 0.017
perylene (mg/kg dry wt.): 0.919 0.356 1.707
phenanthrene (mg/kg dry wt.): bdl bdl bdl
pyrene (mg/kg dry wt.): bdl bdl 0.052
CL2S47 = sample collected from Harrison Bayou; detection limit = 0.054 mg/kg. bdl = below detection limit.

CL9S46 = sample collected from Goose Prairie; detection limit = 0.044 mg/kg.
CL11S48 = sample collected from Little Green Break; detection limit = 0.017 mg/kg.
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APPENDIX G
(ANALYTICAL RESULTS FOR ORGANOCHLORINES IN SEDIMENTS)



TABLE XVIIA. RESULTS OF ORGANOCHLORINE ANALYSIS FOR SEDIMENTS COLLECTED FROM CYPRESS

SPRINGS RESERVOIR, LAKE O' THE PINES AND CADDO LAKE (WET WEIGHT).

SAMPLE:
SAMPLE WT. (g):
% MOISTURE:
HCB (mg/kg wet wt.):
d.l. (mg/kg):
Total PCB (mg/kg wet wt.):
d.l. (mg/kg):
BHC (mg/kg wet wt.):
d.l. (mg/kg):
chlordane (mg/kg wet wt.):
d.l. (mg/kg):
BHC (mg/kg wet wt.):
d.l. (mg/kg):
cis-nonachlor (mg/kg wet wt.):
d.l. (mg/kg):
BHC (mg/kg wet wt.):
d.l. (mg/kg):
dieldrin (mg/kg wet wt.):
d.l. (mg/kg):
endrin (mg/kg wet wt.):
d.l. (mg/kg):
BHC (mg/kg wet wt.):
d.l. (mg/kg):
chlordane (mg/kg wet wt.):
d.l. (mg/kg):

heptachlor epoxide (mg/kg wet wt.):

d.l. (mg/kg):

mirex (mg/kg wet wt.):
d.l. (mg/kg):

0,p'-DDD (mg/kg wet wt.):
d.l. (mg/kg):

0,p'-DDE (mg/kg wet wt.):
d.l. (mg/kg):

0,p'-DDT (mg/kg wet wt.):
d.l. (mg/kg):

oxychlordane (mg/kg wet wt.):
d.l. (mg/kg):

p,p'-DDD (mg/kg wet wt.):
d.l. (mg/kg):

p.p'-DDE (mg/kg wet wt.):
d.l. (mg/kg):

p.p'-DDT (mg/kg wet wt.):
d.l. (mg/kg):

toxaphene (mg/kg wet wt.):
d.l. (mg/kg):

trans-nonachlor (mg/kg wet wt.):
d.l. (mg/kg):

CS1504
274.0
50.5
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

LP1S25
454.0
40.5
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

CL2S45
331.0
80.0
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

CS1S04 = sample collected above FM 115 at Cypress Springs Reservoir.

LP1S25 = sample collected at Lone Star Steel at Lake O' The Pines.
CL2S45 = sample collected from Harrison Bayou at Caddo Lake.

d.l. = detection limit.
bdl = below detection limit.



TABLE XVIIB. RESULTS OF ORGANOCHLORINE ANALYSIS FOR SEDIMENTS COLLECTED FROM CYPRESS

SPRINGS RESERVOIR, LAKE O' THE PINES AND CADDO LAKE (DRY WEIGHT).

SAMPLE:
SAMPLE WT. (g):
% MOISTURE:
HCB (mg/kg dry wt.):
d.l. (mg/kg):
Total PCB (mg/kg dry wt.):
d.l. (mg/kg):
BHC (mg/kg dry wt.):
d.l. (mg/kg):
chlordane (mg/kg dry wt.):
d.l. (mg/kg):
BHC (mg/kg dry wt.):
d.l. (mg/kg):
cis-nonachlor (mg/kg dry wt.):
d.l. (mg/kg):
BHC (mg/kg dry wt.):
d.l. (mg/kg):
dieldrin (mg/kg dry wt.):
d.l. (mg/kg):
endrin (mg/kg dry wt.):
d.l. (mg/kg):
BHC (mg/kg dry wt.):
d.l. (mg/kg):
chlordane (mg/kg dry wt.):
d.l. (mg/kg):

heptachlor epoxide (mg/kg dry wt.):

d.l. (mg/kg):

mirex (mg/kg dry wt.):
d.l. (mg/kg):

0,p'-DDD (mg/kg dry wt.):
d.l. (mg/kg):

0,p'-DDE (mg/kg dry wt.):
d.l. (mg/kg):

0,p'-DDT (mg/kg dry wt.):
d.l. (mg/kg):

oxychlordane (mg/kg dry wt.):
d.l. (mg/kg):

p,p'-DDD (mg/kg dry wt.):
d.l. (mg/kg):

p.p'-DDE (mg/kg dry wt.):
d.l. (mg/kg):

p.p'-DDT (mg/kg dry wt.):
d.l. (mg/kg):

toxaphene (mg/kg dry wt.):
d.l. (mg/kg):

trans-nonachlor (mg/kg dry wt.):
d.l. (mg/kg):

CS1504
274.0
50.5
bdl
0.02
bdl
0.10
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.02
bdl
0.10
bdl
0.02

LP1S25
454.0
40.5
bdl
0.017
bdl
0.08
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.017
bdl
0.08
bdl
0.017

CL2S45
331.0
80.0
bdl
0.05
bdl
0.25
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.05
bdl
0.25
bdl
0.05

CS1S04 = sample collected above FM 115 at Cypress Springs Reservoir.

LP1S25 = sample collected at Lone Star Steel at Lake O' The Pines.
CL2S45 = sample collected from Harrison Bayou at Caddo Lake.

d.l. = detection limit.
bdl = below detection limit.



APPENDIX H
(ANALYTICAL RESULTS FOR METALS IN BIOLOGICAL SAMPLES)
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TABLE XXIX. RESULTS FOR MERCURY ANALYSIS OF MUSCLE TISSUE FROM FISH COLLECTED AT
CYPRESS SPRINGS RESERVOIR.

SAMPLE SAMPLE WT. (g) % MOISTURE Hg (mg/kg dry wt.) d.l. Hg (mg/kg wet wt.) d.l.
CS1LMBO06  275.94 76.8 1.069 0.043  0.248 0.01
CS1LMBO07 213.4 76.9 1.299 0.043 0.3 0.01
CS1LMBO0O8  181.8 77 0.943 0.043  0.217 0.01
CSILMB09  144.26 77.4 0.642 0.044  0.145 0.01
CS1SPB10 84.28 78.5 1.191 0.047  0.256 0.01
CS2LMBO1  120.7 78.4 1.065 0.046 0.23 0.01
CS2LMBO02  247.83 77.8 1.27 0.045 0.282 0.01
CS2LMBO03  199.74 78.3 1.521 0.046 0.33 0.01
CS2LMB04  134.19 78.1 1.055 0.046  0.231 0.01
CS2LMBO0O5  86.42 78.7 0.831 0.047  0.177 0.01
CS3LMB04  217.46 77.8 1.167 0.045  0.259 0.01
CS3LMBO05  153.12 78.9 1.014 0.047 0.214 0.01
CS3LMB06  229.63 77.1 1.157 0.044  0.265 0.01
CS3LMB07  157.22 78.1 1.484 0.046  0.325 0.01
CS3LMBO08  130.02 77.8 0.743 0.045 0.165 0.01

d.l. = detection limit.

TABLE XXX. RESULTS FOR MERCURY ANALYSIS OF MUSCLE TISSUE FROM FISH COLLECTED AT LAKE
O’ THE PINES.

SAMPLE SAMPLE WT. (g0 % MOISTURE Hg (mg/kg dry wt.) d.l. Hg (mg/kg wet wt.) d.L

LP1ILMBO1  143.07 79.1 2.263 0.048 0.473 0.01
LPILMB02 242.17 79 1.438 0.048  0.302 0.01
LPILMBO5 206.88 79.4 1.515 0.049 0.312 0.01
LPILMB0O6  198.44 79.3 2.377 0.048 0.492 0.01
LP1WBO03 171.33 78 2.141 0.045 0471 0.01
LP2CCO1 180.45 71.9 0.246 0.036  0.069 0.01
LP2CC02 131.98 73.4 0.301 0.038 0.08 0.01
LP2CCO03 146.42 77.5 0.533 0.044 0.12 0.01
LP2CC04 153.62 75.1 0.205 0.04 0.051 0.01
LP2CCO06 104.87 77.2 0.171 0.044  0.039 0.01
LP3CCO01 79.61 78.8 0.283 0.047  0.06 0.01
LP3CC02 99.74 80 0.33 0.05 0.066 0.01
LP3CCO03 125.68 78 0.273 0.045 0.06 0.01
LP3CC04 89.97 80.1 0.296 0.05 0.059 0.01
LP3CCO05 65.16 79.3 0.343 0.048  0.048 0.01

d.l. = detection limit.
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TABLE XXXIA. RESULTS FOR METALS ANALYSIS OF MUSCLE TISSUE FROM FISH
COLLECTED AT CADDO LAKE (WET WEIGHT).

SAMPLE S9C1 S10BH1 S11C1
SAMPLE WT. (g) 53 61 148
% MOISTURE 82.28 83.71 79.39
Al (mg/kg wet wt.) 2.440 3.6327 1.3236
d.l. (mg/kg) 0.897 0.8194 1.0264
As (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0891 0.0821 0.1031
B (mg/kg wet wt.) 0.2679 bdl bdl
d.l. (mg/kg) 0.0897 0.0819 0.1026
Ba (mg/kg wet wt.) 0.314 0.2975 0.1222
d.l. (mg/kg) 0.0897 0.0819 0.1026
Be (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0179 0.0164 0.0205
Cd (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0179 0.0164 0.0205
Cr (mg/kg wet wt.) 0.4359 0.2755 0.3683
d.l. (mg/kg) 0.0897 0.0819 0.1026
Cu (mg/kg wet wt.) 1.4204 3.8754 0.2378
d.l. (mg/kg) 0.0897 0.0819 0.1026
Fe (mg/kg wet wt.) 13.7171 13.89 9.021
d.l. (mg/kg) 1.7935 1.6388 2.0528
Hg (mg/kg wet wt.) 0.0897 0.068 0.3673
d.l. (mg/kg) 0.0178 0.0164 0.0206
Mg (mg/kg wet wt.) 241.878 211.184 256.182
d.l. (mg/kg) 1.7935 1.6388 2.0528
Mn (mg/kg wet wt.) 0.5063 0.8407 1.196
d.l. (mg/kg) 0.0717 0.0656 0.0821
Mo (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0897 0.0819 0.1026
Ni (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0897 0.0819 0.1026
Pb (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0897 0.0819 0.1026
Se (mg/kg wet wt.) bdl bdl 0.2329
d.l. (mg/kg) 0.0891 0.0821 0.1031
Sr (mg/kg wet wt.) 0.3705 0.6795 0.5942
d.l. (mg/kg) 0.0359 0.0328 0.0411
V (mg/kg wet wt.) bdl bdl bdl
d.l. (mg/kg) 0.0897 0.0819 0.1026
Zn (mg/kg wet wt.) 6.1187 5.6754 7.9864
d.l. (mg/kg) 0.1793 0.1639 0.2053

d.l. = detection limit.
bdl = below detection limit.
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TABLE XXXIB. RESULTS FOR METALS ANALYSIS OF MUSCLE TISSUE FROM FISH
COLLECTED AT CADDO LAKE (DRY WEIGHT).

SAMPLE S9C1 S10BH1 S11C1
SAMPLE WT. (g) 53 61 148
% MOISTURE 82.28 83.71 79.39
Al (mg/kg dry wt.) 13.77 22.3 6.422
d.l. (mg/kg) 5.061 5.03 4.98
As (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.503 0.504 0.5
B (mg/kg dry wt.) 1.512 bdl bdl
d.l. (mg/kg) 0.506 0.503 0.498
Ba (mg/kg dry wt.) 1.772 1.826 0.592
d.l. (mg/kg) 0.506 0.503 0.498
Be (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.101 0.101 0.0996
Cd (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.101 0.101 0.0996
Cr (mg/kg dry wt.) 2.46 1.691 1.787
d.l. (mg/kg) 0.506 0.503 0.498
Cu (mg/kg dry wt.) 8.016 23.79 1.154
d.l. (mg/kg) 0.506 0.503 0.498
Fe (mg/kg dry wt.) 77.41 85.27 43.77
d.l. (mg/kg) 10.122 10.06 9.96
Hg (mg/kg dry wt.) 0.506 0.418 1.782
d.l. (mg/kg) 0.101 0.101 0.1
Mg (mg/kg dry wt.) 1365.0 1296.0 1243.0
d.l. (mg/kg) 10.122 10.06 9.96
Mn (mg/kg dry wt.) 2.857 5.161 5.803
d.l. (mg/kg) 0.405 0.402 0.398
Mo (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.506 0.503 0.498
Ni (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.506 0.503 0.498
Pb (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.506 0.503 0.498
Se (mg/kg dry wt.) bdl bdl 1.13
d.l. (mg/kg) 0.503 0.504 0.5
Sr (mg/kg dry wt.) 2.091 4.171 2.883
d.l. (mg/kg) 0.202 0.201 0.199
V (mg/kg dry wt.) bdl bdl bdl
d.l. (mg/kg) 0.506 0.503 0.498
Zn (mg/kg dry wt.) 34.53 34.84 38.75
d.l. (mg/kg) 1.012 1.006 0.996

d.l. = detection limit.
bdl = below detection limit.
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TABLE XXXIII. RESULTS FOR MERCURY ANALYSIS OF WHOLE BODY COMPOSITES FROM
MACROINVERTEBRATES COLLECTED AT CADDO LAKE.

SAMPLE SAMPLE WT. (g) % MOISTURE Hg (mg/kg dry wt.) d.l. Hg (mg/kg wet wt.) d.l.

S4IM1 5.39 80.4 0.194 0.051 0.038 0.01
S5IM2 5.9 79.6 0.201 0.049 0.041 0.01
S10IM1 5.78 80.9 0.508 0.052  0.097 0.01
S10IM2 5.56 69.1 0.343 0.032 0.106 0.01

d.l. = detection limit.

TABLE XXXIV. RESULTS FOR MERCURY ANALYSIS OF FEATHERS FROM GREAT BLUE HERONS
COLLECTED AT CADDO LAKE.

SAMPLE SAMPLE WT. (g) % MOISTURE Hg (mg/kg dry wt.) d.l.

CLMSFO01 4.9 0.0 1.38 0.01
CLMSFO02 4.47 0.0 1.27 0.01
CLMSFO03 2.05 0.0 1.23 0.01
CLMSF04 2.51 0.0 2.77 0.01
CLMSFO05 4.02 0.0 14.5 0.01
CLMSF06 7.58 0.0 1.62 0.01
CLMSEF07 10.63 0.0 1.57 0.01

d.l. = detection limit.

TABLE XXXV. RESULTS FOR MERCURY ANALYSIS OF KIDNEYS FROM GREAT BLUE HERONS
COLLECTED AT CADDO LAKE.

SAMPLE SAMPLE WT. (g0 % MOISTURE Hg (mg/kg dry wt.) d.l.

CLMSKO1 2.0 0.0 0.597 0.01
CLMSKO02 0.8 0.0 0.513 0.01
CLMSKO03 1.6 0.0 0.863 0.01
CLMSKO04 2.2 0.0 0.553 0.01
CLMSKO05 2.2 0.0 2.37 0.01
CLMSKO06 2.1 0.0 0.628 0.01
CLMSKO07 2.8 0.0 0.657 0.01

d.l. = detection limit.
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APPENDIX I
(ANALYTICAL RESULTS OF ORGANOCHLORINES IN FISH)



TABLE XXXVIIA. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF
FISH COLLECTED FROM CYPRESS SPRINGS RESERVOIR AND LAKE O’THE PINES (WET WEIGHT).

SAMPLE CS1LMBO03 LP1LMBO03
SAMPLE WEIGHT (grams) 1760.0 2840.0
% MOISTURE 76.5 75.5
% LIPID 3.52 4.45
HCB (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
Total PCB (mg/kg wet weight) bdl 0.22
d.l. (mg/kg wet weight) 0.05 0.05
BHC (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
chlordane (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
BHC (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
dieldrin (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
endrin (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
BHC (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
chlordane (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
heptachlor epoxide (mg/kg wet weight)  bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
mirex (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
0,p’-DDD (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
o,p’-DDE (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
o,p’-DDT (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
oxychlordane (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
p,p’-DDD (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
p.p’-DDE (mg/kg wet weight) 0.02 0.02
d.l. (mg/kg wet weight) 0.01 0.01
p.p’-DDT (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01
toxaphene (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.05 0.05
trans-nonachlor (mg/kg wet weight) bdl bdl
d.l. (mg/kg wet weight) 0.01 0.01

d.l. = detection limit
bdl = below detection limit

I1



TABLE XXXVIIB. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF
FISH COLLECTED FROM CYPRESS SPRINGS RESERVOIR AND LAKE O’THE PINES (DRY WEIGHT).

SAMPLE CS1LMBO03 LP1LMBO03
SAMPLE WEIGHT (grams) 1760.0 2840.0
% MOISTURE 76.5 75.5
% LIPID 3.52 4.45
HCB (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
Total PCB (mg/kg dry weight) bdl 0.898
d.l. (mg/kg dry weight) 0.213 0.204
BHC (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
chlordane (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
BHC (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
dieldrin (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
endrin (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
BHC (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
chlordane (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
heptachlor epoxide (mg/kg dry weight)  bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
mirex (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
0,p’-DDD (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
0,p’-DDE (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
0,p’-DDT (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
oxychlordane (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
p,p’-DDD (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
p,p’-DDE (mg/kg dry weight) 0.085 0.082
d.l. (mg/kg dry weight) 0.043 0.041
p,p’-DDT (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041
toxaphene (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.213 0.204
trans-nonachlor (mg/kg dry weight) bdl bdl
d.l. (mg/kg dry weight) 0.043 0.041

d.l. = detection limit
bdl = below detection limit
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TABLE XXXVIIIA. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF FISH
COLLECTED FROM CADDO LAKE (WET WEIGHT).

SAMPLE
SAMPLE WEIGHT (grams)
% MOISTURE
% LIPID
HCB (mg/kg wet weight)
d.l. (mg/kg wet weight)
Total PCB (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
chlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
dieldrin (mg/kg wet weight)
d.l. (mg/kg wet weight)
endrin (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
chlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
heptachlor epoxide (mg/kg wet weight)
d.l. (mg/kg wet weight)
mirex (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDD (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDE (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDT (mg/kg wet weight)
d.l. (mg/kg wet weight)
oxychlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
p,p’-DDD (mg/kg wet weight)
d.l. (mg/kg wet weight)
p.p’-DDE (mg/kg wet weight)
d.l. (mg/kg wet weight)
p.p’-DDT (mg/kg wet weight)
d.l. (mg/kg wet weight)
toxaphene (mg/kg wet weight)
d.l. (mg/kg wet weight)
trans-nonachlor (mg/kg wet weight)
d.l. (mg/kg wet weight)

S2B3
215
73.61
2.32
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

5285
66
76.93
4.19
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S4BG1
424
72.96
0.88
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S4G3
814
64.82
2.71
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
0.038
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S5B3
773
71.3
5.58
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
0.02
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S5G3
1312
66.18
3.6
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
0.039
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S6R1
469
71.3
3.31
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S6S1
787
71.9
6.68
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S7TBG1
307
72.89
1.91
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

d.l. = detection limit
bdl = below detection limit

I3




TABLE XXXVIIIA. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF FISH

COLLECTED FROM CADDO LAKE (WET WEIGHT) (continued).

SAMPLE
SAMPLE WEIGHT (grams)
% MOISTURE
% LIPID
HCB (mg/kg wet weight)
d.l. (mg/kg wet weight)
Total PCB (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
chlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
dieldrin (mg/kg wet weight)
d.l. (mg/kg wet weight)
endrin (mg/kg wet weight)
d.l. (mg/kg wet weight)
BHC (mg/kg wet weight)
d.l. (mg/kg wet weight)
chlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
heptachlor epoxide (mg/kg wet weight)
d.l. (mg/kg wet weight)
mirex (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDD (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDE (mg/kg wet weight)
d.l. (mg/kg wet weight)
0,p’-DDT (mg/kg wet weight)
d.l. (mg/kg wet weight)
oxychlordane (mg/kg wet weight)
d.l. (mg/kg wet weight)
p,p’-DDD (mg/kg wet weight)
d.l. (mg/kg wet weight)
p.p’-DDE (mg/kg wet weight)
d.l. (mg/kg wet weight)
p.p’-DDT (mg/kg wet weight)
d.l. (mg/kg wet weight)
toxaphene (mg/kg wet weight)
d.l. (mg/kg wet weight)
trans-nonachlor (mg/kg wet weight)
d.l. (mg/kg wet weight)

S7S2
1233
73.94
3.45
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S8B2
426
72.25
3.64
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S8R1
350
70.36
3.26
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S9K1
7

0.0
2.62
bdl
0.018
bdl
0.092
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.092
bdl
0.018

S10B2
806
72.34
5.6
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S10R1
346
71.78
2.56
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S11B2
290
75.08
4.63
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

S11S4
110
79.08
3.88
bdl
0.01
bdl
0.05
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.01
bdl
0.05
bdl
0.01

d.l. = detection limit
bdl = below detection limit
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TABLE XXXVIIIB. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF FISH
COLLECTED FROM CADDO LAKE (DRY WEIGHT).

SAMPLE
SAMPLE WEIGHT (grams)
% MOISTURE
% LIPID
HCB (mg/kg dry weight)
d.l. (mg/kg dry weight)
Total PCB (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
chlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
dieldrin (mg/kg dry weight)
d.l. (mg/kg dry weight)
endrin (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
chlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
heptachlor epoxide (mg/kg dry weight)
d.l. (mg/kg dry weight)
mirex (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDD (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDE (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDT (mg/kg dry weight)
d.l. (mg/kg dry weight)
oxychlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
p,p’-DDD (mg/kg dry weight)
d.l. (mg/kg dry weight)
p.p’-DDE (mg/kg dry weight)
d.l. (mg/kg dry weight)
p.p’-DDT (mg/kg dry weight)
d.l. (mg/kg dry weight)
toxaphene (mg/kg dry weight)
d.l. (mg/kg dry weight)
trans-nonachlor (mg/kg dry weight)
d.l. (mg/kg dry weight)

S2B3
215
73.61
2.32
bdl
0.038
bdl
0.189
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.189
bdl
0.038

5285
66
76.93
4.19
bdl
0.043
bdl
0.217
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.043
bdl
0.217
bdl
0.043

S4BG1
424
72.96
0.88
bdl
0.037
bdl
0.185
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.185
bdl
0.037

S4G3
814
64.82
2.71
bdl
0.028
bdl
0.142
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
bdl
0.028
0.108
0.028
bdl
0.028
bdl
0.142
bdl
0.028

S5B3
773
71.3
5.58
bdl
0.035
bdl
0.174
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
0.07
0.035
bdl
0.035
bdl
0.174
bdl
0.035

S5G3
1312
66.18
3.6
bdl
0.03
bdl
0.148
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
bdl
0.03
0.115
0.03
bdl
0.03
bdl
0.148
bdl
0.03

S6R1
469
71.3
3.31
bdl
0.035
bdl
0.174
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.174
bdl
0.035

S6S1
787
71.9
6.68
bdl
0.04
bdl
0.18
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.18
bdl
0.04

S7TBG1
307
72.89
1.91
bdl
0.037
bdl
0.184
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.037
bdl
0.184
bdl
0.037

d.l. = detection limit
bdl = below detection limit
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TABLE XXXVIIIB. RESULTS OF ORGANOCHLORINE ANALYSIS FOR WHOLE BODY COMPOSITES OF FISH

COLLECTED FROM CADDO LAKE (DRY WEIGHT) (continued).

SAMPLE
SAMPLE WEIGHT (grams)
% MOISTURE
% LIPID
HCB (mg/kg dry weight)
d.l. (mg/kg dry weight)
Total PCB (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
chlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
dieldrin (mg/kg dry weight)
d.l. (mg/kg dry weight)
endrin (mg/kg dry weight)
d.l. (mg/kg dry weight)
BHC (mg/kg dry weight)
d.l. (mg/kg dry weight)
chlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
heptachlor epoxide (mg/kg dry weight)
d.l. (mg/kg dry weight)
mirex (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDD (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDE (mg/kg dry weight)
d.l. (mg/kg dry weight)
0,p’-DDT (mg/kg dry weight)
d.l. (mg/kg dry weight)
oxychlordane (mg/kg dry weight)
d.l. (mg/kg dry weight)
p,p’-DDD (mg/kg dry weight)
d.l. (mg/kg dry weight)
p.p’-DDE (mg/kg dry weight)
d.l. (mg/kg dry weight)
p.p’-DDT (mg/kg dry weight)
d.l. (mg/kg dry weight)
toxaphene (mg/kg dry weight)
d.l. (mg/kg dry weight)
trans-nonachlor (mg/kg dry weight)
d.l. (mg/kg dry weight)

S7S2
1233
73.94
3.45
bdl
0.038
bdl
0.192
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.038
bdl
0.192
bdl
0.038

S8B2
426
72.25
3.64
bdl
0.036
bdl
0.18
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.18
bdl
0.036

S8R1
350
70.36
3.26
bdl
0.034
bdl
0.169
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.034
bdl
0.169
bdl
0.034

S9K1
7

0.0
2.62
bdl
0.018
bdl
0.092
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.018
bdl
0.092
bdl
0.018

S10B2
806
72.34
5.6
bdl
0.036
bdl
0.181
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.036
bdl
0.181
bdl
0.036

S10R1
346
71.78
2.56
bdl
0.035
bdl
0.177
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.035
bdl
0.177
bdl
0.035

S11B2 S11S4

290
75.08
4.63
bdl
0.04
bdl
0.201
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.04
bdl
0.201
bdl
0.04

110
79.08
3.88
bdl
0.048
bdl
0.239
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.048
bdl
0.239
bdl
0.048

d.l. = detection limit
bdl = below detection limit
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APPENDIX J
(SCREENING CRITERIA)
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TABLE XLI. METALLIC ELEMENT CONCENTRATIONS IN SOILS OF THE UNITED STATES (Shacklette and
Boerngen, 1984).

Element Median Concentration (mg/kg dry wt.) Range (mg/kg dry wt.)
Al 47,000.0 700.0 - >100,000.0
As 7.2 <0.1-97.0

B 33.0 <20.0 - 300.0

Ba 580.0 10.0 - 5,000.0

Be 0.63 <1.0-15.0

Cd 0.05* 0.01 - 0.70%*

Cr 54.0 1.0 - 2,000.0

Cu 25.0 <1.0-700.0

Fe 26,000.0 100.0 - >100,000.0
Hg 0.06 <0.01-4.6

Mg 9,000.0 50.0 - >100,000.0
Mn 330.0 <2.0-7,000.0

Mo 0.97 <3.0-15.0

Ni 19.0 <5.0-700.0

Pb 19.0 <10.0 - 700.0

Se 0.3 <0.1-43

Sr 120.0 <5.0 - 3,000.0

\Y 80.0 <7.0-500.0

Zn 48.0 <5.0-2,900.0

* Values from USEPA guidance document entitled, Metals In Soils: A Brief Summary (1980).
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