United States Department of the Interior U.S. Fish and Wildlife Service 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021 Telephone: (602) 242-0210 FAX: (602) 242-2513

AESO/SE 2-21-01-F-550

April 12, 2002

Mr. Barry Welch Acting Regional Director Bureau of Indian Affairs Western Regional Office P.O. Box 10 Phoenix, Arizona 85001

Dear Mr. Welch:

This responds to the Bureau of Indian Affair's (BIA) November 19, 2001, request for formal consultation with the U.S. Fish and Wildlife Service (Service) pursuant to section 7 of the Endangered Species Act (ESA) (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) on the effects of the proposed federally funded road construction on the endangered cactus ferruginous pygmyowl (CFPO or owl) (*Glaucidium brasilianum cactorum*) without critical habitat, and the endangered lesser long-nosed bat (*Leptonycteris curasoae yerbabuenae*) without critical habitat. The proposed work involves the upgrade of an existing dirt/gravel roadway known as BIA routes 22 and 221, located on the Tohono O'odham Nation. We received your request for consultation on November 20, 2001.

The BIA has requested Service concurrence that the proposed action is not likely to adversely affect the lesser long-nosed bat. We concur with this determination for the lesser long-nosed bat. The rationale for our concurrence is provided in Appendix A of this document.

This biological opinion is based on information provided in the May 2001, Biological Evaluation (BE), the September 6, 2001, letter to the Service, a meeting with the applicant and staff from the Tohono O'odham Nation (TON), telephone conversations with BIA, and our files. Literature cited in this biological opinion is not a complete bibliography of all literature available on the affected species; nor is it a complete review of the effects of road development on this species and its habitat. A complete administrative record of this consultation is on file at this office.

CONSULTATION HISTORY

The informal consultation process for this project began with the May 11, 2001, receipt of the BIA's BE regarding this project. The Service had questions regarding the proposed action and

relayed these questions to BIA in a phone call on June 26, 2001. BIA responded to those questions in a letter to the Service dated September 6, 2001. On November 14, 2001, the Service met with staff from the BIA and TON to discuss all the effects and proposed conservation measures for the proposed action. On November 19, 2001, BIA requested formal consultation on the proposed project.

BIOLOGICAL OPINION

DESCRIPTION OF THE PROPOSED ACTION

The BIA is proposing to upgrade 2.4 miles of existing dirt/gravel road known as BIA routes 22 and 221. These two routes intersect and collectively form a single road that accesses the village of Narcho Santos, on the Tohono O'odham Nation, Pima County, Arizona. The road is located in the geographical center of the reservation southeast of the intersection of State Route (SR) 86 and BIA route 15 at Quijotoa. The road terminates at the village.

Work will involve constructing a 24-foot, surfaced road by grading and draining the existing dirt/gravel road, and applying an asphaltic concrete overlay for the entire length of the road. The finished road will include two 10-foot travel lanes and 2-foot paved outside shoulders. Construction outside the existing road section would only be for complying with federal design standards for minimum curves, tangents, and grades. Between mile 2.0 and 2.3, the road would be realigned approximately 350 feet to the south in order to remove the existing road from a series of small washes. The roadway would be marked and signed as appropriate. Disturbed areas will be seeded with a native seed mix. All transplant eligible saguaros will be transplanted to areas outside the construction zone, but as close to the original location as possible. Road construction will take place in the fall, starting in November 2002. Maps and specific details of the proposed action are provided in the May 2001, BE, and other materials provided to the Service, and are included here by reference.

A total of approximately 13.5 acres of potential CFPO habitat will be modified or destroyed by road construction. The project area for construction will be the 2.4 mile roadway plus the construction "window" associated with the work. In this case, BIA estimates the "window" to be approximately 60 feet. When multiplied together, the total amount of disturbance is calculated to be 14.45 acres. The existing roadway is 23 feet wide. When multiplied for the distance of the roadway, the figure of 4.01 acres represents the area occupied by the existing roadway. The total area of disturbance minus the existing roadway leaves a total of approximately 13.5 acres of new disturbance. This is the minimum area that would need to be completely cleared in order to facilitate construction.

BIA estimates that there might be some additional temporary disturbance associated with the proposed action. An additional one to two acres may be needed to provide turn-around areas, vehicle access to special sites, and extra room that may be needed to construct cut and fill slopes. There is also the possibility of having to create a holding yard for vehicles and the saguaro

nursery. If the contractor cannot make arrangements to use part of the Gu-Achi Trading Post for this purpose, an additional one to two acres may be temporarily disturbed. If these additional acres are needed, there would be no removal of large trees or saguaros.

Proposed Conservation Measures

The BIA proposes the following measures to minimize potential adverse effects to CFPO and its habitat. These measures are taken from the May 2001, BE and subsequent meetings with the applicant and TON.

- 1. Surveys, following recommended Service protocol, for CFPO were conducted in 2001 and 2002. No CFPO were detected. If an owl is detected during construction within 600 m of the project, all reasonable effort shall be made by the BIA and TON to determine the breeding status, location, and extent of its territory. Depending on the CFPO's location, construction may be suspended until authorization is received from the Service. The Service shall work expeditiously with BIA to resolve any issue that may arise from the detection and shall not unreasonably withhold authorization to proceed with the proposed development. If the road construction is not completed by December 31, 2002, additional CFPO surveys will be needed.
- 2. A total of 140 saguaros will be affected by the proposed project. The majority of those (94%) will be transplanted. Only those saguaros greater than 25 feet in height and those that were in a state of decay will not be transplanted (8). The BIA is insuring that 80% of the transplanted saguaros will survive after 3 years. Post construction monitoring of transplant success will be performed jointly by wildlife and/or range staff from the BIA's Western Regional Office and the TON Wildlife and Vegetation Management Program. If, at the end of three years, the number of individual saguaros surviving falls below the 80 percent threshold, BIA will arrange for sufficient replacement saguaros to be planted in order to meet the 80 percent survival rate.
- 3. Of the 13.5 acres of potential CFPO habitat to be disturbed, 4.5 acres will be seeded with native vegetation, so there will be a permanent loss of only 9 acres of potential habitat. The areas to be seeded will probably recover quickly because the action area is totally surrounded by undisturbed vegetation providing a natural seed source for recolonizing the area.
- 4. Construction is scheduled to begin in November 2002. It is anticipated to last 90 days. There is the possibility that all of the work associated with this project will not be complete before February 1, 2003. Most of the heavy construction work will have taken place, but the final application of the asphalt, line striping, and the transplanting of saguaros may continue through the end of February. BIA will be monitoring for CFPO throughout this period and if one is detected they will follow the protocol outlined under #1 of this section. This means that the majority of the work will not occur during the CFPO breeding season (February 1 July 31); thereby eliminating disturbance during this sensitive time.

STATUS OF THE SPECIES/CRITICAL HABITAT

A detailed description of the life history and ecology of the CFPO may be found in the <u>Birds of North America</u> (Proudfoot and Johnson 2000), <u>Ecology and Conservation of the Cactus Ferruginous Pygmy-owl in Arizona</u> (Cartron and Finch 2000), and other information available at the Arizona Ecological Services Field Office. Information specific to the CFPO in Arizona is limited. Research in Texas has provided useful insights into the ecology of the subspecies, and in some instances represents the best available information; however, habitat and environmental conditions are somewhat different in Arizona and conclusions based on Texas information are tentative.

Species/critical habitat description

The Service listed the Arizona population of the CFPO as a distinct population segment (DPS) on March 10, 1997, (U.S. Fish and Wildlife Service 1997 [62 FR 10730]). The past and present destruction, modification, or curtailment of habitat is the primary reason for the decrease in population levels of the CFPO. On July 12, 1999, we designated approximately 731,712 acres of critical habitat supporting riverine, riparian, and upland vegetation in seven critical habitat units, located in Pima, Cochise, Pinal, and Maricopa counties in Arizona (U.S. Fish and Wildlife Service 1999 [64 FR 37419]). However, on September 21, 2001, the U.S. District Court for the District of Arizona vacated this final rule designating critical habitat for the CFPO, and remanded its designation back to the Service for further consideration.

Life history

CFPOs are small birds, averaging 6.75 inches in length. CFPOs are reddish-brown overall, with a cream-colored belly streaked with reddish-brown. The CFPO is crepuscular/diurnal, with a peak activity period for foraging and other activities at dawn and dusk. During the breeding season, they can often be heard calling throughout the day, but most activity is reported between one hour before sunrise to two hours after sunrise, and late afternoon/early evening from two hours before sunset to one hour after sunset (Collins and Corman 1995).

A variety of vegetation communities are used by CFPOs, such as: riparian woodlands, mesquite (Prosopis spp.) "bosques" (Spanish for woodlands), Sonoran Desertscrub, and semidesert grassland communities, as well as nonnative vegetation within these communities. While plant species composition differs among these communities, there are certain unifying characteristics such as the presence of vegetation in a fairly dense thicket or woodland, the presence of trees or saguaros large enough to support cavity nesting, and elevations below 4,000 feet. Historically, CFPOs were associated with riparian woodlands in central and southern Arizona. Plants present in these riparian communities include cottonwood, willow (Salix spp.) and hackberry (Celtis spp.). Cottonwood trees are suitable for cavity nesting, while the density of mid- and lower-story vegetation provides necessary protection from predators and an abundance of prey items for the

CFPO. Mesquite bosque communities are dominated by mesquite trees, and are described as mesquite forests due to the density and size of the trees.

Over the past several decades, CFPOs have been primarily found in the Arizona Upland Subdivision of the Sonoran Desert, particularly Sonoran Desertscrub (Brown 1994). This community in southern Arizona consists of paloverde, ironwood, mesquite, acacia, bursage (Ambrosia spp.), and columnar cacti (Phillips et al. 1964, Monson and Phillips 1981, Davis and Russell 1984, Johnson and Haight 1985, Johnsgard 1988). However, over the past several years, CFPOs have also been found in riparian and xeroriparian habitats and semidesert grasslands as classified by Brown (1994). Desertscrub communities are characterized by an abundance of saguaros or large trees, and a diversity of plant species and vegetation strata. Xeroriparian habitats contain a rich diversity of plants that support a wide array of prey species and provide cover. Semidesert grasslands have experienced the invasion of velvet mesquites (*Prosopis velutina*) in uplands and linear woodlands of various tree species along bottoms and washes.

The density of trees and the amount of canopy cover preferred by CFPOs in Arizona is unclear. However, preliminary results from a habitat selection study indicate that nest sites tend to have a higher degree of canopy cover than random sites (Wilcox et al. 2000). For areas outside Arizona, CFPOs are most commonly characterized by semi-open or open woodlands, often in proximity to forests or patches of forests. Where they are found in forested areas, they are typically observed along edges or in openings, rather than deep in the forest itself (Binford 1989, Sick 1993), although this may be a bias of increased visibility. Overall, vegetation density may not be as important as patches of dense vegetation with a developed canopy layer interspersed with open areas. The physical settings and vegetation composition varies across G. brasilianum's range and, while vegetation structure may be more important than composition (Wilcox et al. 1999, Cartron et al. 2000a), higher vegetation diversity is found more often at nest sites than at random sites (Wilcox et al. 2000).

CFPOs typically hunt from perches in trees with dense foliage using a perch-and-wait strategy; therefore, sufficient cover must be present within their home range for them to successfully hunt and survive. Their diverse diet includes birds, lizards, insects, and small mammals (Bendire 1888, Sutton 1951, Sprunt 1955, Earhart and Johnson 1970, Oberholser 1974) and frogs (Proudfoot et al. 1994). The density of annuals and grasses, as well as shrubs, may be important to the CFPO's prey base. Shrubs and large trees also provide protection against aerial predation for juvenile and adult CFPOs and cover from which they may capture prey (Wilcox et al. 2000).

CFPOs are considered non-migratory throughout their range by most authors, and have been reported during the winter months in several locations, including Organ Pipe Cactus National Monument (OPCNM) (R. Johnson unpubl. data, T. Tibbitts, Organ Pipe Cactus National Monument unpubl. data). CFPOs begin nesting activities in late winter to early spring. In Arizona differences between nest sites may vary by as much as two months (Abbate et al. 1996, S. Richardson, Arizona Game and Fish Department unpubl. data). As with other avian species, this may be the result of a second brood or a second nesting attempt following an initial failure

(Abbate et al. 1996). In Texas, juveniles remained within approximately 165 feet of adults until dispersal. Dispersal distances (straight line) of 20 juveniles monitored from their natal sites to nest sites the following year averaged 5 miles (ranged from 0.75 to 19 miles (G. Proudfoot unpubl. data). Telemetry studies of dispersing juveniles in Arizona during 1999 and 2000 ranged from 1.4 to 12.9 miles (straight line distance) (n=6, mean 6.2 miles) in 1999, and 1.6 to 11.7 miles (n=6, mean 5.8 miles) in 2000 (S. Richardson and M. Ingraldi, Arizona Game and Fish Department unpubl. data). Telemetry data from 2001 is not yet available. CFPO telemetry studies have documented movement of owls between southern Pinal County and northwestern Tucson (S. Richardson and M. Ingraldi, Arizona Game and Fish Department unpubl. data). Typically, juveniles dispersed from natal areas in July, but did not appear to defend a territory until September. They may move up to one mile in a night; however, they typically fly short distances from tree to tree instead of long single flights (S. Richardson, Arizona Game and Fish Department unpubl. data). Subsequent surveys during the spring have found that locations of male CFPOs are in the same general location as last observed the preceding fall.

Apparently, unpaired females may also remain in the same territory for some period of time. In the spring of 2001, an unpaired female (the male died in 2000) remained in the same territory as was occupied in previous years well into the spring, exhibiting territorial behavior (calling) for approximately two months until ultimately switching territories, pairing with an unpaired male and successfully nesting (S. Richardson, Arizona Game and Fish Department unpubl. data). Researchers suspect that if this unpaired female could have attracted an unpaired male during that time, she would have likely remained in her original territory. Apparently at some point the urge to pair is too strong to remain and they seek out new mates.

In Texas, Proudfoot (1996) noted that, while CFPOs used between 3 and 57 acres during the incubation period, they defend areas up to 279 acres in the winter. Therefore, a 280 acre home range is considered necessary for CFPOs. Proudfoot and Johnson (2000) indicate males defend areas with radii from 1,100 - 2,000 feet. Initial results from ongoing studies in Texas indicate that the home range of CFPOs may also expand substantially during dry years (G. Proudfoot unpubl. data).

Species status and distribution range wide

The CFPO is one of four subspecies of ferruginous pygmy-owl. CFPOs are known to occur from lowland central Arizona south through western Mexico to the States of Colima and Michoacan, and from southern Texas south through the Mexican States of Tamaulipas and Nuevo Leon. It is unclear at this time if the ranges of the eastern and western populations of the ferruginous pygmy-owl merge in southern Mexico. Recent genetic studies suggest that ferruginous pygmy-owl populations in southern Arizona and southern Texas are distinct subspecies, and that there is no genetic isolation between populations in the United States and those immediately south of the border in northwestern or northeastern Mexico (Proudfoot and Slack 2001). Results also indicate a comparatively low haplotypic diversity in the northwestern Tucson population, suggesting that it may be recently separated from those in the Altar Valley, Arizona, and in Sonora and Sinaloa, Mexico.

The Service is currently funding habitat studies and surveys in Sonora, Mexico to determine the distribution and relative abundance of the CFPO there. Preliminary results indicate that CFPOs are present in northern and central Sonora (U.S. Fish and Wildlife Service unpubl. data). Further studies are needed to determine their distribution in Mexico.

The range of the Arizona DPS of the CFPO extends from the International Border with Mexico north to central Arizona. The northernmost historic record for the CFPO is from New River, Arizona, about 35 miles north of Phoenix, where Fisher (1893) reported the CFPO to be "quite common" in thickets of intermixed mesquite and saguaro cactus. According to early surveys referenced in the literature, the CFPO, prior to the mid-1900s, was "not uncommon," "of common occurrence," and a "fairly numerous" resident of lowland central and southern Arizona in cottonwood forests, mesquite-cottonwood woodlands, and mesquite bosques along the Gila, Salt, Verde, San Pedro, and Santa Cruz rivers and various tributaries (Breninger 1898, Gilman 1909, Swarth 1914). Additionally, CFPOs were detected at Dudleyville on the San Pedro River as recently as 1985 and 1986 (Arizona Game and Fish Department unpubl. data, Hunter 1988).

Records from the eastern portion of the CFPO's range include a 1876 record from Camp Goodwin (nearby current day Geronimo) on the Gila River, and a 1978 record from Gillard Hot Springs, also on the Gila River. CFPOs have been found as far west as the Cabeza Prieta Tanks, Yuma County in 1955 (Monson 1998).

Hunter (1988) found fewer than 20 verified records of CFPOs in Arizona for the period of 1971 to 1988. Formal surveys for the CFPO on OPCNM began in 1990, with one located that year. Beginning in 1992, survey efforts conducted in cooperation with the AGFD, located three single CFPOs on OPCNM (U.S. Fish and Wildlife Service unpubl. data and Organ Pipe Cactus National Monument unpubl. data). In 1993, surveys were conducted at locations where CFPOs had been sighted since 1970. Only one CFPO was detected during these survey periods, and it was located in northwestern Tucson (Felley and Corman 1993). In 1994, a pair and single owl of unknown breeding status were located in northwestern Tucson during informal survey work by AGFD (Abbate et al. 1996). In 1995, AGFD confirmed 5 adult CFPO and one juvenile, one of which was the first nest in many years. In 1996, AGFD focused their survey efforts in the Tucson Basin. A total of 12 CFPOs were detected, including one known nesting pair and their 2 fledglings which successfully fledged. Three additional CFPOs and three other unconfirmed reports were also recorded at OPCNM in 1996.

While the majority of Arizona CFPO detections in the last seven years have been from the northwestern Tucson area in Pima County, CFPOs have also been detected in southern Pinal County, at OPCNM, Cabeza Prieta National Wildlife Refuge (CPNWR), Buenos Aires National Wildlife Refuge (BANWR), and on the Coronado National Forest. The following is a brief summary of recent owl numbers and distribution¹:

¹ To a large degree, survey effort plays an important factor in where owls have been documented. Survey effort has not been consistent over the past several years in all areas of the state, affecting the

In 1997, survey efforts of AGFD located a total of five CFPOs in the Tucson Basin study area (the area bounded to the north by the Picacho Mountains, the east by the Santa Catalina and Rincon mountains, the south by the Santa Rita and Sierrita Mountains, and the Tucson Mountains to the west). Of these owls, one pair successfully fledged (young that left their nest cavity) two young which were banded. Two adult males were also located at OPCNM, with one reported from a previously unoccupied area (T. Tibbitts, Organ Pipe Cactus National Monument pers. comm. 1997).

In 1998, survey efforts in Arizona increased substantially and, as a result, more CFPOs were documented, which may at least in part account for a larger number of known owls. In 1998, a total of 35 CFPOs were confirmed (S. Richardson, Arizona Game and Fish Department unpubl. data, U.S. Fish and Wildlife Service unpubl. data, T. Tibbitts, Organ Pipe Cactus National Monument unpubl. data, D. Bieber, Coronado National Forest unpubl. data).

In 1999, a total of 41 adult CFPOs were found in Arizona at 28 sites. Of these sites, 11 had nesting confirmed by AGFD and the Service. CFPOs were found in three distinct regions of the state: Tucson Basin, Altar Valley, and OPCNM. Almost half of the known owl sites were in the Altar Valley. Overall, mortality was documented for a number of fledglings due to natural (e.g., predation) or unknown causes. Of the 33 young found, only 16 were documented as surviving until dispersal (juveniles known to have successfully dispersed from their natal area). It is unclear what the survival rate for CFPOs is; however, as with other owls and raptors, a high mortality (50% or more) of young is typical during the first year of life.

Surveys conducted in 2000 resulted in 24 confirmed CFPO sites (i.e. nests and resident CFPO sites) and several other unconfirmed sites (S. Richardson, Arizona Game and Fish Department unpubl. data, T. Tibbitts, Organ Pipe Cactus National Monument unpubl. data, U.S. Fish and Wildlife Service unpubl. data). A total of 34 adult CFPOs were confirmed. Nesting was documented at 7 sites and 23 fledglings were confirmed. A total of 9 juveniles were known to have successfully dispersed from their natal areas in 2000. Successful dispersal was not confirmed at two nests with four fledglings. The status of the remaining fledglings was unknown; however, they were presumed dead.

Surveys conducted during the 2001 season resulted in a total of 47 adult CFPOs confirmed at 29 sites² in Arizona (S. Richardson, Arizona Game and Fish Department unpubl. data, T. Tibbitts, Organ Pipe Cactus National Monument unpubl. data, U.S. Fish and Wildlife Service unpubl. data). There were also several other unconfirmed sites that are not included in these totals. Nesting was documented at 17 sites and 24 young were confirmed to have successfully fledged.

known distribution and numbers of owls in any particular area.

² CFPO sites are nests and resident male CFPO sites that have been confirmed by AGFD or the Service.

In addition, there were 2 nests with young that potentially could have fledged young; however, this was not confirmed. Similar to the previous three years, there was over a 50% fledgling mortality documented in 2001 (S. Richardson, Arizona Game and Fish Department unpubl. data). The following regions of the state are currently known to have CFPOs:

- Tucson Basin (northwestern Tucson and southern Pinal County) A total of 8 adults (3 pairs and 2 single resident males) were confirmed at 5 sites, all of which were in Pinal County. One single unpaired male CFPO was documented in southern Pinal County. Three nests in northwestern Tucson were confirmed, all with young.
- Altar Valley A total of 18 adult CFPOs were documented at 12 sites³. As a result of increased access to portions of the valley, the number of known owls increased to 7 pairs and 4 resident single owls. A total of 7 nests were confirmed.
- OPCNM and CPNWR Twelve adults, consisting of 2 pairs and 4 single CFPOs were confirmed at 8 sites. Three nests were active. Two new sites were documented on the CPNWR and 1 north of OPCNM near Ajo, Arizona.
- Other Areas A total of 9 adults, consisting of 4 pairs and 1 single CFPO at 5 sites documented elsewhere in southern Arizona. Nesting was confirmed at 4 of these sites. It is unknown how many of these young successfully dispersed. There were several other possible CFPO detections reported elsewhere in the state, but they were not confirmed.

One factor affecting the known distribution of CFPOs in Arizona is where early naturalists spent most of their time and where recent surveys have taken place. For example, a majority of surveys in the recent past (since 1993) have taken place in OPCNM and in the Tucson Basin, and these areas are where most owl locations have been recorded. However, over the past three years, large, previously unsurveyed areas have been inventoried for owls, resulting in a much wider distribution than previously thought. As a result, our knowledge is changing as to CFPO distribution and habitat needs as new information is collected. For example, before 1998, very few surveys had been completed in the Altar Valley in southern Pima County. Prior to 1999, the highest known concentration of CFPOs in the state was in northwestern Tucson. However, in 1999, after extensive surveys in Altar Valley, more owls were found there (18 adults) than in northwestern Tucson (11 adults), although until 2001, there have been fewer nest sites in Altar Valley than in the Tucson Basin (S. Richardson, Arizona Game and Fish Department unpubl. data). As a result, our knowledge is changing as to their distribution and habitat needs as new information is collected.

Range wide trend

One of most urgent threats to CFPOs in Arizona is thought to be the loss and fragmentation of habitat (U.S. Fish and Wildlife Service 1997, Abbate et al. 1999). The complete removal of

³ There was one additional female found in Altar Valley dead in a saguaro cavity, suspected to have been killed by a screech owl (S. Richardson, Arizona Game and Fish Department unpubl. data).

vegetation and natural features required for many large-scale and high-density developments directly and indirectly impacts CFPO survival and recovery (Abbate et al. 1999).

Habitat loss, degradation, and fragmentation are widely accepted causes contributing to raptor population declines worldwide (Snyder and Snyder 1975, Newton 1979, LeFranc and Millsap 1984). Habitat fragmentation is the process by which a large and continuous block of natural habitat is transformed into much smaller and isolated patches by human activity (Noss and Csuti 1994). Fragmentation has two components (1) reduction of the total amount of habitat type and (2) apportionment of remaining habitat into smaller, more isolated patches (Harris 1984, Wilcove et al. 1986, Saunders et al. 1991). Casualties caused by pest control, pollution, collisions with cars, radio towers, glass windows, power lines, and cat predation are often underestimated, although likely increasing in occurrence due to human population growth (Banks 1979, Klem 1979, Churcher and Lawton 1987). Even where human-related deaths are uncommon, they may still substantially affect populations of rare birds (Cartron et al. 2000a). Because of the proximity of CFPO sites to residential areas in northwestern Tucson, these interactions may be a significant cause of owl mortality there (Cartron et al. 2000a).

Nesting in small natural patches may have additional risks. For example, Haug (1985) found burrowing owl home range size increases with the percentage of vegetation disturbance. In fragmented landscapes, burrowing owls may forage greater distances and spend more time away from the nest, making them more vulnerable to predators, and therefore, less efficient at reproduction (Warnock and James 1997). As fragmentation increases, competition for fewer productive CFPO territories may occur (Abbate et al. 1999). Unlike other larger birds that can fly long distances over unsuitable or dangerous areas to establish new territories, CFPOs, because of their small size, and their short style of flight are exposed to greater risks from predation and other threats (Abbate et al. 1999).

Site tenacity in birds is one of many factors that may create time lags in response to fragmentation and other disturbances. Individuals may remain in sites where they bred successfully in the past, long after the habitat has been altered (Wiens 1985). Because of lack of data, it is unclear whether site tenacity for CFPOs, in increasingly fragmented landscapes, such as exists in the action area, is a factor. For example, researchers have been closely monitoring an established CFPO site (documented each year since 1996) in which the male died in 1999, apparently from a collision with a fence (S. Richardson, Arizona Game and Fish Department unpubl. data.). This site has not been known to be active since 1999. It has one of the highest amount of development (33%) within its estimated home range of any other known nest site (S. Richardson, Arizona Game and Fish Department unpubl. data.). The site will continued to be monitored to determine if new owls reestablish a nest site.

In northwestern Tucson, all currently known CFPO locations, particularly nest sites, are in low-density housing areas where abundant native vegetation separates structures. Additionally, they are adjacent to or near large tracts of undeveloped land. CFPOs appear to use non-native vegetation to a certain extent, and have been observed perching in non-native trees in close proximity to individual residences. However, the persistence of CFPOs in areas with an abundance of native vegetation indicates that a complete modification of natural conditions likely

results in unsuitable habitat conditions for CFPOs. While development activities are occurring in close proximity to owl sites, particularly nest sites, overall noise levels are low. Housing density is low, and as a result, human presence is also generally low. Roads in the areas are typically dirt or two-lane paved roads with low speed limits that minimizes traffic noise. Low density housing areas generally have lower levels of traffic noise because of the limited number of vehicles traveling through the area.

Other factors contributing to the decline of CFPO habitat include the destruction of riparian bottomland forests and bosques. It is estimated that 85 to 90% of low-elevation riparian habitats in the southwestem U.S. have been modified or lost; these alterations and losses are attributed to woodcutting, non-native plant invasions, urban and agricultural encroachment, water diversion and impoundment, channelization, groundwater pumping, livestock overgrazing, and hydrologic changes resulting from various land-use practices (e.g., Phillips et al. 1964, Carothers 1977, Kusler 1985, Jahrsdoerfer and Leslie 1988, U.S. Fish and Wildlife Service 1988, U.S. General Accounting Office 1988, Szaro 1989, Dahl 1990, State of Arizona 1990, Bahre 1991). Cutting of trees for domestic and industrial fuel wood was so extensive throughout southern Arizona that, by the late 19th century, riparian forests within tens of miles of towns and mines had been decimated (Bahre 1991). Mesquite was a favored species because of its excellent fuel qualities. In the project area, the famous vast forests of "giant mesquites" along the Santa Cruz River in the Tucson area described by Swarth (1905) and Willard (1912) fell to this threat, as did the "heavy mesquite thickets" where Bendire (1888) collected CFPO specimens along Rillito Creek, a Santa Cruz River tributary, in present-day Tucson. Only remnant fragments of these bosques remain.

Regardless of past distribution in riparian areas, it is clear that the CFPO has declined throughout Arizona to the degree that it is now extremely limited in distribution in the state (Johnson et al. 1979, Monson and Phillips 1981, Davis and Russell 1984, Johnson-Duncan et al. 1988, Millsap and Johnson 1988, Monson 1998). A very low number of CFPOs in riparian areas in recent years may reflect the loss of habitat connectivity rather than the lack of suitability (Cartron et al. 2000b).

In recent decades, the CFPO's riparian habitat has continued to be modified and destroyed by agricultural development, woodcutting, urban expansion, and general watershed degradation (Phillips et al. 1964, Brown et al. 1977, State of Arizona 1990, Bahre 1991, Stromberg et al. 1992, Stromberg 1993a and 1993b). Sonoran Desertscrub has been affected to varying degrees by urban and agricultural development, woodcutting, and livestock grazing (Bahre 1991). Pumping of groundwater and the diversion and channelization of natural watercourses are also likely to have reduced CFPO habitat. Diversion and pumping result in diminished surface flows, and consequent reductions in riparian vegetation are likely (Brown et al. 1977, Stromberg et al. 1992, Stromberg 1993a and 1993b). Channelization often alters stream banks and fluvial dynamics necessary to maintain native riparian vegetation. The series of dams along most major southwestern rivers (e.g., Colorado, Gila, Salt, and Verde rivers) have altered riparian habitat downstream of dams through hydrological and vegetational changes, and have inundated former habitat upstream.

In the United States, CFPOs are rare and highly sought by bird watchers, who concentrate at a few of the remaining known locations. Limited, conservative bird watching is probably not harmful; however, excessive attention and playing of tape-recorded calls may at times constitute harassment and affect the occurrence and behavior of the CFPO (Oberholser 1974, Tewes 1993). For example, in 1996, a resident in Tucson reported a CFPO sighting which subsequently was added to a local birding hotline and the location was added to their website on the internet. Several car loads of birders were later observed in the area of the reported location (S. Richardson, Arizona Game and Fish Department pers. comm. 1999).

One of the few areas in Texas known to support CFPOs continues to be widely publicized as having organized field trips and birding festivals (American Birding Association 1993, Tropical Birds of the Border 1999). Resident CFPOs are found at this highly visited area only early in the breeding season, while later in the season they could not be detected. O'Neil (1990) also indicated that five birds initially detected in southern Texas failed to respond after repeated visits by birding tours. It is unknown if the birds habituate to the playing of taped calls and stopped responding, or if they abandoned the area. Oberholser (1974) and Hunter (1988) additionally indicated that in southern Texas, recreational birdwatching may disturb owls at highly visited areas.

Human activities near nests at critical periods of the nesting cycle may cause CFPOs to abandon their nest sites. In Texas, 3 of 102 CFPO nests monitored from 1994-1999 were abandoned during the early stage of egg laying. Although unknown factors may have contributed to this abandonment, researchers in Texas associated nest abandonment with nest monitoring (G. Proudfoot pers. comm.). Some outdoor recreational activities (e.g., off road vehicle [ORV] and motor bike use/racing, firearm target practicing, jeep tours, etc.) may disturb CFPOs during their breeding season (particularly from February through July (G. Proudfoot pers. comm. 1999 and S. Richardson, Arizona Game and Fish Department pers. comm. 1999). Noise disturbance during the breeding season may affect productivity, disturbance outside of this period may affect the energy balance and, therefore survival. Wildlife may respond to noise disturbances during the breeding season by abandoning their nests or young (Knight and Cole 1995). It has also become apparent that disturbance outside of a species' breeding season may have equally severe effects (Skagen et al. 1991).

Currently, all known nesting CFPOs within northwestern Tucson are located in areas containing no development or low-density housing developments that are adjacent to undeveloped tracts of land with varying amounts of noise disturbance. Individual CFPOs may react differently to noise disturbances, some individuals exhibiting less tolerance than others. Noise can affect animals by disturbing them to the point that detectable change in behavior may occur. Such behavioral changes can affect their activity and energy consumption (Bowles 1995). Dangerous or unfamiliar noises are more likely to arouse wildlife than harmless and familiar noises. Habituation is the crucial determinant of success in the presence of noisy disturbances. The habituation process can occur slowly, so it may not be detected in the short-term. In the long-term, some nesting birds become more tenacious and less responsive in the presence of human

disturbance if they are not deliberately harassed (Burger and Gochfeld 1981). It is unknown if noise habituation occurs in some CFPOs as it does with other bird species. Robert and Ralph (1975), Schreiber et. al (1979), Cooke (1980), Parsons and Burger (1982), Ainley et al. (1983), and McNicholl (1983) found that adult birds, and chicks to some extent, habituated to the presence of humans, and their responses to people seemed to be less than those of undisturbed birds.

Because of the lack of data specific to this subspecies in Arizona, we must also rely in part on our knowledge of effects this type of action may have on CFPOs elsewhere and other species, particularly raptors. Raptors in frequent contact with human activities tend to be less sensitive to additional noise disturbances than raptors nesting in remote areas. However, exposure to direct human harassment may make raptors more sensitive to noise disturbances (Newton 1979). Where prey is abundant, raptors may even occupy areas of high human activity, such as cities and airports (Newton 1979, Ratcliffe 1980, White et al. 1988). The timing, frequency, and predictability of the noise disturbance may also be factors. Raptors become less sensitive to human disturbance as their nesting cycle progresses (Newton 1979). Studies have suggested that human activities within breeding and nesting territories could affect raptors by changing home range movements (Anderson et al. 1990) and causing nest abandonment (Postovit and Postovit 1987, Porter et al. 1973).

Application of pesticides and herbicides in Arizona occurs year-round, and these chemicals pose a potential threat to the CFPO. The presence of CFPOs in proximity to residences, golf courses, agricultural fields, and nurseries may cause direct exposure to pesticides and herbicides. Furthermore, ingestion of affected prey items may cause death or reproductive failure (Abbate et al. 1999). Illegal dumping of waste also occurs in areas occupied by CFPOs and may be a threat to CFPOs and their prey; in one case, drums of toxic solvents were found within one mile of a CFPO detection (Abbate et al. 1999).

Little is known about the rate or causes of mortality in CFPOs; however, they are susceptible to predation from a wide variety of species. In Texas, eggs and nestlings were depredated by racoons (Procyon lotor) and bullsnakes (Pituophis melanoleucus). Both adult and juvenile CFPO are likely killed by great horned owls (Bubo virginianus), Harris' hawks (Parabuteo unicinctus), Cooper's hawks, and eastern screech-owls (Otus asio) (Proudfoot and Johnson 2000, G. Proudfoot unpubl. data). CFPOs are particularly vulnerable to predation and other threats during and shortly after fledging (Abbate et al. 1999). Therefore, cover near nest sites may be important for young to fledge successfully (Wilcox et al. 1999, Wilcox et al. 2000). Although nest depredation has not been recorded in Arizona, only a few nests have been monitored (n = 37 from 1995-2001). Additional research is needed to determine the effects of predation, including nest depredation, on CFPOs in Arizona and elsewhere.

Another factor that may affect CFPOs is interspecific competition/predation. In Texas, depredation of two adult female CFPOs nesting close to screech-owls was recorded. These incidences were recorded as "depredation by screech-owl" after examination of the CFPO corpses and assessment of circumstances (i.e., one CFPO attempted to nest in a box that was previously used as screech-owl roost site, the other established a nest in a box within 5 meters

(16 feet) of screech-owl nest site). In 2001, an unpaired female CFPO was found dead in a tree cavity, apparently killed by a screech-owl (S. Richardson, Arizona Game and Fish Department unpubl. data). Conversely, CFPOs and screech-owls have also been recorded successfully nesting within 2 meters (7 feet) of each other in the same tree without interspecific conflict (G. Proudfoot unpubl. data). The relationship between CFPO and other similar small owl species needs further study.

Direct and indirect human-caused mortalities (e.g., collisions with cars, glass windows, fences, power lines, domestic cats [Felis domesticus], etc.), while likely uncommon, are often underestimated, and probably increase as human interactions with owls increase (Banks 1979, Klem 1979, Churcher and Lawton 1987). This may be particularly important in the Tucson area where many CFPOs are located. CFPOs flying into windows and fences, resulting in serious injuries or death to the birds, have been documented twice. A CFPO collided into a closed window of a parked vehicle; it eventually flew off, but had a dilated pupil in one eye indicating serious neurological injury as the result of this encounter (Abbate et al. 1999). In another incident, an adult owl was found dead on a fence wire; apparently it flew into a fence and died (S. Richardson, Arizona Game and Fish Department unpubl. data). AGFD also has documented an incident of individuals shooting BB guns at birds perched on a saguaro which contained an active CFPO nest. In Texas, two adult CFPOs and one fledging were killed by a domestic cat. These owls used a nest box about 75 meters (246 feet) from a human residence. In 2001, predation by domestic cats is also suspected by researchers in two instances in northwestern Tucson (S. Richardson, Arizona Game and Fish Department unpubl. data). Two female juvenile owls, located 2 ½ miles apart, were found dead from apparent wounds sustained from a cats. Free roaming cats can also affect the number of lizards, birds, and other prey species available to CFPOs; however, very little research has been done in the southwest on this potential problem.

CFPOs have been observed moving around the perimeter of golf courses, avoiding non-vegetated areas. Roads and other openings may act as barriers to their movements (Abbate et al. 1999, S. Richardson, Arizona Game and Fish Department unpubl. data). On one occasion, a radio-tagged dispersing juvenile stopped within 0.7 mile of Interstate 10 where there were large openings and few trees or shrubs, and reversed its direction (Abbate et al. 1999). However, radio-tagged, juvenile CFPOs have crossed two-lane roads with low to moderate vehicular traffic, where trees and large shrubs were present on either side (Abbate et al. 1999). Most recently, CFPOs monitored during the summer 2001 dispersal period were observed near two lane roads on several occasions (Arizona Game and Fish Department unpubl. data). Although owls were not directly observed crossing roads, radio telemetry data were collected on either side of roadways. Movement across roads appeared to occur during the night, although transmittered owls were not continuously monitored. Because of a lack of funds and personnel, AGFD researchers are at best only able to collect relocations during 2 random times during a 24-hour period, therefore, the time and location of this crossing is unknown.

CFPOs are capable of flying short distances up to 100 feet or more over undisturbed vegetation (e.g., Sonoran Desertscrub, semidesert grasslands, or riparian areas) with little or no human

activities or structures such as roads, fences, buildings, etc. (G. Proudfoot, unpubl. data, S. Richardson, Arizona Game and Fish Department unpubl. data). However, as opening size (i.e., gaps between trees or large shrubs) increases, coupled with increased threats (e.g., moderate to high traffic volumes and other human disturbances) relatively wide roads (greater than 40 feet), may act as barriers or significantly restrict owl movement. Wide roadways and associated clear zones cause large gaps between tree canopies on either side of roadways, resulting in lower flight patterns over roads. This low flight level can cause owls to fly directly in the pathway of oncoming cars and trucks, significantly increasing the threat of owls being struck. Measures can be implemented in roadway design to minimize these threats and allow successful movement across roadways. Among other measures, decreasing the canopy openings between trees on either side of roads and increasing the density of trees along roadways to provide greater shelter and cover from predators and human activities can be utilized to minimize adverse effects to owls attempting to cross roads. Specific research is needed to determine at what distance do road and clear zone widths significantly affect successful owl movement, types of vegetation needed, roadway and landscaping designs, speed limits, etc.

Telemetry data collected by AGFD in 2001 indicate that owl movement is affected by roads and traffic (S. Richardson, Arizona Game and Fish Department, unpubl. data). On two separate occasions within the action area, juvenile owls fitted with radio transmitters were tracked moving along washes and upland areas with native vegetation until they came upon busy roads with relatively wide clear zones on either side of the roadways. These owls stopped and were repeatedly observed reacting to passing vehicular traffic by retreating from the road edge vegetation to nearby trees as cars and trucks passed by. They appeared to be affected by road width, the density of vegetation on either side of the roadway, and traffic volume. In both cases, they eventually crossed these roads during lower traffic periods at areas with narrower gaps in vegetation where trees were present on either side of the road. More research is needed to fully understand how these and other factors affect owl movement.

Researchers in Arizona have found that CFPOs require habitat linkages, within and between territories for movement and dispersal of young. Continuous cover or patches of trees and large shrubs spaced at close, regular intervals, to provide concealment and protection from predators and mobbing, as well as shade and cool temperatures is necessary (S. Richardson, Arizona Game and Fish Department unpubl data, Abbate et al. 1999). CFPOs, particularly juveniles because of their inexperience, are susceptible to predation, weather extremes, human-related injury/mortality factors (e.g., cars, buildings, fences, domestic cats, etc.) and other mortality factors (mortality of juveniles is typically 50% or more for owls and other raptors). Therefore, it is essential to maintain habitat conditions that reduce their exposure to these threats and provide protection as they disperse from their natal areas. A high degree of cover throughout the landscape increases the likelihood of survivorship to the next breeding season. Limiting these mortality factors is critical, especially for small, depressed populations, such as CFPOs in Arizona.

Fires can affect CFPOs by altering their habitat (Abbate et al. 1999). A recent fire altered habitat near an active CFPO nest site (Flesch 1999) and although four mature saguaros in the area

survived (at least in the short-term), post-fire mortality of saguaros has been recorded (Steenbergh and Lowe 1977 and 1983, Mclaughlin and Bowers 1982). Flesch (1999) also noted that approximately 20 to 30% of the mesquite woodland within 50 meters (164 feet) of the nest was fire- or top-killed, and ground cover was also eliminated until the summer monsoons. Careful use of prescribed fires in areas potentially suitable for CFPOs is necessary so that habitat is not lost or degraded (Flesch 1999).

Low genetic variability can lead to a reduction in reproductive success and environmental adaptability. Caughley and Gunn (1996) further note that small populations can become extinct entirely by chance even when their members are healthy and the environment favorable. The pairing of siblings or parents with their offspring, particularly in raptors, is rare, and has been documented in only 18 cases, representing 7 species (Carlson et al. 1998). Four of these species were owls: barn owls, burrowing owls (Athene cunicularia), screech-owls, and spotted owls (Strix occidentalis). In 1998 and 1999, two cases of sibling CFPOs pairing and breeding were documented (Abbate et al. 1999). In both cases, young were fledged from the nesting attempts. These unusual pairings may have resulted from extremely low numbers of available mates within their dispersal range, and/or from barriers (including fragmentation of habitat) that have influenced dispersal and limited the movement of young owls (Abbate et al. 1999). Further, because the CFPO is nonmigratory, there may be an additional limitation on the flow of genetic material between populations which may reduce the chance of demographic and genetic rescue from immigration from adjacent populations.

Recent genetic research suggests that CFPOs in the action area may be isolated from other populations in Arizona and Mexico (Proudfoot and Slack 2001). They have found that the low level of genetic variation and the absence of shared haplotypes between owls in northwestern Tucson and the remainder of the state and Mexico may be indicative of natural divergence of this population from the rest of the CFPO population in Arizona. Specifically, this study found that CFPOs in northwestern Tucson are in a distinct clade and suggests a current separation between populations in northwestern Tucson and elsewhere in the state and Mexico. In addition, these owls have extremely low levels of average haplotype diversity. Researchers acknowledge this may also be a product of sampling (i.e., sampling from one maternal lineage) and or an extremely high level of inbreeding as a result of low population numbers and geographic isolation. Given the low number of CFPOs in the action area, their potential isolation from source populations, the fact that inbreeding has occurred to the second generation in two documented cases, and potential pressure from urban development, there is a high level of concern for the Tucson Basin population of CFPOs.

Environmental, demographic, and genetic stochasticity, and catastrophes have been identified as interacting factors that may contribute to a population's extinction (Hunter 1996). Environmental stochasticity refers to random variation in habitat quality parameters such as climate, nutrients, water, cover, pollutants, and relationships with other species such as prey, predators, competitors, or pathogens. Demographic stochasticity is uncertain due to random variation in reproductive success and survivorship of individuals. Genetic stochasticity is the random variation in gene frequencies of a population due to genetic drift, bottlenecks, inbreeding, and similar factors. Catastrophes are events such as droughts or hurricanes that occur randomly. When these factors

interact with one another, there are likely to be a combination of effects, such that a random environmental change like habitat fragmentation can result in population and genetic changes by preventing dispersal. These factors are much more likely to cause extinction when a species' numbers are already extremely low. The small, fragmented population of CFPOs in Arizona may not have the ability to resist change or dramatic fluctuations over time caused by one or more of the factors mentioned above.

Soule (1986) notes that very small populations are in extreme jeopardy due to their susceptibility to a variety of factors, including demographic stochasticity, where chance variations in birth and death rates can result in extinction. A series of environmental changes, such as habitat reduction, reduce populations to a state in which demographic stochasticity takes hold. In small populations such as with the CFPO, each individual is important for its contributions to genetic variability of that population. As discussed above, low genetic variability can lead to a lowering in reproductive success and environmental adaptability, affecting recovery of this species.

ENVIRONMENTAL BASELINE

The environmental baseline includes past and present impacts of all federal, state, or private actions in the action area; the anticipated impacts of all proposed federal actions in the action area that have undergone formal or early section 7 consultation; and the impact of State and private actions which are contemporaneous with the consultation process. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform to assess the effects of the action now under consultation.

The action area is defined as all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action (50 CFR §402.02). The action area for this project is a 19 mile radius surrounding the roadway, as that is the distance a CFPO can disperse. The proposed project area is totally surrounded by Tohono O'odham Nation land, and the vast majority of it is undisturbed. BIA, with assistance from TON, has surveyed the area for CFPO since 2001. The last survey was completed April 2, 2002, and no CFPOs were detected (pers. comm. Chip Lewis, BIA). The nearest confirmed CFPO was approximately 3-5 miles away in a mesquite area (pers. comm to BIA from Jefford Francisco, TON). There have been no systematic surveys for CFPO in the surrounding area.

The project area is located in the foothills of the Quijotoa Mountains in the Sonoran Desertscrub plant community. Elevation of the project ranges from 2,440 feet at SR 86 to 2,766 feet at the Narchos Santos community. Vegetation at the lower elevation is typical of the paloverde-cactimized scrub series. The plant community is dominated by creosote (*Larrea tridentata*) and triangle-leaf bursage (*Ambrosia deltoidea*). Prickly pear (*Opuntia spp.*), ocotillo (*Fouquieria splendens*), and saguaro (*Carnegiea gigantea*) are scattered throughout. At the higher elevations, vegetation is dominated by paloverde (*Cercidium microphyllum*) and saguaro. Vegetation north of the existing road between mile 1.6 and 2.2 has been heavily disturbed due to recent/ongoing mining operations.

A small to medium-sized wash dissects the roadway at mile 2.1. The wash is approximately 30 feet wide. North of the roadway, it is interrupted by the mining operations. The project location represents a very small portion of approximately 15-20 square miles of contiguous and undisturbed habitat (saguaro-paloverde) surrounding the action area. There have been no other federal actions in this area resulting in section 7 compliance.

EFFECTS OF THE PROPOSED ACTION

Effects of the action refer to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action, that will be added to the environmental baseline. Interrelated actions are those that are part of a larger action and depend on the larger action for their justification. Interdependent actions are those that have no independent utility apart from the action under consideration. Indirect effects are those that are caused by the proposed action and are later in time, but are still reasonably certain to occur.

The proposed action will result in the disturbance of 13.5 acres and the permanent loss of approximately 9 acres of Sonoran desertscrub which could provide habitat for CFPO for sheltering, feeding, and movement/dispersal; this site also has the potential to support nesting pairs. The proposed action will cause short-term noise disturbance and human activity associated with construction, although the majority of the work is scheduled to occur outside of the breeding season. No CFPOs have been detected in the project area, although a CFPO was recorded 3-5 miles away in a mesquite area.

The project will result in the loss of 462 paloverde trees (136 less than 5 feet in height, 243 between 5-10 feet, and 83 taller than 10 feet); 126 mesquite trees (45 less than 5 feet in height, 74 between 5-10 feet, and 7 taller than 10 feet); and 8 ironwood trees (5 between 5-10 feet and 3 greater than 10 feet). The project will also result in the loss of 140 saguaros. No trees will be replaced, but 132 saguaros will be transplanted. This represents a potential loss of some nesting and foraging habitat, but there remains 15-20 square miles of similar habitat that CFPOs could use if they were in the area.

Out of the 13.5 acres to be disturbed, 4.5 acres will be seeded with native vegetation. This leaves 9 acres of potential CFPO habitat that will be lost due to construction activities. This represents a very small loss compared to the amount of available habitat in the surrounding area available for CFPO use.

The road use is not expected to increase over current use. The speed limit is not expected to exceed 40-50 mph. The BIA is not anticipating additional development in this area as a result of the proposed project.

The conservation measures proposed by the BIA will ensure that potential nesting habitat is minimally disturbed, construction noise that might affect a CFPO is eliminated during the breeding season, and if construction is not completed by the end of 2002, additional surveys for CFPO will be done. The conservation measures proposed by the BIA will contribute to the conservation of this species and will not preclude the future use of this area by CFPOs.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future state, tribal, local, or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the ESA.

The Service is not aware of other projects proposed for this area.

CONCLUSION

After reviewing the current status of the CFPO, the environmental baseline for the action area, the effects of the proposed action, and cumulative effects, it is the Service's biological opinion that the proposed action is not likely to jeopardize the continued existence of the CFPO. There currently is no critical habitat for the CFPO, therefore none will be affected. The Service bases this conclusion on the following:

- 1. Surveys have been completed for CFPO and there are currently no owls in the project area.
- 2. Construction will take place outside of the CFPO breeding season.
- 3. The loss of approximately 13.5 acres of potential CFPO habitat will be reduced to 9 acres of permanent loss by seeding disturbed areas with native species.
- 4. The loss of potential nesting habitat (140 saguaros) will be offset by the transplanting of the majority of the affected saguaro to the project site after construction is complete. BIA is ensuring a 80% survival rate after three years on the transplanted saguaros.
- 5. The amount of disturbance is minimal compared to surrounding contiguous habitat that will still be available for CFPOs.

Disposition of Dead or Injured Listed Animals

INCIDENTAL TAKE STATEMENT

Section 9 of the ESA and Federal regulation pursuant to section 4(d) of the ESA prohibit the take

of endangered and threatened species, respectively, without special exemption. Take is defined as to harass harm pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. Harm is further defined by the Service to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Harass is defined by the Service as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the ESA provided that such taking is in compliance with the terms and conditions of this incidental take statement.

Amount or Extent of Take Anticipated

We do not anticipate the proposed action will incidentally take any CFPOs.

Upon finding a dead or injured threatened or endangered animal, initial notification must be made to the Service's Division of Law Enforcement, Federal Building, Room 8, 26 North McDonald, Mesa, Arizona (602/261-6443) within three working days of its finding. Written notification must be made within five calendar days and include the date, time, and location of the animal, a photograph, and any other pertinent information. Care must be taken in handling injured animals to ensure effective treatment and care, and in handling dead specimens to preserve biological material in the best possible condition. If feasible, the remains of intact specimens of listed animal species shall be submitted as soon as possible to the nearest Fish and Wildlife Service or AGFD office, educational, or research institutions (e.g., University of Arizona in Tucson) holding appropriate state and federal permits.

Arrangements regarding proper disposition of potential museum specimens shall be made with the institution before implementation of the action. A qualified biologist should transport injured animals to a qualified veterinarian. Should any treated listed animal survive, the Service should be contacted regarding the final disposition of the animal.

CONSERVATION RECOMMENDATIONS

Sections 2(c) and 7(a)(1) of the ESA direct federal agencies to utilize their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of listed species. Conservation recommendations are discretionary agency activities to minimize or avoid effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information on listed species. The recommendations provided here do not necessarily represent complete fulfillment of the agency's section 2(c) or 7(a)(1) responsibilities for the

CFPO. In furtherance of the purposes of the ESA, we recommend implementing the following discretionary actions:

1. The BIA should continue to work cooperatively with TON in completing surveys for CFPO and assisting the Nation with developing a conservation plan for CFPO.

REINITIATION NOTICE

This concludes formal consultation for the BIA Narcho Santos Road Improvement Project on the Tohono O'odham Nation, Pima County, Arizona. As provided in 50 CFR §402.16, reinitiation of formal consultation is required where discretionary Federal agency involvement or control over the action has been maintained (or is authorized by law) and if: (1) any incidental take not authorized herein occurs, (2) new information reveals effects of the agency action that may adversely affect listed species or critical habitat in a manner or to an extent not considered in this draft opinion, (3) the agency action is subsequently modified in a way that causes an effect to a listed species or critical habitat that was not considered in this draft opinion; or (4) a new species is listed or critical habitat designated that may be affected by this action. In instances where any incidental take not authorized herein occurs, any operations causing such take must cease pending reinitiation.

If we can be of further assistance, please contact Mima Falk (520) 670-4550 or Sherry Barrett (520) 670-4617.

Sincerely,

/s/ David L. Harlow Field Supervisor

cc: Assistant Regional Director, Ecological Services, Albuquerque, NM Tohono O'odham Nation, Wildlife and Vegetation Management, Sells, AZ (Attn: Scott Bailey)

W:\Mima Falk\BIA TO road BO.wpd:cgg

LITERATURE CITED

- Abbate, D., A. Ditty, S. Richardson, and Ron Olding. 1996. Cactus ferruginous pygmy-owl surveys and nest monitoring in the Tucson Basin area, Arizona. Final Report to the Arizona Game and Fish Dept. Internal Enhancement No. U95503, Phoenix. 25 pp.
- Abbate, D., S. Richardson, R. Wilcox, M. Terrio, and S. Belhumeur. 1999. Cactus ferruginous pygmy-owl investigations in Pima and Pinal and Fish Department Region 5 Wildlife Program. Phoenix. 83 pp.
- Abouhalder, F. 1992. Influence of livestock grazing on saguaro seedling establishment. Pp 57-61 *in* C.P. Stone and E.S. Bellantoni (eds.), Proceedings of the Symposium on Research in Saguaro National Monument, Tucson
- Ainley, D.G., R.E. LeResche, and W.J.L. Sladen. 1983. Breeding biology of the Adelie penguin. Univ. of Calif. Press. Berkeley.
- American Birding Association. 1993. Good birds from the hotline. April 1993. Winging it 5(5):3.
- Anderson, D.E., O.J. Rongstad, and W.R. Mytton. 1990. Home range changes in post-breeding raptors exposed to increased human activity levels in southeastern Colorado. Wildlife Society Bulletin. 18:134-142.
- Arizona Game and Fish Department (AGFD). 1999. Heritage management data system. Nongame Branch, Arizona Game and Fish Department, Phoenix.
- Arizona Game and Fish Department and U.S. Fish and Wildlife Service. 2000. Cactus ferruginous pygmy-owl survey protocol.
- Bahre, C.J. 1991. A legacy of change. Historic human impact on vegetation in the Arizona borderlands. Univ. of Arizona Press, Tucson.
- Banks, R.C. 1979. Human-related mortality of birds in the United States. USDI, Fish and Wildlife Service, Spec. Sci. Rep. Wildl. No. 215.
- Bendire, C.E. 1888. Notes on the habits, nests and eggs of the genus Glaucidium boie. Auk 5:366-372.
- Binford, L.C. 1989. A distributional survey of the birds of the Mexican state of Oaxaca. Ornithological Monographs No. 443. American Ornithologists' Union, Washington, D.C. 418 pp.
- Breninger, G.F. 1898. The ferruginous pygmy-owl. Osprey 2(10):128 (in Bent 1938).

Brown, D.E, C.H. Lowe, and J.F. Hausler. 1977. Southwestern riparian communities: their biotic importance and management in Arizona in R.R. Johnson and D.A. Jones (eds.), Importance, preservation, and management of riparian habitats: a symposium. Gen. Tech. Rep. Rm-43. USDA Forest Service, Denver, CO.

- Brown, D.E. 1994. (ed) Biotic communities: Southern United States and Northwestern Mexico. Univ. of Utah Press, Salt Lake City.
- Bureau of Indian Affairs, May 2000. Biological Evaluation for BIA Proposed Road Construction Project PIR Consolidated No. 27. Tohono O'0dham Nation, Pima County, Arizona.
- Burger, J. and M. Gochfeld. 1981. Discrimination of the threat of direct versus tangential approach to the nest by incubating herring an great black-backed gulls. Journal of comparative and physiological psychology (Series A) 95: 676-684.
- Carlson, P.C., W.S. Lahaye, and A.B. Franklin. 1998. Incestuous behavior in spotted owls. Wilson Bull. 110 (4): 562-564.
- Carothers, S.W. 1977. Importance, preservation, and management of riparian habitats: an overview in R.R. Johnson and D.A. Jones (eds.), Importance, preservation, and management of riparian habitats: a symposium. Gen. Tech. Rep. RM-43. USDA Forest Service, Denver, CO.
- Cartron J.E. and D.M. Finch (eds.). 2000. Ecology and conservation of the cactus ferruginous pygmy-owl in Arizona. Gen. Tech. Rpt. RMRS-GTR-43. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT.
- Cartron, J.E., W.S. Richardson, and G.A. Proudfoot. 2000a. The cactus ferruginous pygmy-owl taxonomy, distribution, and Natural History. Pp. 5-15 in J.E. Cartron and D.M. Finch (eds.), Ecology and conservation of the cactus ferruginous pygmy-owl in Arizona. Gen. Tech. Rpt. RMRS-GTR-43. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT.
- Cartron, J.E., S.H. Soleson, S. Russell, G.A. Proudfoot, and W.S. Richardson. 2000b. The ferruginous pygmy-owl in the tropics and at the northern end of its range: habitat relationships and requirements. Pp. 47-53 in J.E. Cartron and D.M. Finch (eds.), Ecology and conservation of the cactus ferruginous pygmy-owl in Arizona. Gen. Tech. Rpt. RMRS-GTR-43. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT.
- Caughley, G. and A. Gunn. 1996. Conservation biology in theory and practice. Blackwell Science Inc. United States. 459 pp.
- Churcher, P.B. and J.H. Lawton. 1987. Predation by domestic cats in an English village. Journal of Zoology, London 212: 439-455.

Collins, M.D. and T.E. Corman. 1995. Cactus ferruginous pygmy-owl Surveys in Arizona: 1993-1994 season. Nongame and Endangered Wildlife Program Technical Report No. 37. Arizona Game and Fish Department, Phoenix.

- Cooke, A.S. 1980. Observations on how close certain passerine species will tolerate an approaching human in rural and suburban areas. Biological Conservation 18:85-88.
- Dahl, T.E. 1990. Wetland losses in the United States, 1780s to 1980s. USDI, Fish and Wildlife Service, Washington, D.C. 13 pp.
- Davis, W.A. and S.M. Russell. 1984. Birds in southeastern Arizona. Tucson Audubon Society, Tucson, AZ. 169 pp.
- Earhart, C.M. and N.K. Johnson. 1970. Size dimorphism and food habits of North American owls. Condor 72(3):251-264.
- Felley, D.L. and T.E. Coman. 1993. Spring 1993 cactus ferruginous pygmy-owl surveys in Arizona. Nongame and Endangered Wildlife Program Technical Report. Arizona Game and Fish Department, Phoenix. 16 pp.
- Fisher, A.K. 1893. The hawks and owls of the United States in their relation to agriculture. U.S. Dept. Agr. Div. Ornithol. and Mammal. Bull. 3:1-210.
- Flesch, A.D. 1999. Cactus ferruginous pygmy-owl surveys and nest monitoring on and around the Buenos Aires National Wildlife Refuge, Altar Valley, Arizona. A report to the USDI Fish and Wildlife Service, FWS Coop. Agreement No. 1448-00002-99-G943. 21 pp.
- Gilman, M.F. 1909. Some owls along the Gila River in Arizona. Condor 11:145-150.
- Harris, M.P. 1984. The puffin. T & A D Poyser, Calton, Staffordshire, England. (81).
- Haug, E.A. 1985. Observations on breeding ecology of burrowing owls in Saskatchewan. M.S. thesis. Univ. of Saskatchewan.
- Hunter, M.L., Jr. 1996. Fundamentals of conservation biology. Rand McNally, Taunton, MA. 482 pp.
- Hunter, W.C. 1988. Status of the cactus ferruginous pygmy-owl (Glaucidium brasilianum cactorum) in the United States and Northern Mexico. USDI, Fish and Wildlife Service, Phoenix, AZ. 13 pp.
- Jahrsdoerfer, S.E. and D.M. Leslie, Jr. 1988. Tamaulipan brushland of the Lower Rio Grande Valley of South Texas: description, human impacts, and management options. USDI, Fish and Wildlife Service, Biol. Rep. 88(36). 63 pp.

Johnsgard, P.A. 1988. North American owls. Smithsonian Institution Press, Washington, D.C. 295 pp.

- Johnson, R.R., L.T. Haight, and J.M. Simpson. 1979. Owl populations and species status in the southwestern United States. Pp. 40-59 in P. Schaffer and S.M. Ehler (eds.), Owls of the west: their ecology and conservation. Proc. Natl. Audubon Soc., George Whittel Education Center, Tiburon, CA.
- Johnson, R.R. and L.T. Haight. 1985. Status of the ferruginous pygmy-owl in the southwestern United States. Abstracts, 103rd Stated Meeting of the American Ornithologists' Union, Arizona State Univ., Tempe.
- Johnson-Duncan, E.E., D.K. Duncan, and R.R. Johnson. 1988. Small nesting raptors as indicators of change in the southwest desert. Pp. 232-236 in R.L. Glinski et al. (eds.), Proceedings of the Southwest Raptor Management Symposium and Workshop. Nat. Wildl. Fed., Washington, D.C. 395 pp.
- Klem, D.A. 1979. Biology of collisions between birds and windows. Ph.D. thesis. Southern Illinois Univ.
- Knight, R.L., D.L. Grout, and S.A. Temple. 1987. Nest behavior of the American crow in urban and rural areas. Condor 89:175-177.
- Knight, R.L. and D.N. Cole. 1995. Wildlife responses to recreationists. Pp. 51-62 in R.L. Knight and K.J. Gutzwiller (eds.), Wildlife and recreationists coexistence through management and research. Island Press, Washington D.C.
- Kusler, J.A. 1985. A call for action: protection of riparian habitat in the arid and semi-arid West in R.R. Johnson et al. (eds.), Riparian ecosystems and their management: reconciling conflicting uses: First North American Riparian Conference. Gen. Tech. Rep. RM-120. USDA Forest Service, Fort Collins, CO.
- LeFranc, M.M. Jr. and B.A. Millsap. 1984. A summary of state and federal agency raptor management programs. Wildl. Soc. Bull. 12:274-282.
- McLaughlin, S.P. and J.E. Bowers. 1982. Effects of wildlife on the Sonoran desert plant community. Ecology 61:246-248.
- McNicholl, M.K. 1983. Reactions of male blue grouse to intrusions by an observer. J. Field Ornithology. 54:77-83.
- Millsap, B.A. and R.R. Johnson. 1988. Ferruginous pygmy-owl. Pp. 137-139 in R.L. Glinski et al. (eds.), Proceedings of the Southwest Raptor Management Symposium and Workshop. Nat'l. Wildl. Fed., Washington, D.C. 395 pp.

Monson, G. and A.R. Phillips. 1981. Annotated checklist of the birds of Arizona. The Univ. of Arizona Press, Tucson. 240 pp.

- Monson, G. 1998. Ferruginous pygmy-owl. Pp. 159 161 in R.L. Glinski (ed.), The raptors of Arizona. Univ. of Arizona Press, Tucson.
- Newton, I. 1979. Population ecology of raptors. Poyser Ltd., Hertfordshire, England. 399 pp.
- Noss, R.F. and B. Csuti. 1994. Habitat fragmentation. Pp. 237-264 in G.K. Meffe and C.R. Caroll (eds.), Principles of conservation biology. Sinauer Assoc., Sunderland, MA.
- Oberholser, H.C. 1974. The bird life of Texas. Univ. of Texas Press, Austin. 1,069 pp.
- Olin, G. 1994. House in the sun. A natural history of the Sonoran Desert. Southwest Parks and Monuments Assoc. Tucson, AZ. 210 pp.
- O'Neil, A.W. 1990. Letter, Appendix B in Tewes, M.E. 1993. Status of the ferruginous pygmy-owl in south Texas and northeast Mexico. Draft Project Report No. 2, Job 25, Texas Parks and Wildlife Department. Texas A & I Univ., Kingsville. 42 pp.
- Parsons, K.C. and J. Burger. 1982. Human disturbance and nestling behavior in black-crowned night herons. Condor 84:184-187.
- Phillips, A.R., J. Marshall, and G. Monson. 1964. The birds of Arizona. Univ. of Arizona Press, Tucson. 212 pp.
- Porter, R.D., C.M. White, and R.J. Erwin. 1973. The peregrine falcon in Utah, emphasizing ecology and competition with the prairie falcon. Brigham Young Univ., Bulletin of Biological Science. 18:1-74.
- Postovit, H.R. and B.C. Postovit. 1987. Impacts and mitigation techniques. Pp. 183-213 in G.B. Pendleton, B.A. Mildsap, K.W. Cline, and D.M. Bird (eds.), Raptor management techniques manual. National Wildlife Federation, Washington, D.C. Scientific Technical Series 10.
- Proudfoot, G.A. 1996. Natural history of the cactus ferruginous pygmy-owl. Master's Thesis, Texas A & M Univ., Kingsville.
- Proudfoot, G.A., S.L. Beasom, D. Graul, and T. Urban. 1994. Food habits of the cactus ferruginous pygmy owl. Pp. 19 in the Annual Report to the Caesar Kleberg Foundation for Wildlife Conservation from the Caesar Kleberg Wildlife Research Institute, College of Agriculture and Human Sciences.

Proudfoot, G. A. and R.R. Johnson. 2000. Ferruginous pygmy-owl (Glaucidium brasilianum). in A. Poole and F. Gill (eds), The Birds of North America, No. 498, 2000.

- Proudfoot, G.A. and R.D. Slack. 2001. Comparisons of ferruginous pygmy-owl mtDNA at local and international scales. Department of Wildlife and Fisheries Sciences, Texas A&M Univ. A report for Pima County. 11 pp.
- Ratcliffe, D.A. 1980. The peregrine falcon. Poyser Ltd., Hertfordshire, England. 416 pp.
- Robert, H.C. and C.J. Ralph. 1975. Effects of human disturbance on the breeding success of gulls. Condor. 77:495-499.
- Saunders, D.A., R.J. Hobbs, and C.R. Margules. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology. 5: 18-32.
- Schreiber, E.A, R.W. Schreiber, and J.J. Dinsmore. 1979. Breeding biology of laughing gulls in Florida. Part 1: Nesting, egg, and incubation parameters. Bird Banding. 50:304-321.
- Sick, H. 1993. Birds in Brazil: a natural history. Princeton, N.J.:Princeton Univ. Press.
- Skagen, S.K., R.L. Knight, and G.H. Orians. 1991. Human disturbance of an avian scavenging guild. Ecological Applications 1(2):215-225.
- Soule, M.E. 1986. Conservation biology. The science of scarcity and diversity. Sinauer Assoc., Inc. Sunderland, MA. 584 pp.
- Sprunt, A. 1955. North American birds of prey. National Audubon Society. Harper and Brothers, New York, NY. 227 pp.
- State of Arizona. 1990. Final report and recommendations of the Governor's riparian habitat task force. Executive Order 89-16. Streams and riparian resources. October 1990. Phoenix, AZ. 28 pp.
- Steenberg, W.F. and C.H. Lowe. 1977. Ecology of the saguaro: II, reproduction, germination, establishment, growth, and survival of the young plant. National Park Service Scientific Monograph Series No. 8. U.S. Government Printing Office, Washington D.C.
- Stromberg, J.C., J.A. Tress, J.D. Wilkins, and S.D. Clark. 1992. Response of velvet mesquite to groundwater decline. J. Arid Environments 23:45-58.
- Stromberg, J.C. 1993a. Fremont cottonwood-Goodding willow riparian forests: a review of their ecology, threats, and recovery potential. Journal of the Arizona-Nevada Academy of Science 26(3):97-110.

Stromberg, J.C. 1993b. Riparian mesquite forests: A review of their ecology, threats, and recovery potential. Journal of the Arizona-Nevada Academy of Science 27(1):111-124.

- Sutton, G.M. 1951. Mexican birds: first impressions based upon an ornithological expedition to Tamaulipas, Nuevo Leon and Coahuila. Univ. of Oklahoma Press, Norman. 282 pp.
- Swarth, H.S. 1905. Summer birds of the Papago Indian Reservation and of the Santa Rita Mountains, AZ. Condor 7:22-28.
- Swarth, H.S. 1914. A distributional list of the birds of Arizona. Cooper Ornithological Club, Hollywood, CA.
- Synder, N.F. and H.A. Snyder. 1975. Raptors in range habitat. Pp. 190-209 in D.R. Smith. ed. Proc. symposium on management of food and range habitat for non-game birds. USDA Forest Service Gen. Tech. ref. W0-1.
- Szaro, R.C. 1989. Riparian forest and scrubland community types of Arizona and New Mexico. Desert Plants 9:70-138.
- Tewes, M.E. 1993. Status of the ferruginous pygmy-owl in south Texas and northeast Mexico. Draft Project Report #2, Job 25, Texas Parks and Wildlife Department. Texas A & I Univ. Kingsville. 42 pp.
- Tropical Birds of the Border. 1999. Sixth Annual Rio Grande Valley Birding Festival. Harlingen, TX.
- U.S. Fish and Wildlife Service. 1988. Riparian Habitat: An Unrecognized Resource. Pamphlet.
- U.S. Fish and Wildlife Service. 1997. Endangered and threatened wildlife and plants; determination of endangered status for the cactus ferruginous pygmy-owl in Arizona. Fed. Reg. 62:10730-10747.
- U.S. Fish and Wildlife Service. 1999. Endangered and threatened wildlife and plants; designation of critical habitat for the cactus ferruginous pygmy-owl (Glaucidium brasilianum cactorum). Fed. Reg. 64:37419-37440.
- U.S. General Accounting Office. 1988. Public rangelands: Some riparian areas restored but widespread improvement will be slow. Report to Congressional Requesters, U.S. General Accounting Office, Washington D.C.

Warnock, R.G. and P.C. James. 1997. Habitat fragmentation and burrowing owls (Speotyto cunicularia) in Saskatchewan. Pp.477-484 in J.R. Duncan, D.H. Johnson, and T.H. Nicholls (eds.), Biology and conservation of owls of the northern hemisphere. USDA Forest Service, North Central Forest Experimental Station, Gen. Tech. Rpt. NC-190. Winnipeg, Manitoba. February 5-9, 1997.

- White, C.M., W.B. Emison, and W.M. Bren. 1988. Atypical nesting habitat of the peregrine falcon (Falco peregrinus) in Victoria, Australia. J. Raptor Res. 22:37-43.
- Wiens, J.A. 1985 Vertebrate responses to environmental patchiness in arid and semiarid ecosystems. Pp 169-193 in S.T.A. Pickett, and P.A. White (eds.), The ecology of natural disturbance and patch dynamics. New York: Academic Press.
- Wilcove, D.S., C.H. McLellan, and A.P. Dobson. 1986. Habitat fragmentation in the temperate zone. Pp. 237-256 in M.E. Soule (ed.), Conservation biology: the science of scarcity and diversity. Sinauer Assoc., Sutherland, MA.
- Wilcox, R.L., S. Richardson, and D. Abbate. 1999. Habitat characteristics of occupied cactus ferruginous pygmy-owl (Glaucidium brasilianum cactorum) sites at the suburban/rural interface of north Tucson, Arizona. Report to Arizona Game and Fish Dept., Phoenix, AZ.
- Wilcox, R.L., S. Richardson, and D. Abbate. 2000. Habitat selection by cactus ferruginous pygmy-owls in southern Arizona preliminary results. Arizona Game and Fish Dept., Tucson, AZ. 13 pp.
- Willard, F.C. 1912. A week afield in southern Arizona. The Condor 14:53-63.

APPENDIX A - CONCURRENCE

We concur with the applicant's determination that the proposed action may affect, but is not likely to adversely affect the lesser long-nosed bat (*Leptonycteris curasoae yerbabuenae*). The rationale for this concurrence is:

- there are no known maternity roosts in the vicinity of the proposed action: the nearest documented roost site is approximately 30 miles to the north;
- there were no agaves found in or near the action area;
- of the 140 saguaros affected by the proposed action, 132 will be transplanted, thus reducing the loss of available food plants;
- the few saguaros that will be lost represents an insignificant amount compared to the total available food base surrounding the project area; and
- construction will take place during the time that lesser long-nosed bats are not in Arizona.