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APPENDIX E - POPULATION AND RANGEWIDE HABITAT MONITORING 
PROCEDURES 
 
In developing the original Recovery Plan (USDI FWS 1995), the Recovery Team assimilated, 
reviewed, and analyzed data generated by the Mexican Spotted Owl Monitoring Program of the 
FS Southwestern Region.  The Recovery Team also compiled and reviewed data from the BLM 
and the Intermountain and Rocky Mountain Regions, FS.  In addition, the Recovery Team 
evaluated results of a pilot study (Ganey et al. 2004) conducted to test the population-monitoring 
procedures proposed in USDI FWS (1995) and more recent studies that have estimated the 
probability of site occupancy by Mexican spotted owls (Lavier 2006, Mullet 2008).  Based on 
lessons learned from these efforts, we offer an alternative design for monitoring the Mexican 
spotted owl population within the U.S.  This approach would measure the critical variables – 
changes in owl site occupancy rates and changes in habitat – needed for delisting the species (see 
Part III.E). 
 
Our proposed approach uses occupancy monitoring to evaluate trends in the owl population. 
Occupancy monitoring is based on mark-recapture theory (MacKenzie et al. 2002, 2003, see also 
MacKenzie et al. 2006) and allows for estimating detection probabilities and correcting directly 
observed estimates of occupancy rates.  This detail is critical, because it is likely that not all 
resident owls will be detected in a given year and because detection probabilities may change 
over time.  Such changes in detectability of owls could result in erroneous trend estimates and 
misguided conservation efforts. 
 
Accurate and efficient protocols for occupancy monitoring require pilot studies to estimate 
detection probabilities and to estimate variances associated with detection probabilities, 
occupancy rates, and important habitat variables.  For occupancy monitoring, these estimates 
then can be used to determine the number of call stations per survey plot and to refine the 
number of visits per plot.  Most importantly, the numbers of plots required within predefined 
strata and EMU can be determined more precisely. 
 
Habitat monitoring should entail remote sensing of habitat across the range of the bird and 
estimates of desired conditions (Appendix C, Tables C.2, C.3), some of which are best measured 
on the ground.  Although we do not advocate a specific methodology for ground measures, the 
FS Forest Inventory and Analysis (FIA) program offers some promise.  We describe some 
relevant details of this program below. 

 
1.   Population Occupancy Modeling 
 
Monitoring habitat as a singular effort will not adequately reveal the true status of the owl 
population because numerous factors besides habitat can influence population levels.  Thus, it is 
desirable to simultaneously monitor trends in both habitat and owl abundance (or an acceptable 
surrogate index). 
 
A limitation of the monitoring scheme proposed here (and all known approaches) is that it 
monitors primarily territorial birds.  The population of non-territorial “floaters” (Franklin 2001) 
is difficult to detect reliably.  Evidence for Mexican spotted owls suggests that a large population 
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of floaters does not exist, however.  Specifically, the proportion of subadult owls successfully 
holding territories is relatively high, suggesting that surplus older birds do not exist. For 
example, the proportion of the territorial population comprised of subadult females ranged as 
high as approximately 30–33% in two demographic study areas in Arizona and New Mexico 
over a seven-year period (Seamans et al. 1999: Fig. 1).  Further, density of territorial owls in 
these study areas tracked reproduction with a short lag period (Seamans et al. 1999: Fig. 5; 
Gutiérrez et al. 2003), again suggesting that there were not substantial numbers of floaters 
available to fill territory vacancies.  This evidence supports the use of trends in site occupancy as 
a reasonably sensitive measure of population trend. 
 
In the following sections, we outline a framework and statistical estimation approach for 
monitoring owl populations via directly estimating the site occupancy rate of territorial owls. 
Critical design and sampling details were developed from a pilot study (Ganey et al. 2004).  To 
illustrate the potential utility of FIA, we incorporated FIA into the occupancy monitoring plan so 
that microhabitat variables can be related to owl occupancy rates.  Managers can consider other 
habitat monitoring programs in lieu of FIA if available or developed. 
 
Monitoring Site Occupancy 
 
Although we support the idea of estimating population size directly and collecting associated 
demographic data as described in USDI FWS (1995), the results of the pilot study suggest that 
the costs for such a monitoring program are daunting.  Therefore, we propose this alternative 
monitoring program based on monitoring occupancy rates as an index of population size. 
 
Occupancy 
 
We define occupancy for Mexican spotted owls as the proportion of plots occupied by the 
species. Plots sampled will be square 1-km2 (0.36-mi2) blocks (UTM  of 100 ha (247 ac) that can 
be easily mapped using GIS, located using GPS, and surveyed to detect Mexican spotted owls.  
The population of plots from which samples are to be drawn will be defined based on FIA Phase 
2 state-wide maps.  The number of occupied plots divided by the total number of plots sampled 
(n) provides an estimate of the proportion of sites occupied (O), referred to as occupancy rate. 
 
We suggest that the owl monitoring plots be defined based on overlaying 16 of the 250-m (273-
yd) raster cells of the FIA state-wide maps.  The advantage of combining FIA plots and 
occupancy plots is that the FIA data can be used to determine which, if any, habitat variables 
sampled by FIA are associated with owl occupancy rates.  This would allow for estimation of 
trends in those variables from the full FIA database and from repeated samples over time. 
 
Statistical Model 
 
The proportion of occupied plots (occupancy rate) in year i is taken as iOiO δ+µ= , where iδ  is 
distributed with mean zero and variance 2σ , and Oµ  is the mean of occupancy across years.  The 
variance 2σ  is the temporal variation in the occupancy rate (i.e., the year-to-year variation in the 
proportion of sites occupied). 
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Because not all sites can be surveyed each time an estimate of occupancy is desired, a sample of 
plots is selected to estimate occupancy.  The estimate obtained is iii OO ε+=ˆ , where iε  is 

distributed with mean zero and sampling variance Var( ii OO |ˆ ).  In actuality, the occupancy rate 
will be estimated through a stratified simple random sample without replacement. 
 
Sampling Plan to Estimate Oi  
 
Occupancy will be estimated by sampling occupancy sampling units (plots), consisting of square 
1-km2 areas.  A plot size of 1 km2 was selected to keep sampling units small and for operational 
simplicity.  Small sampling units are desirable in this monitoring scheme because the response 
variable is basically owl presence-absence, and so it varies only from zero to one.  As the 
number of owls present in a sample block increases above one, the occupancy index becomes 
less sensitive as an index of actual population change (i.e., as long as one owl remains, one or 
more birds could disappear with no change detected).  Thus, it is desirable to minimize the 
probability that a sample unit overlays >1 owl territory.  In addition, spacing constraints should 
be applied so that sampled blocks are separated by >4 km (2.5 mi), to minimize the probability 
of detecting the same owl(s) on >1 sampled unit.  For example, mean nearest-neighbor distances 
between territorial owls in two study areas in Arizona (2.4 km [1.4 mi], n = 42 pairs, May and 
Gutiérrez 2002) and New Mexico (2.1 km [1.3 mi], n = 31 pairs, Peery et al. 1999), suggested 
that a separation of 4 km (2.4 mi) is appropriate.  Both of these constraints (size and spacing) 
should help ensure that occupancy rate actually tracks abundance (i.e., no sampled unit should 
contain large numbers of owls and no owls should be sampled on >1 unit).  We envision drawing 
a random sample of plots and sampling these same plots each year to minimize the variation 
between years.  Drawing a new sample of plots each year has some advantages (see below) but 
would increase year-to-year variation over our proposed design. 
 
Each of the Mexican spotted owl EMUs to be included in monitoring must be partitioned into 
occupancy sampling units consisting of existing FIA Phase 2 plots.  This partitioning must be 
done before a sample is drawn so that a random sample can be drawn from the entire population 
of occupancy sampling units.  Habitat characteristics of all sampling units must be known to 
estimate and implement a ratio estimator based on the estimated probability of occupancy for 
each potential plot (Cochran 1977, Bowden et al. 2003) and to estimate occupancy rate for all the 
plots in the sampling frame. 
 
The sampling scheme will be a stratified random sample without replacement, with stratification 
consisting of at least the EMUs.  Additional stratification should be based at least on elevation, 
as was done for the previous quadrat sampling scheme (Ganey et al. 2004), on topographic 
indices (see Bowden et al. 2003), and/or on FIA habitat maps.  We expect that one stratum in 
each EMU will consist of non-habitat for owls, defined as low elevation, unforested areas 
lacking canyons or other topographic relief.  Delineation of non-habitat will be based on 
validated owl habitat models and through Phase 1 FIA data and Phase 2 FIA state-wide maps. 
One important aspect of classifying owl habitat is that non-forested areas must be included in 
some locales, particularly owl habitat that occurs in non-forested canyons.  Stratification 
variables such as forest type also should be used where available, and clearly the FIA Phase 1 
and Phase 2 data can be used to provide stratification information.  Likely, three forest types 
should be defined within each of the five EMUs: mixed conifer, ponderosa pine-Gambel oak, 
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and Madrean pine-oak.  In addition, some plots should be placed in a canyon stratum in each 
EMU.  The canyon stratum should be defined based on topographic roughness.  Thus, we 
envision up to five strata in each of the five EMUs, for a potential total of 25 strata. 
 
Stratification serves two purposes here.  First, and most importantly, stratification distributes the 
sample across the sampling frame (and thus provides an argument for stratifying by EMU).  With 
a simple random sample, there is a risk that all or most of the sampled plots are in one localized 
area.  As a result, the sample is not considered representative of the sampling frame (even though 
such a sample has the same probability of being selected as a sample where the plots are more 
evenly distributed).  Second, stratification provides improved estimates because proper 
stratification reduces the variability among plots, and thus results in more precise estimates. 
There is a need to make inferences from individual stratum estimates for the EMUs because each 
of these units must demonstrate a stable or increasing occupancy rate (see Part III.E).  When 
inferences are stratum-specific, then each stratum must be considered a separate sampling frame.  
In the monitoring scheme we describe, the stratum-specific estimates are viewed as essential 
information, and it is thus necessary to obtain precise estimates of occupancy for each stratum.  
As we describe below, data from all the plots where owls are detected, regardless of which 
stratum a plot occupies, will be used to generate models of owl detection probabilities.  
Therefore, the effect of combining data across strata will improve the precision of the estimates 
across strata, but it will also result in a sampling covariance across strata that must be handled 
with the methods presented by Bowden et al. (2003). 
 
Plots within strata should either be selected with simple random sampling, or preferably, using 
generalized random tessellation stratified (GRTS) sampling (Stevens and Olsen 1999, 2003, 
2004) to obtain a spatially balanced sample within each stratum.  GRTS sampling ranks the order 
of sampling of the plots within each stratum.  Computer code for Windows is available at on the 
West-Inc web site, www.west-inc.com, for selecting a GRTS sample. 
 
Estimation of occupancy for each sampling unit will be made from two or more visits, because 
detection rate can be estimated only when plots are visited >1 time.  Based on at least two visits, 
estimates of the detection rate of owls on an occupancy sampling unit and occupancy rate for the 
sample can be estimated using the maximum likelihood approach of MacKenzie et al. (2002, 
2003).  Parameters estimated are the occupancy probability for the sampling unit ( ψ ) and 
probability of detection given owls are present (p) for the sample.  To determine the proportion 
of false negative plots (i.e., proportion of plots that are occupied but on which owls are not 
detected), the modeling approach requires at least two visits to a sample of plots to be able to 
estimate p and then ψ .  
 
Several examples will now be given to explain this estimator.  First, assume one or more owls 
are detected on occupancy sampling unit j on each of the t = 2 visits, and assume that the 
probability of detection is not occasion-specific. The probability of this series of events is

jjj ppψ . If owls are detected only on the first visit, then the probability is )1( jjj pp −ψ .  If they 
are only detected on the last visit, then the probability is jjj pp )1( −ψ .  If owls are never 
detected, then the probability is )1()1)(1( jjjj pp ψψ −+−− .  These four probabilities sum to 
one because they are the only possible observations.  Thus, these probabilities can be modeled in 
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a maximum likelihood estimation framework (using numerical optimization of the log 
likelihood) based on observed histories of owl detections on sampled units. 
 
We expect that habitat information provided by FIA Phase 2 state-wide maps will provide useful 
predictors of owl occupancy rates.  We envision two separate analyses of the occupancy data that 
incorporate habitat information.  The first analysis would link FIA variables to occupancy rates, 
specifically the key variables listed above.  Models that incorporate multiple covariates and 
possibly their interactions should be developed to identity habitat variables important for further 
analysis.  That is, the trends in the identified variables will be examined with the FIA data base. 
These habitat variables will be constructed from the means or sums of variables provided by the 
16 250-m (273-yd) cells of the FIA state-wide maps that underlie each of the 1-km2 (0.36-mi2) 
occupancy plots.  
 
The FIA covariates may not prove useful as predictors of owl occupancy.  If so, this should not 
necessarily be interpreted as evidence that owl occupancy is not related to habitat conditions. 
Several alternative explanations may better explain this outcome.  For example, the variables 
included in the analysis may not relate directly to owls, or spatial scale issues may mask any 
existing relationship. 
 
The second analysis will be to identity functions of the FIA variables that can be used in a ratio 
estimator sampling model (Cochran 1977).  Typically, ratio estimators use a single variable to 
improve the precision of the desired estimate.  For example, Ganey et al. (2004) found that the 
triangulated irregular network (TIN) ratio was an important variable for use as a ratio estimator, 
and the TIN ratio reduced the variance of the estimate by nearly a factor of four.  We hope to 
identify ratio covariates that will be useful in improving precision of the occupancy estimates, 
although these models will likely need to be stratum-specific to accommodate the differences in 
the strata identified. 
 
If plot-specific covariates from Phase 2 FIA state-wide maps do not improve the estimation of 
occupancy rate within a strata, then the estimate of ψ  obtained without covariates for the plots 
would be an appropriate estimate of O, or model averaging might be used to average ψ̂  from 
multiple models but still providing an estimate of O.  However, plot-specific covariates would be 
expected to improve the estimate of occupancy probability for each plot, and also of p (see 
Bowden et al. 2003).  The occupancy estimator has been implemented in Program MARK 
(White and Burnham 1999) so that the use of individual covariates, AICc model selection, and 
variance components capabilities already available in this software package (White et al. 2001) 
can be used with this model.  In addition, Bayesian estimation methods were added to MARK in 
2004, allowing estimation of process variances through the use of hyper-distributions.  Plot-
specific covariates can be used to build a model from the data on the sampled plots to estimate 
the probability of occupancy of a plot.  The resulting model on a logit scale then could be used in 
a ratio (or regression) estimator to estimate the number of occupied plots for the sampling frame 
as we describe above.  Thus the occupancy rate ( iO ) for a stratum for year i would be estimated 
based on the covariate values for each of the plots in the strata.  If the model (and associated 
covariates) predicting the probability of occupancy of a sampling unit is poor, in the sense that 
the model does not improve the predictions of the probability of occupancy, then the occupancy 
estimate from the sample is still a valid estimator of the occupancy rate of the stratum.  However, 
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if the model is a good predictor, then using the covariate information from each potential 
sampling unit in the stratum will improve the estimate for the stratum.  That is, the additional 
information available for each unsampled plot in the stratum is used, resulting in a less biased 
and more precise stratum-level estimate. 
 
Multiple strata might be pooled in a MARK analysis to obtain better estimates of detection 
probabilities and the functional relationship between a covariate and probability of occupancy, 
but estimates of occupancy rate would still be specific to each stratum.  However, if multiple 
strata are pooled to estimate occupancy, then a sampling covariance is induced between the strata 
estimates, necessitating the use of a ratio estimator incorporating this sampling covariance 
(Bowden et al. 2003). 
 
Another possibility that could be explored is to use cluster sampling to sample plots (but see 
above concern about spacing of sample units).  Biologists conducting the surveys could decrease 
travel time between plots, increasing the number of plots that could be surveyed on one occasion. 
The difficultly with cluster sampling is how to handle the lack of independence of plots within 
the same cluster and the effect of this lack of independence on estimation of ψ .  Further, cluster 
sampling improves efficiency of the sampling design when the variance among cluster totals is 
small and, conversely, variance within the cluster is large (Scheaffer et al. 1986).  Likely exactly 
the opposite is the case for clusters of 1-km2 (0.36-mi2) plots because of a high spatial 
autocorrelation between plots.  Clusters would have to be quite large to make cluster sampling 
more efficient than random sampling.  However, cluster sampling should still be an option that is 
considered to decrease travel time. 
 
One fundamental part of the field methodology is yet to be resolved fully.  We lean toward 
basing occupancy estimates on whether or not a bird was detected from a call point in a sample 
plot, for operational simplicity.  That is, if a surveyor calls from within the plot and hears a 
response, the plot is considered occupied, regardless of whether the owl was physically on the 
plot.  The alternative approach is to require the surveyor to verify that the owl responding is 
physically on the plot being sampled, which is a time-intensive (and often dangerous) nighttime 
activity.  However, not requiring the owl to physically exist on the plot at the time of the survey 
will cause detection probabilities to be lower because of the heterogeneity caused by owl 
responses from varying distances off the plot.  Peripheral birds may be detected on some 
occasions and not others.  In contrast, birds residing on the plot would generally be detected with 
higher probability.  As a result, there is a tradeoff here – if keeping detection probabilities high is 
a priority, only plots where owls are detected on the plot should be considered occupied. 
However, because of the objectivity of monitoring when the detections are not limited to just the 
plot being sampled, we tend to prefer this simpler approach. 
 
An approach that could encompass both types of detections is the multi-state occupancy model 
developed by MacKenzie et al. (2009).  That is, each plot would conceptually be classified into 
one of three states: unoccupied, owl(s) detected but unsure if phyisically on the plot, and owl(s) 
definitely detecton on the plot.  Detections for which the observer is not sure if the owl is on the 
plot could define a lower state, and detections that are unquestionably on the plot are defined as a 
higher state.  These observer-driven extensions are characterized by ambiguity in both species 
presence and correct state classification, caused by imperfect detection.  A second applicaton of 
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the multi-state occupancy model might be to define the lower state as one or more owls detected 
on the plot, and a higher state as reproduction having occurred on the plot because young are 
present.  This latter example is illustrated in MacKenzie et al. (2009) with California spotted 
owls. 
 
Based on data from the pilot study on population monitoring (Ganey et al. 2004), detection 
probabilities for two occasions were sufficiently high when six to seven call points were visited 
within the 1-km2 plot (Fig. E.1).  The population monitoring pilot study was not intended to 
provide call points well-spaced to cover 1-km2 plots, however, so this figure may present a 
worst-case scenario.  It is suspected that five call points would be adequate for most UTM 
blocks.  Further, because a site is classified as occupied if an owl is detected, the number of call 
points that a surveyor must actually visit will depend on when an owl is first detected (i.e., if an 
owl is detected from the first call point, the remaining call points need not be visited). 

 

Figure E.1  Probability of detection for a 1-km2 (0.36-mi2) plot for the number of points on the 
plot from which owls are called and the number of occasions on which the plot is visited.  For 
example, a plot with two visits and six points called would have a detection probability of >0.8 
that an owl was detected on at least one of the visits.  Note, however, that even though detection 
probabilities are provided for a single visit, a sample of plots must be visited twice to be able to 
estimate the probability of detection (p) and hence the probability of occupancy, ψ . 
 
The results in Fig. E.1 above also demonstrate that increasing the number of visits to the plot 
from two to three or more provides only small increases in probability of detection.  Thus, we 
suggest visiting more plots two times rather than fewer plots three or more times. 
  

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

D
et

ec
tio

n 
Pr

ob
ab

ili
ty

 (p
) 

Number of Call Stations 

Single Occasion
2 Occasions
3 Occasions
4 Occasions



 

330 
 

Statistical Estimation of Trend in Occupancy 
 
The sequence of years for which occupancy rates are measured can be viewed as either a sample 
of all years, or as a fixed interval in time about which we desire to make inferences.  Different 
statistical models are appropriate for these different sets of assumptions.  A random effects 
model assumes that the sequence of years is a representative sample from a sampling frame of 
years.  As a result, inferences are being made to the entire sampling frame.  In contrast, the fixed 
effects model is only making inferences to the sequence of years measured. 
 
Random Effects Model.  Changes in occupancy across years are assumed to be a stochastic 
process, as we describe above.  When the mean of the process ( Oµ ) is assumed to be constant in 
the stochastic model described above, changes in occupancy are strictly random.  However, 
trends in occupancy may still be present, although the process generating these trends is purely 
random.  That is, by chance alone, a set of realized temporal observations may show a trend, 
even though the mean of the underlying process is not changing.  The hypothesis examined with 
a random effects model is that a trend in the occupancy process is taking place (i.e., that there is 
a trend in Oµ  through time).  The random effects estimator is supposed to detect a change only in 
the process. Therefore, potentially important trends in occupancy may be missed with the 
random effects estimator because these trends are only from variation due to iδ , not from 
changes in Oµ .  In addition, to detect trends in Oµ , a long time span of data is required. That is, 
the random effects model will not have much power to detect trends in relatively short spans 
(i.e., ≤10 years). 
 
An important assumption of the random effects model is that the sample of iÔ  across years is a 
random sample from all possible years to which inferences are being made.  In reality, this 
assumption is unobtainable because the years sampled are not randomly selected from a 
population of years. 
 
Fixed Effects Model.  The fixed effects model evaluates the trend in the realized sequence of 
occupancy estimates.  That is, the process generating the occupancy rates may not be changing 
(i.e., Oµ  is constant across time), but by chance alone, a realized sequence may show a trend. 
The fixed effects model will detect this trend, whereas the random effects model we describe 
above should not detect such “random” trends.  Realistically, the statistical procedure used to 
detect such random trends is desired because the interest is in providing management action as 
soon as possible given a downward trend in occupancy rates.  In such a situation, management 
actions will not have an impact because the process has not changed.  However, this is the price 
paid to achieve a more sensitive monitoring system. 
 
Therefore, we suggest that the sequence of occupancy estimates, iÔ , be analyzed with a fixed 
effects model.  It is recognizing that the years sampled were not drawn at random from a 
population of years and that the interest is in detecting downward trends in occupancy, even if 
the underlying process has not changed, because management actions require some lead time to 
have an impact on the Mexican spotted owl population. 
 



 

331 
 

Expected Precision of Occupancy Estimates 
We conducted simulations with Program MARK to determine the precision of the estimate of 
occupancy without individual covariates.  We simulated a factorial design of N = 200, 400, 800, 
and 1,600 occupancy sampling units, p = 0.6, 0.7, 0.8, and ψ  = 0.2.  For each scenario, we 
conducted 1,000 simulations to estimate the expected precision. We based the detection 
probabilities of p = 0.6, 0.7, and 0.8 on the probability of detection from the quadrat sample 
(Ganey et al. 2004), where detection of an individual owl was ~0.5 in roadless areas, and ~0.9 in 
roaded areas.  We also based the occupancy rate of 0.2 on results of the pilot study (Ganey et al. 
2004), where >50% of the high elevation quadrats were occupied.  However, because the 
quadrats were much larger than the occupancy sampling units, the expected occupancy rate of 
the occupancy sampling units will be considerably less, so we chose 0.2 as a reasonable value.  
Simulation results for the standard error of ψ̂  are shown in Fig. E.2 above for three values of p 
and a range of sample sizes. 
 
These results (Fig. E.2) suggest that a large number of occupancy sampling units must be 
measured in each stratum (or within an EMU) to obtain reasonable precision for Ô .  For 
example, sampling 1,600 occupancy sampling units in one stratum using a stratified random 
sample design would result in a standard error of 0.011 for p = 0.7.  If three strata in an EMU 
with this same standard error were combined, the overall estimate would have a standard error of 
0.011/ 3  = 0.00635, or approximately a ±6% confidence interval.  With this sampling precision, 
two consecutive year’s estimates with a 10% decline between years would likely be considered 
statistically different.  However, if only 200 occupancy sampling units were sampled in one 
stratum, giving a standard error of 0.032, a ±18% confidence interval would result.  This level of 

Figure E.2.  Standard error of the estimate of site occupancy rate for three levels of the 
detection probability, p, and two visits per site, as a function of the number of occupancy sites 
sampled. 
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precision would be adequate to detect a 25% decline between consecutive years.  What this result 
suggests is that any occupancy monitoring scheme implemented will only be able to detect 
changes over a large geographic area.  That is, multiple strata must be combined in order to 
obtain precise estimates of occupancy that will be useful in detecting changes. 
 
Power of Fixed Effects Analysis of Occupancy Estimates 
 
We conducted simulations using Program MARK and SAS to estimate the power of occupancy 
monitoring to detect trends in percent occupancy.  We simulated all combinations of the 
following models: a linear trend in ψ  = 0.00, −0.01, −0.02, and −0.03 each year; ψ  values in 
year zero of 0.10, 0.15, and 0.20; process standard deviation of ψ  of 0, 0.05, 0.10, 0.15, and 
0.20; p = 0.6, 0.7, 0.8, and 0.9; years of sampling 10, 15, ..., 30; and 200, 400, 800, and 1600 
sampling units.  Note that annual declines of 1, 2, and 3% result in declines of 10, 18, and 26% 
over 10 years, respectively. 
 
For 10 years of sampling, power of >90% was generally found for 1,600 sampling units and for 
800 sampling units with a process standard deviation of zero and a trend in ψ  of −0.03.  Thus, 
this power analysis confirms that large sample sizes will be required to detect changes in 
occupancy.  However, this power analysis does not incorporate plot-specific covariates that 
might greatly improve the precision of the annual occupancy estimates.  For example, plot-
specific covariates reduced the variance by half in the pilot population monitoring survey 
(Bowden et al. 2003, Ganey et al. 2004).  Hence, the sample sizes we determine here to provide 
adequate power may be more than needed to achieve the same power with a ratio estimator. 
Without a pilot study to determine these relationships (i.e., the degree of correlation between 
occupancy and plot-specific covariates) and to provide some idea of the temporal process 
variation in site occupancy rate, inadequate information is available to estimate the necessary 
sample sizes and/or power of a site occupancy monitoring design at this time. 
 
Relationship Between Occupancy Estimates and Population Abundance 
 
In theory and practice, there is some relationship between occupancy rate and population 
abundance.  Further, Royle and Nichols (2003) describe an approach for estimating occupancy 
rate or the proportion of an area occupied when heterogeneity in detection probability exists as a 
result of variation in abundance of the organism under study.  Variation in abundance induces 
variation in detection probability so that heterogeneity in abundance can be modeled as 
heterogeneity in detection probability.  Their method allows estimation of abundance from 
repeated observations of the presence or absence of animals without having to uniquely mark 
individuals in the population. 
 
However, we do not foresee the method of Royle and Nichols (2003) as useful in quantifying 
population abundance.  Their method requires some strong assumptions that will not be  met 
with spotted owl data collected on 1-km2 plots.  First, their model assumes that owls are 
randomly distributed on a homogeneous landscape, i.e., that the number of owls observed on a 
plot follows a Poisson distribution.  Clearly, this strong assumption is invalid for spotted owl 
data.  Second, their model basically assumes that the plots are geographically closed, i.e., no 
immigration or emigration from the plots.  As discussed above, there are issues with this 
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sampling plan about how well detections can be classified as coming from owls on the plot 
versus near the plot.  Obviously the closure assumption is not met, and hence population 
abundance estimated from this model will not be useful. 
 
2.   Potential Experiments 
 
Many habitat variables important to Mexican spotted owls cannot be monitored by remote 
sensing.  Further, it is important to ensure that adequate habitat is provided for key prey as well. 
Thus, we propose some potential experiments to relate habitat conditions to owl population 
dynamics where key habitat characteristics would be measured on the ground.  On-the-ground 
monitoring of relevant habitat characteristics would quantify their change at a local (i.e., within 
plot) scale and relate them to owl population dynamics. 
 
Monitoring of owl population size based on randomly selected quadrats (as proposed in USDI 
FWS 1995) provides the opportunity to conduct experiments to extend our knowledge of the 
impact of habitat manipulation on Mexican spotted owl population dynamics.  These 
experiments are proposed to produce credible, defensible, and reliable results (sensu Murphy and 
Noon 1991).  Quadrats within the population monitoring design would serve as experimental 
units for examining the effects of future management such as fires, grazing, timber harvest, and 
recreation. 
 
Given that a treatment is identified prior to its occurrence, vegetation measurements can take 
place on the site of the expected treatment and on a second, control quadrat that is selected based 
on its similarity to the expected treatment quadrat.  This experimental design is not a true 
experiment because the treatment is not randomly allocated to one of the pair of quadrats. 
However, this quasi-experiment is still more powerful in developing cause-and-effect 
relationships between habitat manipulations and owl population dynamics than the more 
common correlative designs used by past researchers.  Further, the capability to replicate the 
treatment exists because of the extensive number of quadrats that would be required for 
measuring changes in population size. 
 
Areas where planned treatments result in some form of habitat alteration provide excellent 
opportunities for quasi-experiments.  Vegetation measures should be taken immediately before 
and after the habitat-modifying event and thereafter at 5-year intervals.  Vegetation 
measurements that seem especially important to examine are tree size-class distribution, log 
size-class distribution, canopy cover, and shrub cover.  Results from these experiments, coupled 
with results of population monitoring, provide the basis for a predictive model of spotted owl 
habitat quality (assuming that owl occupancy reflects habitat quality). 
 
Unfortunately, for logistic reasons we describe above, this revision of the Recovery Plan shifts 
from direct monitoring of population size to monitoring site occupancy.  This modification in 
monitoring approach reduces our ability to detect impacts of management on owl populations 
because occupancy is not as sensitive a measure of the response of the owl population to 
manipulations as is the measurement of population change. 
 



 

334 
 

3.   Alternative Designs for Occupancy Modeling 
 
In developing the monitoring scheme proposed here, we considered many alternative schemes. 
Some of these are discussed here, simply to illustrate some of the alternatives considered and 
why they were rejected. 
 
Drawing a New Sample of Plots Each Year 
 
Instead of the proposed scheme of drawing an initial sample of plots from the sampling frame 
and monitoring these same plots through time, an alternative approach would be to draw a 
completely new random sample of plots each year.  For repeated sampling of a set of plots to be 
legitimate, normal activities that occur in spotted owl habitat should continue during the 
monitoring program, provided these activities meet the requirements of Section 7(a)(2) of the 
Act by not likely jeopardizing the continued existence of the Mexican spotted owl.  Because this 
Recovery Plan requires that PACs be placed around locations occupied by owls, management 
activities may be modified if an occupied site is found during the occupancy sampling.  Thus, the 
monitoring process affects the management of occupied sites, an undesirable situation.  The main 
advantage of a new sample each year is that it guards against the potential for land managers to 
manage areas within the plots differently than the remainder of the landscape.  Such differences 
in management will likely occur because of the establishment of PACs.  The price of this 
protection is relatively great, as illustrated by these three points:  1) the logistics of conducting 
the surveys each year would increase because of the new plots; 2) quasi-experiments to detect 
the relationship between habitat manipulations and owl occupancy rates would not be possible; 
and, 3) higher sampling intensities would be required because this design is less efficient (i.e., 
less precise) for estimating change.  Our proposed design is to draw an initial sample of plots and 
monitor those same plots each year.  Because the plots are small and randomly distributed, 
management activities probably cannot avoid them, even though PACs are established.  As a 
result, a fixed sample of plots likely is appropriate, so we do not deem it necessary to draw a new 
sample of plots each year. 
 
Conducting Surveys Less Often Than Yearly 
 
Instead of surveying plots each year, effort and cost could be saved by conducting the surveys at 
longer intervals, such as every five years.  An advantage of this approach is that costs will be 
lowered, and more precise estimates of population size could possibly be obtained by pooling 
money to conduct a few very good surveys instead of more frequent surveys with lower effort 
per survey.  The main disadvantage of this approach is that funding would not be allocated each 
year, which would likely make procuring funding for intense efforts every five years difficult. 
Finally, the ability to detect relationships between habitat manipulations and occupancy would 
be greatly decreased because this approach is more sensitive to variability introduced by the 
years chosen for sampling.  That is, less information is provided on temporal variation when 
samples are only taken every five years.  Therefore, we recommend sampling each year as the 
most effective approach to occupancy monitoring. 
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PACs as Sampling Units for Monitoring Occupancy 
 
The PACs would seem to be a natural sampling unit to monitor occupancy.  The difficulty with 
this scenario is that PACs are not a representative sample of available owl habitat.  The PACs 
can only be established by the presence of an owl.  As a result, the occupancy rate of PACs can 
only decline, since each PAC is initially occupied.  Additionally, PAC boundaries may change as 
neighboring sites are found to be occupied, creating a non-static sampling frame.  Therefore, we 
recommend that the sampling frame consist of 1-km2 plots rather than PACs. 
 
One important use of PACs would be to improve stratification of the proposed sampling plan, 
since the presence of a PAC suggests the area is likely occupied, and a large number of PACs 
would suggest that much of an area is occupied. 
 
4.   Rangewide Habitat Monitoring 
 
The primary objective of rangewide habitat monitoring is to validate the results of population 
occupancy monitoring.  For example, if occupancy monitoring indicates stable (or increasing) 
occupancy rates, habitat monitoring will provide a general measure of whether there will be 
sufficient nest and roost habitat for occupancy rates to remain stable.  We advocate no specific 
method for habitat monitoring and leave it up to management agencies to determine the best 
method(s) to use.  One possible approach is to use data from Forest Inventory and Analysis 
(FIA). We provide a brief overview of that program below. 
 
Introduction to the Forest Inventory and Analysis (FIA) Program  
 
Habitat monitoring depends on remote-sensing and stand-level vegetation data of habitat across 
the owl’s range, using vegetation measures from the FIA program.  The FIA has been in 
continuous operation since 1930 with a mission to “…make and keep current a comprehensive 
inventory and analysis of the present and prospective conditions of and requirements for the 
renewable resources of the forest and rangelands of the U.S…” 
 
The core design of FIA consists of three phases (http://fia.fs.fed.us/about.htm).  Phase 1 is a 
remote sensing phase aimed at classifying the land into forest and non-forest and taking spatial 
measurements such as fragmentation, urbanization, and distance variables.  This phase has 
historically been conducted using aerial photography, but it is changing to a system based on 
satellite imagery.  Data from this phase will be useful for monitoring macrohabitat changes in the 
range of the Mexican spotted owl. 
 
Phase 2 consists of field samples distributed across the landscape, based on a permanent grid 
system with an FIA plot approximately every 2430 ha (6,000 ac).  Field plots are located 
systematically on a 5-km (3.1-mi) grid regardless of whether they are forest or non-forest, and 
regardless of land ownership.  Permanent plots are installed on all land ownerships (after 
permission is granted by the landowner), but the actual locations are kept secret to prevent 
tampering with the site and to prevent the knowledge of plot presence to influence decisions.  
Plot locations that are in forested vegetation are visited by field crews who collect a variety of 
forest ecosystem data.  Data are collected at the forested plots regardless of the landowner’s 

http://fia.fs.fed.us/about.htm
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intended use or specific management actions.  Non-forest locations are also visited as necessary 
to quantify rates of land use change. The following data are collected at FIA plots: 
 

i. The general land use that was projected in Phase 1 is verified; 
ii. On forested plots, general stand characteristics are collected, such as forest type, stand 

age, and evidence of disturbance; 
iii. Individual tree measures such as diameter, height, damage, cull, and grade are recorded; 
iv. Tree regeneration is documented. 

 
The FIA Phase 3 program is based on a subset of the Phase 2 plots (located on a 22-km [13.7-mi] 
grid, sampling approximately 0.0405 ha every 38,881 ha [1 ac for every 96,000 ac]), from which 
an extended suite of ecological data (see list below) are collected.  These measures relate to 
forest ecosystem function, condition, and health.  Due to the seasonality associated with some of 
these measurements, the Phase 3 data are generally collected during a three-month window (Jun, 
Jul, and Aug).  The measurements on the Phase 3 subset of plots can be grouped into the 
following categories: 
 

i. Crown Conditions – generally, poor crown conditions are symptoms of trees under stress, 
and trees with good crown conditions are vigorous. 

ii. Soil Erosion Potential – estimates of soil erosion potential help identify areas that may 
contribute to water quality degradation. 

iii. Soil Chemical Analyses – collection and analysis of soil samples include estimates of site 
fertility and in some cases potential toxicity relating to acidic soils that relate to 
productivity. 

iv. Lichen Communities – the presence or absence of certain lichen species is indicative of 
air quality and climate changes. 

v. Ozone Bioindicator Plants – these plants have known sensitivities to ground-level ozone, 
although they are not necessarily collected on the Phase 3 plots (this effort can occur in 
the general plot area). 

vi. Vegetation Structure – the composition of vegetation (species and growth forms), 
abundance, and spatial arrangement in the forest. Also the presence of exotic and 
introduced plant species can be extracted from the collected data. 

vii. Down Woody Debris – this measurement is useful in determining fire fuel potential, and 
this information with the vegetation structure data can be used in wildlife habitat models. 

 
Though the FIA program has been in existence since the 1930s, the data collection methods have 
been modified periodically, and the grid system was recently revamped to improve the statistical 
validity of the sampling.  Currently, 10% of the plots in the western U.S. are scheduled to be 
sampled every year. 
 
Regardless of whether a plot is Phase 2 or Phase 3, after two or more visits have occurred at a 
single plot location, it is possible to analyze the data to derive estimates of trends in desired 
conditions (see Tables C.1 and C.2 in Appendix C). 
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Habitat Monitoring Methods 
 
As mentioned above, an essential feature of the FIA program is the confidentiality of the data. 
Because data are collected from all land ownerships and because the data would be biased if 
landowners or others knew the location of the plots and treated them differently than areas 
outside the plots, these locations and much of the data from them are not available directly to 
agencies.  Instead, the agencies must craft specific questions for the FIA program, and then FIA 
responds with answers to the data queries. 
 
We believe existing FIA sampling schemes for all three phases provide adequate data to meet the 
proposed delisting criteria.  Owl-relevant FIA variables should be used to monitor trends in owl 
habitat, providing a range-wide habitat sampling scheme.  Phase 1 data provide a comprehensive 
coverage of changes amount and type of forest habitat.  Phase 2 provides information on changes 
in forest-stand structure.  Phase 3 provides information on additional habitat variables important 
to owls, such as down woody debris 
 
For purposes of Mexican spotted owl recovery planning, the FIA plots would be aggregated into 
strata that would be based on 1) EMU, 2) elevation, and 3) forest type.  Stratification is important 
because it distributes samples throughout an EMU and improves precision of the habitat 
estimates. 
 
5.   Relating Habitat and Owl Occupancy Modeling 
 
For purposes of understanding progress towards recovery of the Mexican spotted owl, 
monitoring should document the changes in the owl population and its habitat when, in fact, such 
changes are occurring.  Thus, an effective monitoring program requires measuring changes in 
both habitat quantity and owl occurrence across the landscape.  To link the monitoring of owl 
occupancy in forest habitat with the habitat conditions, analysis of occupancy monitoring data 
should incorporate FIA data. 
 
Linking occupancy monitoring to FIA monitoring is recommended for three reasons.  First, the 
FIA inventory (both Phase 2 and Phase 3) provides microhabitat measurements that can be used 
to improve the occupancy monitoring scheme, providing predictor variables that will improve 
the estimation of the probability of occupancy and detection for the plots sampled. 
 
Second, important microhabitat variables that are correlated with owl occupancy will be 
determined that can then be used to evaluate temporal trends in microhabitat.  A strength of this 
approach is that FIA data collected prior to occupancy monitoring can also be analyzed to 
determine long-term trends in these variables.  In summary, linking FIA data with the occupancy 
monitoring sampling plots will provide:  1) the opportunity to identify microhabitat variables that 
relate to owl occupancy and detection rates, and 2) the ability to evaluate trends in these 
microhabitat variables through time. 
 
Third, FIA is a well-funded, ongoing effort.  Thus, it provides a unique opportunity to collect 
data potentially useful in monitoring trend in owl habitat, without requiring a separate and 
prohibitively expensive sampling effort. 
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6.   Conclusions 
 
The technology and expertise are available to monitor trends in Mexican spotted owl habitat and 
population size.  Clearly, the objectives and design of the monitoring program must be defined 
explicitly, and they must be attainable.  To implement the process, knowledgeable, dedicated 
people must be assigned the task.  Adequate training and constant feedback mechanisms are 
critical aspects to a successful monitoring program, as tenable conclusions can be based only on 
reliable data. 
 
  


