Memorandum

To: Area Manager, Albuquerque Area Office, Bureau of Reclamation, Albuquerque, New Mexico

From: Field Supervisor, U.S. Fish and Wildlife Service, New Mexico Ecological Services Field Office, Albuquerque, New Mexico

Subject: U.S. Fish and Wildlife Service’s Biological Opinion on the Effects of the Drain Unit 7 Extension Priority Site Project

This document transmits the U.S. Fish and Wildlife Service's (Service) biological opinion (BO) on the effects of the action described in the Biological Assessment (BA) for the Unit 7 Drain Priority Site Project in Socorro County, New Mexico. This BO concerns the effects of the action on the endangered Rio Grande silvery minnow, (Hybognathus amarus) (silvery minnow), and its designated critical habitat. The project site is located just north of the San Acacia Diversion Dam on the west bank. Your request for formal consultation, in accordance with section 7 of the Endangered Species Act (ESA) of 1973, as amended (16 U.S.C. 531 et seq.), was received on November 21, 2006.

This BO is based on information submitted in the BA dated November 2006; conversations and communications between the Bureau of Reclamation (BOR) and the Service; and other sources of information available to the Service. A complete administrative record of this consultation is on file at the Service’s New Mexico Ecological Services Field Office (NMESFO).

Consultation History
The Service received a final BA on November 21, 2006. This BO is tiered off the 2003 Biological and Conference Opinions on the Effects of the Bureau’s Water and River Maintenance Operations, Army Corps of Engineers’ Flood Control Operation, and Related Non-Federal Actions on the Middle Rio Grande (March 2003 BO).
I. DESCRIPTION OF THE PROPOSED ACTION

Background
The Drain Unit 7 Priority Site is located approximately 500 feet upstream of San Acacia Diversion Dam, on the right bank of the Rio Grande, and adjacent to the Drain Unit 7 Extension irrigation structure. The approximate River Mile is 116.3. Riprap is in place to protect the adjacent road and irrigation structure from river flows. This riprap is currently being displaced. The concern at this priority site is that additional bankline erosion could result in loss of the access road that parallels the drain, and eventually compromise the Drain Unit 7 Extension structure.

To stabilize the eroding bankline, temporary emergency action maintenance work was performed during the 2005 spring runoff. This action resulted in the placement of 550 cubic yards of 16-inch nominal size riprap along 200 feet of bankline. Alternatives are currently being evaluated for a long-term solution at this site. Constriction of the river channel results in increased water velocities in the channel and along the bankline at different river flows.

High river flows during the 2006 monsoon season displaced the riprap placed in 2005 in several areas along the bankline. This has raised concerns about the ability of remaining riprap to protect the access road and drain during the 2007 spring runoff. This has resulted in the immediate need to add approximately 100 cubic yards of riprap to the bankline.

BOR proposes to reinforce the bankline by installing additional riprap in compromised areas. The placement of riprap would be performed from the bank. Repair work would be accomplished by placement of nominal 16 or 24 inch riprap at the toe of the riprap slope, and on eroded portions of the bankline. The riprap would be placed using an excavator from the road surface adjacent to the bankline moving in an upstream direction.

General access to the project area would be by the existing county road to San Acacia and a local road to San Acacia Diversion Dam, maintained by the Middle Rio Grande Conservancy District. Local access to the work site would be by the existing levee road on the east side of Drain Unit 7 Extension. Work at the site would be performed by one excavator, which would be transported to the site by highway and offloaded from the truck in the general work area. Riprap would be transported to the site by truck and dumped on the levee road for placement by the excavator. The excavator would remain on the levee road while placing riprap.

The project will take two days to complete. Work is scheduled to occur prior to spring runoff and preferably at flows below 500 cubic feet per second (cfs). The project site is contained within river channel and adjacent levee and will not disturb any riparian vegetation or soil.
Action Area
The action area is defined as the entire width of the 100 year floodplain within the reach from the Isleta Diversion Dam to the San Acacia Diversion Dam. Silvery minnows that are present in the action area during river maintenance activities are likely to be affected by placement of riprap at the toe of the riprap slope below the waterline.

II. STATUS OF THE SPECIES

RIO GRANDE SILVERY MINNOW

Description
The silvery minnow currently occupies a 170 mi (275 kilometer [km]) reach of the Middle Rio Grande, New Mexico, from Cochiti Dam, Sandoval County, to the headwaters of Elephant Butte Reservoir, Socorro County (U.S. Fish and Wildlife Service 1994). The silvery minnow is a stout minnow, with moderately small eyes, a small, sub-terminal mouth, and a pointed snout that projects beyond the upper lip (Sublette et al. 1990). The back and upper sides of the silvery minnow are silvery to olive, the broad mid-dorsal stripe is greenish, and the lower sides and abdomen are silver. Maximum length attained is about 3.5 in (90 millimeters [mm]). The only readily apparent sexual dimorphism is the expanded body cavity of ripe females during spawning (Bestgen and Propst 1994).

In the past, the silvery minnow was included with other species of the genus *Hybognathus* due to morphological similarities. Phenetic and phylogenetic analyses corroborate the hypothesis that it is a valid taxon, distinctive from other species of *Hybognathus* (Cook et al. 1992, Bestgen and Propst 1994). It is now recognized as one of seven species in the genus *Hybognathus* in the United States and was formerly one of the most widespread and abundant minnow species in the Rio Grande basin of New Mexico, Texas, and Mexico (Pflieger 1980, Bestgen and Platania 1991). Currently, *Hybognathus amarus* is the only remaining endemic pelagic spawning minnow in the Middle Rio Grande. The speckled chub (*Extrarius aestivalus*), Rio Grande shiner (*Notropis jemezanus*), phantom shiner (*Notropis orca*), and bluntnose shiner (*Notropis simus simus*) are either extinct or have been extirpated from the Middle Rio Grande (Bestgen and Platania 1991).

Legal Status
The silvery minnow was federally listed as endangered under the ESA on July 20, 1994 (U.S. Fish and Wildlife Service 1994). The species is also listed as an endangered species by the state of New Mexico. Primary reasons for listing the silvery minnow are described below in the Reasons for Listing section.

Critical habitat for the silvery minnow was designated on February 19, 2003 (68 FR 8088). The critical habitat designation extends approximately 157 mi (252 km) from Cochiti Dam, Sandoval County, New Mexico downstream to the utility line crossing the Rio Grande, a permanent identified landmark in Socorro County, New Mexico. The critical habitat designation defines the lateral extent (width) as those areas bounded by existing levees or, in areas without levees, 300 ft
(91.4 meters) or riparian zone adjacent to each side of the bankfull stage of the Middle Rio Grande. Some developed lands within the 300 ft lateral extent are not considered critical habitat because they do not contain the primary constituent elements of critical habitat and are not essential to the conservation of the silvery minnow. Lands located within the lateral boundaries of the critical habitat designation, but not considered critical habitat include: developed flood control facilities, existing paved roads, bridges, parking lots, dikes, levees, diversion structures, railroad tracks, railroad trestles, water diversion and irrigation canals outside of natural stream channels, the Low Flow Conveyance Channel, active gravel pits, cultivated agricultural land, and residential, commercial, and industrial developments. The Pueblo lands of Santo Domingo, Santa Ana, Sandia, and Isleta within this area are not included in the critical habitat designation. Except for these Pueblo lands, the remaining portion of the silvery minnow’s occupied range in the Middle Rio Grande in New Mexico is designated as critical habitat (68 FR 8088).

Habitat
The silvery minnow travels in schools and tolerates a wide range of habitats (Sublette et al. 1990); yet, generally prefers low velocity (<0.33 ft per second, 10 centimeters/second [cm/sec]) areas over silt or sand substrate that are associated with shallow (< 15.8 in, 40 cm) braided runs, backwaters or pools (Dudley and Platania 1997). Habitat for the silvery minnow includes stream margins, side channels, and off-channel pools where water velocities are low or reduced from main-channel velocities. Stream reaches dominated by straight, narrow, incised channels with rapid flows are not typically occupied by silvery minnow (Sublette et al. 1990, Bestgen and Platania 1991).

Adult silvery minnow are most commonly found in backwaters, pools, and habitats associated with debris piles; whereas, young of year (YOY) occupy shallow, low velocity backwaters with silt substrates (Dudley and Platania 1997). A study conducted between 1994 and 1996 characterized habitat availability and use at two sites in the Middle Rio Grande at Rio Rancho and Socorro. From this study Dudley and Platania (1997) reported that the silvery minnow was most commonly found in habitats with depths less than 19.7 in (50 cm). Over 85 percent were collected from low-velocity habitats (<0.33 ft/sec, 10 cm/sec) (Dudley and Platania 1997, Watts et al. 2002).

Critical Habitat
The Service has determined the primary constituent elements (PCEs) of silvery minnow critical habitat based on studies on silvery minnow habitat and population biology (68 FR 8088). They include:

1. A hydrologic regime that provides sufficient flowing water with low to moderate currents capable of forming and maintaining a diversity of aquatic habitats, such as, but not limited to the following: backwaters (a body of water connected to the main channel, but with no appreciable flow), shallow side channels, pools (that portion of the river that is deep with relatively little velocity compared to the rest of the channel), and runs (flowing water in the river channel without obstructions) of varying depth and velocity – all of which are necessary for each of the particular silvery minnow life-history stages in appropriate seasons (e.g., the silvery minnow
requires habitat with sufficient flows from early spring (March) to early summer (June) to trigger spawning, flows in the summer (June) and fall (October) that do not increase prolonged periods of low- or no flow, and relatively constant winter flow (November through February));

2. The presence of eddies created by debris piles, pools, or backwaters, or other refuge habitat within unimpounded stretches of flowing water of sufficient length (i.e., river miles) that provide a variation of habitats with a wide range of depth and velocities;

3. Substrates of predominantly sand or silt; and

4. Water of sufficient quality to maintain natural, daily, and seasonally variable water temperatures in the approximate range of greater than 1°C (35°F) and less than 30°C (85°F) and reduce degraded conditions (e.g., decreased dissolved oxygen, increased pH).

These PCEs provide for the physiological, behavioral, and ecological requirements essential to the conservation of the silvery minnow.

Life History

The species is a pelagic spawner that produces 3,000 to 6,000 semi-buoyant, non-adhesive eggs during a spawning event (Platania 1995, Platania and Altenbach 1998). The majority of adults spawn in a one-month period in late spring to early summer (May to June) in association with spring runoff. Platania and Dudley (2000, 2001) found that the highest collections of silvery minnow eggs occurred in mid- to late May. In 1997, Smith (1999) collected the highest number of eggs in mid-May, with lower frequency of eggs being collected in late May and June. These data suggest multiple silvery minnow spawning events during the spring and summer, perhaps concurrent with flow spikes. Artificial spikes have apparently induced silvery minnows to spawn (Platania and Hoagstrom 1996). It is unknown if individual silvery minnows spawn more than once a year or if some spawn earlier and some later in the year.

Platania (2000) found that development and hatching of eggs are correlated with water temperature. Eggs of the silvery minnow raised in 30°C water hatched in approximately 24 hours while eggs reared in 20-24°C water hatched within 50 hours. Eggs were 0.06 inches (1.6 mm) in size upon fertilization, but quickly swelled to 0.12 inches (3 mm). Recently hatched larval fish are about 0.15 inches (3.7 mm) in standard length and grow about 0.005 inches (0.15 mm) in size per day during the larval stages. Eggs and larvae have been estimated to remain in the drift for 3-5 days, and could be transported from 134 to 223 miles (216 to 359 km) downstream depending on river flows (Platania 2000). Approximately three days after hatching the larvae move to low velocity habitats where food (mainly phytoplankton and zooplankton) is abundant and predators are scarce. YOY attain lengths of 1.5 to 1.6 inches (39 to 41 mm) by late autumn (U.S. Fish and Wildlife Service 1999). Age-1 fish are 1.8 to 1.9 inches (45 to 49 mm) by the start of the spawning season. Most growth occurs between June (post spawning) and October, but there is some growth in the winter months. In the wild, maximum longevity is
Platania (1995) suggested that historically the downstream transport of eggs and larvae of the silvery minnow over long distances was likely beneficial to the survival of their populations. This behavior may have promoted recolonization of reaches impacted during periods of natural drought (Platania 1995). The spawning strategy of releasing floating eggs allows the silvery minnow to replenish populations downstream, but the current presence of diversion dams (Angostura, Isleta, and San Acacia Diversion Dams) prevents recolonization of upstream habitats (Platania 1995). As populations are depleted upstream and diversion structures prevent upstream movements, isolated extirpations of the species through fragmentation may occur (U.S. Fish and Wildlife Service 1999). Adults, eggs and larvae are also transported downstream to Elephant Butte Reservoir. It is believed that none of these fish survive because of poor habitat and predation from reservoir fishes (U.S. Fish and Wildlife Service 1999).

The silvery minnow is herbivorous (feeding primarily on algae); this is indicated indirectly by the elongated and coiled gastrointestinal tract (Sublette et al. 1990). Additionally, detritus, including sand and silt, is filtered from the bottom (Sublette et al. 1990, U.S. Fish and Wildlife Service 1999).

Population Dynamics
Generally, a population of silvery minnows consists of only two age classes: YOY and Age-1 (U.S. Fish and Wildlife Service 1999). The majority of spawning silvery minnows are one year old. Two year old fish comprise less than 10 percent of the spawning population. High silvery minnow mortality occurs during or subsequent to spawning, consequently very few adults are found in late summer. By December, the majority (greater than 98 percent) of individuals are YOY (Age 0). This population ratio does not change appreciably between January and June, as Age 1 fish usually constitute over 95 percent of the population just prior to spawning.

Platania (1995) found that a single female in captivity could broadcast 3,000 eggs in eight hours. Females produce 3 to 18 clutches of eggs in a 12-hour period. The mean number of eggs in a clutch is approximately 270 (Platania and Altenbach 1998). In captivity, silvery minnows have been induced to spawn as many as four times in a year (C. Altenbach, City of Albuquerque, pers. comm. 2000). It is not known if they spawn multiple times in the wild. The high reproductive potential of this fish appears to be one of the primary reasons that it has not been extirpated from the Middle Rio Grande. However, the short life span of the silvery minnow increases the population instability. When two below-average flow years occur consecutively, a short-lived species such as the silvery minnow can be impacted, if not completely eliminated from dry reaches of the river (U.S. Fish and Wildlife Service 1999).

Distribution and Abundance
Historically, the silvery minnow occurred in 2,465 mi (3,967 km) of rivers in New Mexico and Texas. They were known to have occurred from Española upstream from Cochiti Lake; in the
downstream portions of the Chama and Jemez Rivers; throughout the Middle and Lower Rio Grande to the Gulf of Mexico; and in the Pecos River from Sumner Reservoir downstream to the confluence with the Rio Grande (Sublette et al. 1990, Bestgen and Platania 1991). The current distribution of the silvery minnow is limited to the Rio Grande between Cochiti Dam and Elephant Butte Reservoir, which amounts to approximately 5 percent of its historic range.

The construction of mainstem dams, such as Cochiti Dam and irrigation diversion dams have contributed to the decline of the silvery minnow. The construction of Cochiti Dam in particular has affected the silvery minnow by reducing the magnitude and frequency of flooding events that help to create and maintain habitat for the species. In addition, the construction of Cochiti Dam has resulted in degradation of silvery minnow habitat within the Cochiti Reach. Flow in the river at Cochiti Dam is now generally clear, cool, and free of sediment. There is relatively little channel braiding, and areas with reduced velocity and sand or silt substrates are uncommon. Substrate immediately downstream of the dam is often armored cobble (rounded rock fragments generally 8 to 30 cm (3 to 12 in) in diameter). Further downstream the riverbed is gravel with some sand material. Ephemeral tributaries including Galisteo Creek and Tonque Arroyo introduce sediment to the lower sections of this reach, and some of this is transported downstream with higher flows (U.S. Fish and Wildlife Service 2001, 1999). The Rio Grande below Angostura Dam becomes a predominately sand bed river with low, sandy banks in the downstream portion of the reach. The construction of Cochiti Dam also created a barrier between silvery minnow populations (U.S. Fish and Wildlife Service 1999). As recently as 1978, the silvery minnow was collected upstream of Cochiti Lake; however surveys since 1983 suggest that the fish is now extirpated from this area (U.S. Fish and Wildlife Service 1999).

Silvery minnow catch rates declined two to three orders of magnitude between 1993 and 2004. Additionally, relative abundance of silvery minnows declined from approximately 50 percent of the total fish community in 1995 to about 5 percent in 2004. However, in 2004, the October density of silvery minnows was significantly higher (p<0.05) than in 2003 and autumnal catch rates increased by over an order of magnitude between those years. Silvery minnow catch rates in 2004 were comparable to those in 2001. Catch rates in 2005 were even higher. October catch rates in 2005 (3,899) increased nearly 50 times over catch rates for 2004 (78) (Dudley et al. 2005).

Augmentation, throughout this period, likely sustained the silvery minnow population. Nearly 900,000 silvery minnows have been released (primarily in the Angostura Reach) since 2000 (see Environmental Baseline). Captively propagated and released fish supplemented the native adult population and most likely also took advantage of the good spawning conditions of 2004 and 2005.

The silvery minnow was the most abundant taxon in October 2005 captures; it comprised about 72 percent of the total catch (Dudley et al. 2005). The species was nearly twice as abundant as the next most-abundant taxon (western mosquitofish). The increase in abundance of silvery minnow in 2005 has been comparable to previous years with above average precipitation (e.g.,
mid-1990s) (Dudley et al. 2005). These monitoring results from 2005 indicate that the status of the species has improved markedly compared to Fall of 2004.

Increased discharge in the Rio Grande during 2004 contrasted with the extended low-flow conditions observed throughout the Middle Rio Grande during 2003 and 2002. The timing of the 2004 runoff flow was typical of a flow increase that would normally occur at the onset of the spring runoff period. Elevated and extended flows during 2004 likely resulted in more favorable conditions for the growth and survivorship of newly hatched silvery minnow larvae. It is possible that even low numbers of eggs and larvae could have resulted in greatly increased recruitment success because of the inundation of shoreline habitats, abandoned side channels, and backwaters. Low velocity and shallow areas provide the warm and productive habitats required by larval fishes to successfully complete their early life history.

Spring runoff in 2005 was also above average, leading to a peak of over 6,000 cfs at Albuquerque and sustained high flows (> 3,000 cfs) for more than two months. These flows improved conditions for both spawning and recruitment. October monitoring indicated a significant increase in silvery minnows in the Middle Rio Grande, increasing to 3,899 total silvery minnows captured from 2 and 78 in 2003 and 2004, respectively. In 2006, however, October numbers declined to 166 after an extremely low Spring runoff and channel drying in June and July (Dudley et al. 2006). October samples yielded no small silvery minnows, indicating poor recruitment in the spring.

Middle Rio Grande Distribution

Since the early 1990s, the density of silvery minnows generally increased from upstream (Angostura Reach) to downstream (San Acacia Reach). During surveys in 1999, over 98 percent of the silvery minnows captured were downstream of San Acacia Diversion Dam (Dudley and Platania 2002). This distributional pattern has been observed since 1994 (Dudley and Platania 2002) and is attributed to downstream drift of eggs and larvae and the inability of adults to repopulate upstream reaches because of diversion dams.

However, in 2004 and 2005, Dudley et al. (2005 and 2006) found that this pattern reversed. Catch rates were highest in the Angostura Reach and approximately equal in the Isleta and San Acacia reaches. The Angostura Reach yielded the most silvery minnow (n=2,226) in 2004, followed by the Isleta Reach (n=442), and San Acacia Reach (n=371). Routine augmentation of silvery minnow in the Angostura Reach (nearly 900,000 since 2000), and the transplanting of silvery minnow rescued from drying reaches (approximately 770,000 since 2003) explains this change in pattern. Additionally, good spawning conditions (i.e., high and sustained spring runoff) throughout the Middle Rio Grande during April and May followed by wide-scale drying in the Isleta and San Acacia reaches from June-September, exacerbated the skew. High spring runoff and perennial flow in the Angostura Reach appeared to result in relatively high survival and recruitment of larval and juvenile silvery minnow compared to previous drought years (2002-2003). In contrast, large portions of the Rio Grande south of Isleta Diversion Dam were dewatered in 2004 and young silvery minnow in these areas were either subjected to poor
recruitment conditions (i.e., lack of nursery habitats during low-flows) or they were trapped in drying pools where they perished.

Sampling in early 2006 indicates populations are again higher downstream. Of the 6,143 silvery minnows caught in March 2006, 33 were found in the Angostura Reach, 2,445 were found in the Isleta Reach, and 3,665 were caught in the San Acacia Reach. Silvery minnow catch rates were an average of 2.53 per 100 m² in the Angostura Reach.

Reasons for Listing/Threats to Survival
The silvery minnow was federally listed as endangered for the following reasons:

1. Regulation of stream waters, which has led to severe flow reductions, often to the point of dewatering extended lengths of stream channel;

2. Alteration of the natural hydrograph, which impacts the species by disrupting the environmental cues the fish receives for a variety of life functions, including spawning;

3. Both the stream flow reductions and other alterations of the natural hydrograph throughout the year can severely impact habitat availability and quality, including the temporal availability of habitats;

4. Actions such as channelization, bank stabilization, levee construction, and dredging result in both direct and indirect impacts to the silvery minnow and its habitat by severely disrupting natural fluvial processes throughout the floodplain;

5. Construction of diversion dams fragment the habitat and prevent upstream migration;

6. Introduction of nonnative fishes that directly compete with, and can totally replace the silvery minnow, as was the case in the Pecos River, where the species was totally replaced in a time frame of 10 years by its congener the plains minnow (*Hybognathus placitus*); and

7. Discharge of contaminants into the stream system from industrial, municipal, and agricultural sources also impact the species (U.S. Fish and Wildlife Service 1993, 1994).

These reasons for listing continue to threaten the species throughout its currently occupied range in the Middle Rio Grande.

Recovery Efforts
The final recovery plan for the silvery minnow was released in July 1999 (U.S. Fish and Wildlife Service 1999) and is currently undergoing revision. The primary objectives for recovery are to
increase numbers of the silvery minnow, enhance its habitat in the Middle Rio Grande valley, and to reestablish the species in at least three other areas of its historic range.

III. ENVIRONMENTAL BASELINE

Under section 7(a)(2) of the ESA, when considering the effects of the action on federally listed species, we are required to take into consideration the environmental baseline. Regulations implementing the ESA (50 FR 402.02) define the environmental baseline as the past and present impacts of all Federal, State, or private actions and other human activities in the action area; the anticipated impacts of all proposed Federal actions in the action area that have undergone formal or early section 7 consultation; and the impacts of State and private actions that are contemporaneous with the consultation in progress. The environmental baseline defines the current status of the species and its habitat in the action area to provide a platform to assess the effects of the action now under consultation.

Drought, as an overriding condition of the last decade in the southwest, is an important factor in the environmental baseline. However, stream conditions in 2004 and 2005 improved over previous years. The United States Geological Survey (USGS) in Albuquerque, New Mexico reported that stream flow conditions in 2005 were well above average to significantly above average statewide leading to a peak of over 6,000 cfs at Albuquerque and sustained high flows (>3,000 cfs) for more than two months. These flows improved conditions for both spawning and recruitment. Despite good runoff, reservoir levels continue to be below average across the state. It will take a least another year or two of well above average precipitation to reach pre-drought reservoir conditions.

The 2006 spring runoff was well below average because of lower than normal snowpack. In May 2006, year to date precipitation was well below average with the snow pack at 20 percent of average in the Rio Grande Basin. Fortunately, a strong monsoon season led to the wettest period of record in July and August. Consequently, only 26.5 miles of river dried in the summer of 2006 the lowest amount since 2001.

Status of the Species within the Action Area

Past actions have eliminated and severely altered habitat conditions for the silvery minnow. These actions can be broadly categorized as changes to the natural hydrology of the Rio Grande and changes to the morphology of the channel and floodplain. Other factors that influence the environmental baseline are water quality, the release of captively propagated silvery minnow, rescue efforts, on-going research efforts, and past projects in the Middle Rio Grande. Also of importance is the current drought, the expected weather pattern for the near future, and how it may affect flow in the Rio Grande. Each of these topics is discussed below.

Changes in Hydrology

There have been two primary changes in hydrology as a result of the construction of dams on the Rio Chama and Rio Grande that affect the silvery minnow: Loss of water and changes to the magnitude and duration of peak flows.
Loss of Water

Prior to measurable human influence on the system, up to the fourteenth century, the Rio Grande was a perennially flowing, aggrading river with a shifting sand substrate (Biella and Chapman 1977). There is now strong evidence that the Middle Rio Grande first began drying up periodically after the development of Colorado’s San Luis Valley in the mid to late 1800s (Scurlock 1998). After humans began exerting more influence on the river, there are two documented occasions when the river became intermittent; during prolonged, severe droughts in 1752 and 1861 (Scurlock 1998). The silvery minnow historically survived low-flow periods because such events were infrequent and of lesser magnitude than they are today. There were also no diversion dams to block repopulation of upstream areas, the fish had a much greater geographical distribution, and there were oxbow lakes, cienegas, and sloughs associated with the Rio Grande that supported fish until the river became connected again.

Water management and use has resulted in a large reduction of suitable habitat for the silvery minnow. Agriculture accounts for 90 percent of surface water consumption in the Middle Rio Grande (Bullard and Wells 1992). The average annual diversion of water in the Middle Rio Grande by the MRGCD was 535,280 af (65,839 hectare-meters) for the period from 1975 to 1989 (Reclamation 1993). In 1990, total water withdrawal (groundwater and surface water) from the Rio Grande Basin in New Mexico was 1,830,628 af, significantly exceeding a sustainable rate (Schmandt 1993). Water withdrawals have not only reduced overall flow quantities, but also caused the river to become locally intermittent and/or dry for extended reaches. Irrigation diversions and drains significantly reduce water volumes in the river. However, the total water use (surface and groundwater) in the Middle Rio Grande by the MRGCD may range from 28 – 37 percent (S.S. Papadopulos & Associates, Inc. 2000; U.S. Geological Survey 2002). A portion of the water diverted by the MRGCD returns to the river and may be re-diverted (in some cases more than once) (Bullard and Wells 1992; MRGCD, in litt. 2003).

River reaches particularly susceptible to drying are immediately downstream of the Isleta Diversion Dam (river mile 169), a 5 mile (8 km) reach near Tome (river miles 150-155), a 5 mile (8 km) reach near the U.S. Highway 60 Bridge (river miles 127-132), and an extended 36 mile (58 km) reach from near Brown’s Arroyo (downstream of Socorro) to Elephant Butte Reservoir. Extensive fish kills, including tens of thousands of silvery minnows, have occurred in these lower reaches when the river has dried (C. Shroeder, Service, pers. comm. 2002). Since 1996, an average of 32 miles of the Rio Grande has dried, mostly in the San Acacia Reach. The most extensive drying occurred in 2003 and 2004 when 60 and 68.7 miles, respectively, were dewatered. Most documented drying events lasted an average of two weeks, before flows returned.

Predatory birds have been observed hunting and consuming fish from isolated pools during river intermittence (J. Smith, NMESFO, pers. comm. 2003). Although the number of fish present in any pool is unknown, it must be assumed that many of the fish preyed upon in these pools are
silvery minnows. Thus, while some dead silvery minnows were collected during the shorter drying events, it is assumed that many more mortalities occurred than were documented.

Changes to Size and Duration of Peak Flows
Water management has also resulted in a loss of peak flows that historically initiated spawning. The reproductive cycle of the silvery minnow is tied to the natural river hydrograph. A reduction in peak flows and/or altered timing of flows may inhibit reproduction. Since completion of Elephant Butte Dam in 1916, four additional dams have been constructed on the Middle Rio Grande, and two have been constructed on one of its major tributaries, the Rio Chama (Scurlock 1998). Construction and operation of these dams, which are either irrigation diversion dams (Angostura, Isleta, San Acacia) or flood control and water storage dams (Elephant Butte, Cochiti, Abiquiu, El Vado), have modified the natural flow of the river. Mainstem dams store spring runoff and summer inflow, which would normally cause flooding, and release this water back into the river channel over a prolonged period of time. These releases are often made during the winter months, when low-flows would normally occur. The releases depart significantly from natural conditions, and can substantially alter the habitat. In spring and summer, artificially low-flows may limit the amount of habitat available to the species and may also limit dispersal of the species (U.S. Fish and Wildlife Service 1999).

In the spring of 2002 and 2003, there was concern that silvery minnow would not spawn because of a lack of spring runoff due to an extended drought. River discharge was artificially elevated through short duration reservoir releases during May to induce silvery minnow spawning. In response to the releases, significant silvery minnow spawning occurred and was documented in all reaches except the Cochiti Reach (S. Gottlieb, UNM, in litt. 2002; Dudley et al. 2005). Fall populations in 2003 and 2004 continued to decrease despite large spawning events, indicating a lack of recruitment.

By contrast, spring runoff in 2005 was above average, leading to a peak of over 6,000 cfs at Albuquerque and sustained high flows (> 3,000 cfs) for more than two months. These flows improved conditions for both spawning and recruitment. October 2005 monitoring indicated a significant increase in silvery minnows in the Middle Rio Grande over 2003 and 2004. In 2006, however, October numbers declined again after an extremely low runoff period and channel drying in June and July (Dudley et al. 2006). October samples yielded no small silvery minnows, indicating poor recruitment in the spring.

Mainstem dams and the altered flows they create can affect habitat by preventing overbank flooding, trapping nutrients, altering sediment transport regimes, prolonging summer base flows, modifying or eliminating native riparian vegetation, and creating reservoirs that favor non-native fish species. These changes may affect the silvery minnow by reducing its food supply, altering its preferred habitat, preventing dispersal, and providing a continual supply of non-native fish that may compete with or prey upon them. Altered flow regimes may also result in improved conditions for other native fish species that occupy the same habitat, causing those populations to expand at the expense of the silvery minnow (U.S. Fish and Wildlife Service 1999).
In addition to providing a cue for spawning, flood flows also maintain a channel morphology to which the silvery minnow is adapted. The changes in channel morphology that have occurred from the loss of flood flows are discussed below.

Changes in Channel Morphology

Historically, the Rio Grande was sinuous, braided, and freely migrated across the floodplain. Changes in natural flow regimes, narrowing and deepening of the channel, and restraints to channel migration (i.e., jetty jacks) adversely affected the silvery minnow. These effects result directly from constraints placed on channel capacity by structures built in the floodplain. These anthropogenic changes have and continue to degrade and eliminate spawning, nursery, feeding, resting, and refugia areas required for species’ survival and recovery (U.S. Fish and Wildlife Service 1993).

The active river channel within occupied habitat is being narrowed by the encroachment of vegetation, resulting from continued low-flows and the lack of overbank flooding. The lack of flood flows has allowed non-native riparian vegetation such as salt cedar and Russian olive to encroach on the river channel (Reclamation 2001). These non-native plants are very resistant to erosion, resulting in narrowing of the channel. When water is confined to a narrower cross-section, its velocity increases. Fine sediments such as silt and sand are carried away leaving coarser bed materials such as gravel and cobble. Habitat studies during the winter of 1995 and 1996 (Dudley and Platania 1996), demonstrated that a wide, braided river channel with low velocities resulted in higher catch rates of silvery minnows, and narrower channels resulted in fewer fish captured. The availability of wide, shallow habitats that are important to the silvery minnow is decreasing. Narrow channels have few backwater habitats with low velocities that are important for silvery minnow fry and YOY.

Within the current range of the silvery minnow, human development and use of the floodplain have greatly restricted the width available to the active river channel. A comparison of river area between 1935 and 1989 shows a 52 percent reduction, from 26,598 acres (10,764 ha) to 13,901 acres (5,626 ha) (Crawford et al. 1993). These data refer to the Rio Grande from Cochiti Dam downstream to the “Narrows” in Elephant Butte Reservoir. Within the same stretch, 234.6 mi (378 km) of levees occur, including levees on both sides of the river. Analysis of aerial photography taken by Reclamation in February 1992, for the same river reach, shows that of the 180 mi (290 km) of river, only 1 mi (1.6 km), or 0.6 percent of the floodplain has remained undeveloped. Development in the floodplain, makes it difficult, if not impossible, to send large quantities of water downstream that would create low velocity side channels that the silvery minnow prefers. As a result, reduced releases have decreased available habitat for the silvery minnow and allowed encroachment of non-native species into the floodplain.

Water Quality

Both point (pollution discharges from a pipe) and non-point (diffuse sources of pollution) sources affect the Middle Rio Grande. Major point sources are waste water treatment plants
WWTPs) and feedlots. Major non-point sources include agricultural activities (e.g., fertilizer and pesticide application, livestock grazing), storm water run off, and mining activities.

Effluents from WWTPs contain contaminants that may affect the water quality of the river. It is anticipated that WWTP effluent may be the primary source of perennial flow in the lower portion of the Angostura Reach during extended periods of intermittency. For that reason the water quality of the effluent is extremely important. In the project area, the largest WWTP discharges are from Albuquerque, followed by Rio Rancho (2 WWTP) and Bernalillo (mean annual discharge flows are 80.4, 2.5, 0.9, and 0.7 cfs, respectively) (Bartolino and Cole 2002). Since 1998, total residual chlorine (chlorine) and ammonia, as nitrogen (ammonia), have been discharged unintentionally at concentrations that exceed protective levels for the silvery minnow.

Albuquerque WWTP effluent discharge records show that during November 1999, the monthly maximum chlorine concentration in the outfall was 0.49 milligrams per liter (mg/L). Additionally, on February 23, 2003, the concentration of chlorine in the outfall was reported to be 0.70 mg/L (C. Abeyta, Service, in litt. 2003; D.S. Dailey, City, in litt. 2003). Chlorine concentrations of 0.013 mg/L can be harmful to the silvery minnow. Records also show that the monthly maximum concentration of ammonia during July 2001 was 14 mg/L. At pH 8 and water temperature of 25 °C, ammonia concentrations as low of 3.1 mg/L can be harmful to larval fathead minnow (U. S. Environmental Protection Agency 1999). The fathead minnow has been suggested as a surrogate to evaluate the effects of various chemicals on the silvery minnow (Buhl 2002).

Although we do not have complete records for the other WWTPs, in the summer of 2000, the Rio Rancho WWTP released approximately one million gallons of raw sewage into the Rio Grande. Chlorine treatment was maximized in an attempt to reduce the public health risk. Ammonia was reported at 37 mg/L on July 13, 2000, and at 17.1 mg/L on July 27, 2000 (City of Rio Rancho, in litt. 2000). Nonetheless, no violations of chlorine or ammonia effluent limits were recorded. This suggests that averaging measurements and/or the frequency of water quality measurements is insufficient to detect water quality situations that would be toxic to silvery minnow. The Rio Rancho WWTP now uses ultraviolet disinfection (Dee Fuerst, City of Rio Rancho, pers. comm. 2003). However, high concentrations of ammonia could still be discharged during an upset. Spills from the Rio Rancho City sewage system are treated with chlorine, which may lead to chlorine being flushed to the Rio Grande.

In addition to chlorine and ammonia, WWTP effluents may also include cyanide, chloroform, organophosphate pesticides, semi-volatile compounds, volatile compounds, heavy metals, and pharmaceuticals and their derivatives, which can pose a health risk to silvery minnow when discharged in concentrations that exceed the protective water quality criteria (J. Lusk, Service, in litt. 2003). Even if the concentration of a single element or compound is not harmful by itself, chemical mixtures may be more than additive in their toxicity to silvery minnow (Buhl 2002). The long-term effects and overall impacts of chemicals on the silvery minnow are not known.
Large precipitation events wash sediments and pollutants into the river from surrounding lands through storm drains and intermittent tributaries. Contaminants of concern to the silvery minnow that are frequently found in storm water include the metals aluminum, cadmium, lead, mercury, and zinc, organics such as oils, the industrial solvents trichloroethene and tetrachloroethene (TCE), and the gasoline additive methyl tert-butyl ether (U.S. Geological Survey 2001).

Harwood (1995) studied the North Floodway Channel (Floodway) of Albuquerque, which drains an urban area of about 90 square miles and crosses Pueblo of Sandia lands. He found that storm water contributions of dissolved lead, zinc, and aluminum were significant and posed a threat to the water quality of the Rio Grande. Because the Floodway crosses lands of the Pueblo of Sandia and enters their portion of the Rio Grande, they requested that the Environmental Protection Agency conduct toxicity tests on water in the Rio Grande collected below the Floodway. Aquatic crustaceans exposed to this water were found to have significant reproductive impairment and mortality when compared with controls. Additionally, larval fish also experienced significant mortality and/or narcosis when exposed to water and bed sediment collected from this same area on April 22, 2002 (http://oaspub.epa.gov/enviro/pcs det_reports.detail_report?npdesid=NM0022250). This study indicates that storm water runoff can impact the water quality of the Rio Grande and the aquatic organisms that live in the river.

In a cooperative study, the New Mexico Environment Department (NMED) detected elevated polychlorinated biphenyl (PCBs) contamination of the San Jose Drain (NMED DOE Oversight Bureau Correspondence and Transmittal Letter, signed S. Yanicak, to G. Turner, DOE, Subject: 2002 – 2003 Cooperative Polychlorinated Biphenyl (PCB) Study Data, Dated June 6, 2006). The San Jose Drain empties into an area near the confluence of the Tijeras Arroyo (and SDC) with the Rio Grande. The PCB pollution was detected in sediment and storm water runoff and in fish tissue collected downstream. Concentrations of PCBs in fish tissues were elevated above the threshold by which fish consumption advisories would recommend that no fish be eaten by people (R. Ford-Schmid, NMED, electronic communication, June 24, 2004). The San Jose Drain empties into the Rio Grande in close proximity of the SDC Island Site increasing the probability that sediment forming the island may be contaminated with PCBs as well.

Sediment is the sand, silt, organic matter, and clay portion of the river bed, or the same material suspended in the water column. Ong et al. (1991) recorded the concentrations of trace elements and organochlorine pesticides in suspended sediment and bed sediment samples collected from the Middle Rio Grande between 1978 and 1988. These data were compared to numerical sediment quality criteria (Probable Effects Criteria [PEC]) proposed by MacDonald et al. (2000). According to MacDonald et al. (2000) most of the PEC provide an accurate basis for predicting sediment toxicity to aquatic life and a reliable basis for assessing sediment quality in freshwater ecosystems. Although the PEC were developed to assess bed (bottom) sediments, they also provide some indication of the potential adverse effects to organisms consuming these same sediments when suspended in the water column.
Semi-volatile organic compounds are a large group of environmentally important organic compounds. Three groups of compounds, polycyclic aromatic hydrocarbons (PAHs), phenols, and phthalate esters, were included in the analysis of bed sediment collected by the USGS (Levings et al. 1998). These compounds were abundant in the environment, are toxic and often carcinogenic to organisms, and could represent a long-term source of contamination. The analysis of the PAH data by Levings et al. (1998) show one or more PAH compounds were detected at 14 sites along the Rio Grande with the highest concentrations found below Albuquerque and Santa Fe. Polycyclic aromatic hydrocarbons and other semi-volatile compounds affect the sediment quality of the Rio Grande and may affect silvery minnow behavior, habitat, feeding, and health.

Pesticide contamination occurs from agricultural activities, as well as from the cumulative impact of residential and commercial landscaping activities. The presence of pesticides in surface water depends on the amount applied, timing, location, and method of application. Water quality standards have not been set for many pesticides, and existing standards do not consider cumulative effects of several pesticides in the water at the same time. Roy et al. (1992) reported that DDE, a degradation product of DDT, was detected most frequently in whole body fish collected throughout the Rio Grande. He suggested that fish in the lower Rio Grande may be accumulating DDE in concentrations that may be harmful to fish and their predators.

In addition to the compounds discussed above, several other constituents are present and affect the water quality of the Rio Grande. These include nutrients such as nitrates and phosphorus, total dissolved solids (salinity), and radionuclides. Each of these also has the potential to affect the aquatic ecosystem and health of the silvery minnow. As the river dries, pollutants will be concentrated in the isolated pools. Even though these pollutants do not cause the immediate death of silvery minnows, the evidence suggests that the amount and variety of pollutants present in the Rio Grande, could compromise their health and fitness (Rand and Petrocelli 1985).

Silvery Minnow Propagation and Augmentation

In 2000, the Service identified captive propagation as an appropriate strategy to assist in the recovery of the silvery minnow. Captive propagation is conducted in a manner that will, to the maximum extent possible, preserve the genetic and ecological distinctiveness of the silvery minnow and minimize risks to existing wild populations.

Silvery minnow are currently housed at four facilities in New Mexico including: the Dexter Fish Hatchery; New Mexico State University Coop Unit (Las Cruces); the Service’s New Mexico Fishery Resources Office (NMFRO), and the City of Albuquerque’s propagation facilities. These facilities are actively propagating and rearing silvery minnow. Silvery minnow are also held in South Dakota at the U.S. Geological Survey, Biological Resources Division Lab, but there is no active spawning program at this facility.

Since 2000 approximately 900,000 silvery minnow have been propagated using both adult wild silvery minnows and wild caught eggs and then released into the wild. Wild gravid adults are successfully spawned in captivity at the City’s propagation facilities. Eggs are raised and
released as larval fish. Marked fish have been released by the NMFRO since 2002 under a formal augmentation effort funded by the Collaborative Program. Silvery minnows are released into the Angostura Reach of the river near Alameda Bridge to ensure downstream repopulation. Eggs left in the wild have a very low survivorship and this ensures that an adequate number of spawning adults are present to repopulate the river each year. While hatcheries continue to successfully spawn silvery minnow, wild eggs are collected to ensure genetic diversity within the remaining population.

Ongoing Research

There is ongoing research by the NMFRO and University of New Mexico (UNM) to examine the movement of silvery minnow. Augmented fish are marked with a visible fluorescent elastomer tag and released in large numbers in a few locations. Crews sample upstream and downstream from the release site in an attempt to capture the marked fish. Preliminary results indicate that the majority of silvery minnows disperse a few miles downstream. One individual was captured 15.7 mi (25.3 km) upstream from its release site (Platania et al. 2003). Monitoring within 48 hours after the release of the 41,500 silvery minnows resulted in the capture of 937 fish. Of these, 928 were marked and 927 were collected downstream of the release point. The farthest downstream point of recapture was 9.4 mi (15.1 km).

In 2002, a hybridization study involving the plains minnow and silvery minnow was conducted to determine the genetic viability of hybrids. Plains minnow are found in the Pecos River where reintroduction of silvery minnow is being considered. The results are preliminary because the number of trials was low and because there is some question about the fitness of the females used in the experiments. The plains minnow and silvery minnow did spawn with each other and the hybrid eggs hatched. However, none of the larvae lived longer than 96 hours. The control larvae (non-hybrids) for both the plains minnow and silvery minnow lived until the end of the study (24 days) (Caldwell 2002).

Due to the increased efforts in captive propagation, recent studies by UNM have focused on the genetic composition of the silvery minnow. This research indicates that the net effective population size (Ne) (the number of individuals that contribute to maintaining the genetic variation of a population) of the silvery minnow in the wild is between 60-250 fish (T. Turner, UNM, pers. comm. 2003). It has been suggested that a Ne of 500 fish is needed to retain the long-term adaptive potential of a population (Franklin 1980). No significant genetic differences have been found in populations isolated in the different reaches of the Rio Grande (D. Alo UNM, pers. comm. 2002). Because the number of wild fish in the river appears to be low, the addition of thousands of silvery minnows raised in captivity could impact the genetic structure of the population. The propagation effort should be sufficient to maintain 100,000 to 1,000,000 fish in the wild (T. Turner, UNM, pers. comm. 2003). For instance if it were determined that 50,000 silvery minnow were in the wild, a minimum of 50,000 adult fish should be in propagation facilities. We do not know how many fish are in the wild so it is difficult at this time to determine the exact number needed in propagation facilities. However, to insure against a catastrophic event where most wild fish are lost, it is suggested that 100,000 to 1,000,000 silvery minnow should be kept in propagation facilities to maintain a sufficient amount of genetic

Permitted and/or Authorized Take

Take is authorized by section 10, and incidental take is permitted under section 7. These permits and/or authorizations are issued by the Service. Applicants for section 10 permits must also acquire a permit from the State to “take” or collect silvery minnows. Many of the permits issued under section 10 allow take for the purpose of collection and salvage of silvery minnows and eggs for captive propagation. Eggs, larvae, and adults are also collected for scientific studies to further our knowledge about the species and how best to conserve the silvery minnow. Because of the population decline from 2002-2004, the Service has reduced the amount of take permitted for voucher specimens in the wild.

Incidental take of silvery minnows is authorized through section 7 consultation associated with the March 2003, programmatic biological opinion on water operations and maintenance in the Middle Rio Grande (Service 2003), the City of Albuquerque Drinking Water project, the Isleta Island Removal Project, the Tiffany Plug Removal Project, and the several Albuquerque Reach habitat restoration projects.

Factors Affecting Species Environment within the Action Area

On the Middle Rio Grande, the following past and present federal, state, private, and other human activities, in addition to those discussed above, have affected the silvery minnow and its critical habitat:

1. **Release of Carryover Storage from Abiquiu Reservoir to Elephant Butte Reservoir:** The Army Corps of Engineers (Corps) consulted with the Service on the release of water during the winter of 1995. Ninety-eight thousand af (12,054 hectare-meters) of water was released from November 1, 1995 to March 31, 1996, at a rate of 325 cfs (9.8 cm). This discharge is above the historic winter flow rate. Substantial changes in the flow regime that do not mimic the historic hydrograph can be detrimental to the silvery minnow.

2. **Belen Levees:** These levees contribute to floodplain constriction and habitat degradation for the silvery minnow. Levees at these sites result in a reduction in the amount and quality of suitable habitat for the silvery minnow.

3. **Creation of a Conservation Pool for Storage of Native Water in Abiquiu and Jemez Canyon Reservoirs and Release of a Spike Flow:** The City created space (100,000 af) in Abiquiu Reservoir and the Corps created space in Jemez Canyon Reservoir to store Rio Grande Compact credit water for use in 2001, 2002, and 2003 for the benefit of listed species. The conservation pool was created with the understanding that the management of this water would be decided in later settlement meetings or during water operations conference calls. In addition, a supplemental release (spike) occurred in May 2001 to
accommodate movement of sediment as a part of habitat restoration and construction on the Rio Grande and Jemez River on the Santa Ana Pueblo.

4. Programmatic Biological Opinions on the Effects of Actions Associated with the U. S. Bureau of Reclamation’s, U. S. Army Corps of Engineers’, and non-federal Entities’ Discretionary Actions Related to Water Management on the Middle Rio Grande: In 2001 and 2003, the Service issued jeopardy biological opinions on the effects of water operations and management activities in the Middle Rio Grande on the silvery minnow and flycatcher. In 2002, the Service issued a jeopardy biological opinion for the silvery minnow. The current opinion, issued on March 17, 2003, contains one RPA with multiple elements. These elements set forth a flow regime in the Middle Rio Grande and describe habitat improvements necessary to alleviate jeopardy to both the silvery minnow and flycatcher.

5. Los Lunas Habitat Restoration Project: On February 6, 2002, the Service completed this consultation, which tiered from the programmatic biological opinion on water management on the Middle Rio Grande issued June 29, 2001. This project is intended to partially fill element J of the Reasonable and Prudent Alternative from the programmatic biological opinion to conduct habitat/ecosystem restoration projects in the Middle Rio Grande to benefit the silvery minnow and flycatcher. Approximately 37 acres of native riparian and 40 acres of aquatic habitat have been created by this project. This project includes side-channels resulting in increased inundation frequency and will result in inundation of the area at flows greater than or equal to 2,500 cfs. A variety of substrate elevations will also allow inundation of some areas when flows are less than 2,500 cfs.

6. Silvery minnow salvage and relocation: During river drying, the Service’s silvery minnow salvage crew captures and relocates silvery minnow. Since 1996, approximately 770,000 silvery minnow have been rescued and relocated to wet reaches, the majority of which were released in the Angostura Reach. Studies are being conducted to determine survival rates for salvaged fish.

Summary
The remaining population of the silvery minnow is restricted to approximately 5 percent of its historic range. Every year since 1996, there has been at least one drying event in the river that has negatively affected the silvery minnow population. The population is unable to expand its distribution because poor habitat quality and Cochiti Dam prevent upstream movement and Elephant Butte Reservoir blocks downstream movement (Service 1999). Augmentation of silvery minnows with captive-reared fish will continue. Ongoing monitoring and evaluation of these fish will provide information regarding the survival and movement of individuals.

Water withdrawals from the river and water releases from dams severely limit the survival of silvery minnows. The consumption of shallow groundwater and surface water for municipal, industrial, and irrigation uses continues to reduce the amount of flow in the Rio Grande and eliminate habitat for the silvery minnow (Reclamation 2003). However, under state law, the
municipal and industrial users are required to offset the effects of groundwater pumping on the surface water system. The City, for example, has been offsetting their surface water depletions with 60,000 af per year (Reclamation 2003). The effect of water withdrawals means that discharge from WWTPs and irrigation return flows will have greater importance to the silvery minnow and a greater impact on water quality. Lethal levels of chlorine and ammonia have been released from the WWTPs in the last several years. In addition, a variety of organic chemicals, heavy metals, nutrients, and pesticides have been documented in storm water channels feeding into the river and contribute to the overall degradation of water quality.

Various conservation efforts have been undertaken in the past and others are currently being carried out in the middle Rio Grande. Silvery minnow abundance has increased over 2002-2003 population levels. However, the threat of extinction for the silvery minnow continues because of increased reliance on captive propagation, the fragmented and isolated nature of currently occupied habitat, and the absence of silvery minnows in other parts of the historic range. The increased abundance of silvery minnow from 2004-2006 is a positive sign. Nevertheless, the threats that endanger this species are still present.

IV. EFFECTS OF THE ACTION

‘Effects of the Action’ refers to the direct and indirect effects of an action on the species or critical habitat, together with the effects of other activities that are interrelated and interdependent with that action, which will be added to the environmental baseline. Indirect effects are those that are caused by the proposed action and are later in time, but are still reasonably certain to occur.

Direct Effects
Silvery minnows are present in the Isleta Reach (Dudley et al. 2006) and are expected to be present within the action area. The primary adverse effects of the proposed action on the silvery minnow will result from the placement of riprap at the toe of the riprap slope below the waterline. Silvery minnows may be harrassed as the excavator moves through the water at the project site. Fleeing from disturbance represents an expenditure of energy that the fish would not have without the project. However, this form of harassment would be short in duration. The potential number of individuals within the immediate vicinity of the equipment affected will likely be relatively low.

Critical Habitat Effects
Some of the primary constituent elements of silvery minnow critical habitat will be adversely affected by the proposed action. Specifically, the proposed action maintains a riprap bankline which confines the channel, increases water velocities and prevents the formation of backwaters, embayments and other slow velocity habitat. This habitat is necessary for development and hatching of eggs and the survival of the species from larvae to adult. Low-velocity habitat provides food, shelter, and sites for reproduction, which are essential for the survival and reproduction of Rio Grande silvery minnow.
However, we find that the effects to the function and conservation role of critical habitat relative to the entire designation are not significant because the impacts will be temporary and occur in a very small area relative to the overall critical habitat designation. Therefore, we conclude that the primary constituent elements of silvery minnow critical habitat will serve the intended conservation role for species with implementation of the proposed action.

Cumulative Effects
Cumulative effects include the effects of future state, tribal, local or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the ESA.

Cumulative effects include:

- Increases in development and urbanization in the historic floodplain that result in reduced peak flows because of the flooding threat. Development in the floodplain makes it more difficult, if not impossible, to transport large quantities of water that would overbank and create low velocity habitats that silvery minnow prefer. Development also reduces overbank flooding favorable for the silvery minnow.

- Increased urban use of water, including municipal and private uses. Further use of surface water from the Rio Grande will reduce river flow and decrease available habitat for the silvery minnow.

- Contamination of the water (i.e., sewage treatment plants, runoff from small feed lots and dairies, and residential, industrial, and commercial development). A decrease in water quality and gradual changes in floodplain vegetation from native riparian species to non-native species (i.e., saltcedar) could adversely affect the silvery minnow and its habitat. Silvery minnow larvae require shallow, low velocity habitats for development. Therefore, encroachment of non-native species results in less habitat available for the silvery minnow.

- Human activities that may adversely impact the silvery minnow by decreasing the amount and suitability of habitat include dewatering the river for irrigation; increased water pollution from non-point sources; habitat disturbance from recreational use, suburban development, and removal of large woody debris.

The Service anticipates that these types of activities will continue to threaten the survival and recovery of the silvery minnow by reducing the quantity and quality of habitat through continuation and expansion of habitat degrading actions.

V. CONCLUSION

After reviewing the current status of the silvery minnow, the environmental baseline for the
action area, the effects of the proposed action, and the cumulative effects, it is the Service's biological opinion that the Drain Unit 7 Priority Site Project, as proposed in the November 2006 BA, is not likely to jeopardize the continued existence of the silvery minnow. Sampling data indicate improvement in numbers of silvery minnow since 2003. The level take associated with this project is unlikely to appreciably diminish the population in the San Acacia Reach. The project is likely to have a short-term adverse effect on individual silvery minnows, which may be present in the action area, but impacts will be minimal.

We found that the proposed action has the potential to cause adverse effects to approximately 2000 square feet of designated critical habitat. Nevertheless, it is anticipated that these impacts will be short-term and will not affect the role of critical habitat relative to the conservation of the silvery minnow and to the overall critical habitat designation. The conservation measures included in the BA minimize adverse effects to the silvery minnow and designated critical habitat. We also do not expect the effects of the proposed action to appreciably alter the function and intended conservation role of silvery minnow critical habitat.

INCIDENTAL TAKE STATEMENT

Section 9 of the ESA and federal regulation pursuant to section 4(d) of the ESA prohibit the take of endangered and threatened species, respectively, without special exemption. Take is defined as to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture or collect, or to attempt to engage in any such conduct. Harm is further defined by the Service to include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding, or sheltering. Harass is defined by the Service as intentional or negligent actions that create the likelihood of injury to listed species to such an extent as to significantly disrupt normal behavior patterns which include, but are not limited to, breeding, feeding, or sheltering. Incidental take is defined as take that is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity. Under the terms of section 7(b)(4) and section 7(o)(2), taking that is incidental to and not intended as part of the agency action is not considered to be prohibited taking under the ESA provided that such taking is in compliance with the terms and conditions of this Incidental Take Statement.

The measures described below are non-discretionary, and must be undertaken by BOR so that they become binding conditions of any grant or permit issued, as appropriate, for the exemption in section 7(o)(2) to apply. BOR has a continuing duty to regulate the activity covered by this incidental take statement. If BOR (1) fails to assume and implement the terms and conditions or (2) fails to require adherence to the terms and conditions of the incidental take statement through enforceable terms that are added to the permit or grand document, the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental take, BOR must report the progress of the action and its impact on the species to the Service as specified in the incidental take statement (50 CFR §402.14(i)(3)).
Amount or Extent of Take Anticipated
The Service has developed the following incidental take statement based on the premise that the Drain Unit 7 Priority Site Project will be implemented as proposed. Take of silvery minnows is expected in the form of harassment during river maintenance activities.

The Service anticipates that take in the form of harassment may affect up to 298 silvery minnows during habitat construction. We base this figure on the following assumptions. Riprap will be placed along 200 feet of shoreline and extend 10 feet into the water. Currently, the average density of silvery minnows in the project area is 1.6/100 m², therefore, approximately 298 silvery minnow will be harassed by the movement of equipment through the water.

Effect of Take
The Service has determined that this level of anticipated take is not likely to result in jeopardy to the silvery minnow. The river maintenance project is likely to have adverse effects on individual silvery minnows but the effects on the population will be short term.

Reasonable and Prudent Measures
The Service believes the following reasonable and prudent measure is necessary and appropriate to minimize impacts of incidental take of the silvery minnow:

1. Minimize take of silvery minnows due to river maintenance activities.
2. Continue to work collaboratively with the Service on the Middle Rio Grande Endangered Species Act Collaborative Program.

Terms and Conditions
Compliance with the following terms and conditions must be achieved in order to be exempt from the prohibitions of section 9 of the ESA. These terms and conditions implement the Drain Unit 7 Extension Priority Site Project described above. These terms and conditions are non-discretionary.

To implement RPM 1, BOR shall:

1. Ensure that all in-channel maintenance work is complete prior to the initiation of spawning in the San Acacia Reach.

To Implement RPM 2, BOR shall:

1. Work to further conduct habitat/ecosystem restoration projects in the Middle Rio Grande to benefit the silvery minnow.

CONSERVATION RECOMMENDATIONS
Section 7(a)(1) of the ESA directs Federal agencies to utilize their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and
threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information. The FWS recommends the following conservation activities:

1. Encourage adaptive management of flows and conservation of water to benefit listed species.

RE-INITIATION NOTICE

This concludes formal consultation on the actions described in the August 2006 biological assessment. As provided in 50 CFR § 402.16, re-initiation of formal consultation is required where discretionary federal agency involvement or control over the action has been retained (or is authorized by law) and if: (1) The amount or extent of incidental take is exceeded; (2) new information reveals effects of the agency action that may affect listed species or critical habitat in a manner or to an extent not considered in this BO; (3) the agency action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this BO; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, any operations causing such take must cease pending re-initiation.

In future correspondence on this project, please refer to consultation number 22420-2007-F-0041. If you have any questions or would like to discuss any part of this biological opinion, please contact Jennifer Parody of my staff at (505) 761-4710.

Wally Murphy

cc:
Assistant Regional Director (ES), Region 2, U.S. Fish and Wildlife Service, Albuquerque, NM
Regional Section 7 Coordinator (ES), Region 2, U.S. Fish and Wildlife Service, Albuquerque, NM
LITERATURE CITED

