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Methodology 
 
The Service and state resource management agencies have latitude in determining the post-
delisting monitoring activities that are necessary and appropriate. The Endangered Species Act 
does not require the development of a formal Post-Delisting Monitoring (PDM) Plan. However, 
concurrent with our delisting rule, the Service and the Louisiana Department of Wildlife and 
Fisheries (LDWF) published a plan to extensively monitor the status of the Louisiana black bear 
for 7 years following its delisting (though the Endangered Species Act only requires that such 
monitoring occur for a minimum of 5 years post-delisting).  That monitoring, which is ongoing, 
is designed to detect any potential population decreases or threat increases that may warrant the 
implementation of measures to ensure that the Louisiana black bear remains secure from risk of 
extinction.  The results of our first year of annual post-delisting monitoring are provided in this 
report. 
 
On page 24 of the Louisiana Black Bear PDM Plan, it is stated that “A sensitivity analysis of 
Louisiana black bear demographic parameters is currently being conducted to better inform the 
decision threshold for post-delisting monitoring. Those methods, which can only improve 
monitoring accuracy, will be incorporated where appropriate once they are developed. . . ”.  
The Louisiana Black Bear PDM Plan (page 33) states “To ensure that the most reliable 
population demographic measure will be used for post-delisting monitoring, a sensitivity analysis 
is currently being conducted by USGS (Appendix 1).  That analysis will be used to directly 
calculate the relative importance of demographic rates to population growth rate and other 
population-level statistics (Caswell 2001) and to population persistence based on methods used 
in Laufenberg et al. (2013).  Decision thresholds identified by that analysis could then be used in 
conjunction with statistical power analyses to explore alternative study designs and data 
collection options for further improving or refining post-delisting monitoring protocols.”  
Likewise, the PDM Plan (page 35) provides a footnote to all trigger categories which states that 
the triggers “. . . may be adjusted based on the results of the sensitivity analyses in order to 
achieve the best accuracy.”  A synopsis of the planned sensitivity analysis was provided in 
Appendix 1, Page 52, of the PDM Plan. 
 
On January 23, 2017, we received a draft of the sensitivity analysis report from Dr. Joseph 
Clark.  That report underwent independent peer review1 and the final document was submitted to 
our office on March 13, 2017.  The PDM group (U.S. Fish and Wildlife Service – Louisiana 
Field Office, LDWF, and USGS [Southern Appalachian Research Branch] – University of 
Tennessee) concurred that the results of that sensitivity analysis reflect the best available science 
and have, in fact, better informed the decision threshold for post-delisting monitoring.  In 
accordance with the existing PDM Plan, we have agreed to implement alternative study designs 
and data collection options for the purpose of improving and refining post-delisting monitoring 
protocols.  These PDM methodology improvements are not only consistent with the original 
 
 
 
1  Peer reviewers included Mark Haroldson (USGS Supervisory Wildlife Biologist for the Interagency Grizzly Bear Study Team 
– Northern Rocky Mountain Science Center in Bozeman, MT.  Over 30 years of professional experience in bear management and 
research.) and Dr. Frank van Manen (Former President of the International Association for Bear Research and Management, 
current Team Leader of the Interagency Grizzly Bear Study Team, and current Associate Editor for the journal Ursus.  Over 25 
years of professional experience in bear management and research.) 
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intent and language of the PDM Plan, but are necessary to comply with the guidance provided in 
the original PDM Plan which states that we should make necessary improvements to continue to 
monitor effectively based on the results of the sensitivity analysis (i.e., that we should utilize the 
best available science).  The final sensitivity analysis report is included in Appendix III of this 
document.  The following are our PDM methodology improvements, based primarily on the 
results of that analysis. 
 
 

 
Methodology Improvements 

 
Response Trigger #1 (PDM Plan, Section VII, Part A, Item 1, Page 33) 

ORIGINAL LANGUAGE:  “Average annual female survival (S), based on an 
average of the previous three years, and per-capita recruitment (f), 
observed from radio-collar data, annual den checks, and mark-recapture 
efforts, remains within the 95% confidence interval of values observed 
for this species during 2006 – 2012” 
 
REVISION (addressing bold/italic print shown above):  In accordance with 
guidance provided in the original PDM Plan, we instituted a study to 
identify thresholds in demographic rates governing population dynamics 
that could be used to better understand demographic requirements of long-
term persistence of Louisiana black bear subpopulations (i.e., the UARB 
and TRB).  Our intent was to identify reliable indicators of long-term 
population persistence that could be measured over relatively short 
monitoring durations (e.g., 5 years).  The initial phase of the study 
involved a sensitivity analysis that was conducted using stochastic 
population simulations combined with machine learning techniques to 
identify demographic rates most important to extinction risk for bears of 
the TRB and UARB subpopulations and to identify demographic 
thresholds that can be used to develop population monitoring plans.  The 
second phase incorporated spatially-referenced capture-mark-recapture 
(CMR; hair-snare) data and a spatially-explicit open-population CMR 
model to estimate abundance and parameters governing the spatial 
detection process that could be used to simulate new data based on 
prospective study designs.  The final phase involved a power analysis to 
test alternative study designs that would reduce labor and financial 
requirements yet produce reliable demographic rate estimates for long-
term monitoring. The study team generated 2,000 random combinations of 
projection model parameters for the TRB and 2,000 for the UARB and 
used each of those combinations to simulate 500 population trajectories 
for 100 years resulting in 1,000,000 trajectories for each subpopulation.  
The goal of this analysis was to generate simulated data that would be 
used to identify individual population parameters most associated with 
extinction risk and to identify demographic thresholds indicative of long-
term persistence.  Of the short-term rates evaluated for the TRB and 
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UARB, average apparent female survival was most important for 
predicting extinction for both monitoring durations (5-year and 10-year) 
and both subpopulations.  An average apparent female survival value of 
0.91 or greater resulted in high probabilities of persistence (≥95%).  
Accordingly, rather than direct temporal comparisons of various life-
history data (as initially presented in the PDM Plan), our monitoring goal 
is to determine whether the average apparent female survival threshold of 
0.91 or greater (and, likewise, the long-term probability of persistence of 
the respective Louisiana black bear subpopulations) has been met.  A 
detailed explanation of the analysis associated with this study is provided 
in Appendix III. 
 

Response Trigger #1 (PDM Plan, Section VII, Part A, Item 1, Page 33) 
ORIGINAL LANGUAGE:  “Average annual female survival (S), based on an 
average of the previous three years, and per-capita recruitment (f), 
observed from radio-collar data, annual den checks, and mark-recapture 
efforts, remains within the 95% confidence interval of values observed for 
this species during 2006 – 2012” 
 
REVISION (addressing bold/italic print shown above):  According to 
guidance provided from the USGS (Southern Appalachian Research 
Branch) – University of Tennessee, it would be preferable to use 5-year 
averages of apparent adult female survival to determine whether a trigger 
threshold has been reached because it increases the accuracy of detection 
over 3-year averages.  In fact, the demographic modeling study and 
sensitivity analysis described above incorporated monitoring durations 
equal to, or exceeding, 5 years which is known (from that study) to 
provide a reliable short-term monitoring duration for estimation of long-
term population persistence.  Accordingly, a 5-year monitoring duration 
will be used in determining average apparent female survival. 
 

Response Trigger #1 (PDM Plan, Section VII, Part A, Item 1, Page 33) 
ORIGINAL LANGUAGE:  “Average annual female survival (S), based on an 
average of the previous three years, and per-capita recruitment (f), 
observed from radio-collar data, annual den checks, and mark-recapture 
efforts, remains within the 95% confidence interval of values observed for 
this species during 2006 – 2012” 
 
REVISION (addressing bold/italic print shown above):  According to 
guidance provided from the USGS (Southern Appalachian Research 
Branch) – University of Tennessee, the sample sizes for our telemetry data 
are insufficient to yield results with a level of accuracy that would be 
necessary to conclusively determine whether a trigger category has been 
reached.  Accordingly, it was recommended that telemetry data not be 
used for that purpose.  Instead, telemetry data will be used (along with 
other pertinent data) in determining whether there are any new or 
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increasing threats to the continued existence of the Louisiana black bear 
within the foreseeable future (as described in bullet point “3” within each 
of the trigger categories).  Telemetry data analysis will not be associated 
with any specific response trigger thresholds. 

 
Annual Telemetry Monitoring Period (PDM Plan, Page 35) 

ORIGINAL LANGUAGE:  “Annual reports . . . will include all data collected 
since October 1 of the prior year (one fiscal year).” 
 
REVISION:  In order to base our monitoring periods on science, the annual 
monitoring period will be revised from fiscal years (October 1 – 
September 30) to “bear years” based on the life history of the Louisiana 
black bear (denning season to denning season; i.e., April 1 – March 
31).  The PDM group (described above) unanimously concurred with this 
revision. 

 
 
Results/Conclusions 
 

LDWF Bear Sighting Data 
LDWF personnel recorded 140 sightings and 182 bear-related complaints during 
the current reporting period (April 1, 2015 – March 31, 2016).  Additional 
information regarding LDWF’s bear incident reporting data can be found in 
Appendix I. 

 
Radio Telemetry 

Radio telemetry analysis includes known-fate survival data and cub/yearling 
recruitment data gathered in the post-delisting monitoring period (2013-2016*).  
The annual female survival rate average ranged from 0.924 (when lost signals 
were assumed to be live bears) to 0.908 (when lost signals were assumed to be 
dead bears) for the UARB subpopulation.  The annual female survival rate 
averaged 0.937 (regardless whether lost signals were assumed to be dead or live 
bears) for the TRB subpopulation.  A more detailed description of the analysis 
and results is provided in Appendix I. 

 
Capture-Mark-Recapture (CMR; Hair-Snare) 

Capture-mark-recapture (CMR; hair-snare) data was gathered during the summers 
(typically during the month of June) of 2013, 2014, and 20152.  The apparent 
female survival rate was 0.936 for the TRB subpopulation and 0.969 for the 
UARB subpopulation, during this monitoring period.  A more detailed description 
of the analysis and results is provided in Appendix I. 
 

 
 
2  Initiation of these monitoring activities immediately followed the analysis period for which data demonstrated that the 
Louisiana black bear population had long-term stability (2012).  The first post-recovery year (or, first year following known long-
term population persistence) is 2013, and begins our post-delisting analysis period. 



6 
 

Habitat Analysis 
Permanently Protected Lands 

From 2014 to the end of 2016, there has been an addition of over 7,800 
acres of permanently protected lands (National Wildlife Refuges/Wildlife 
Management Areas/Wetland Reserve Program Perpetual 
Easements/Compensatory Wetland Mitigation Banks) within the 
Louisiana black bear habitat restoration planning area (HRPA).  Since the 
Louisiana black bear five-year review was completed in 2011, over 33,000 
acres of land have been permanently protected within the HRPA. 

USDA National Aerial Imagery Program (NAIP) 
We evaluated changes to forested habitat in three large areas that occur 
between the TRB and UARB subpopulations.  Those areas total almost 
5,000 acres and are not permanently protected.  Comparing 2013 to 2015 
imagery, there were virtually no detectable habitat changes noted on any 
of those sites.   

A more detailed description of all habitat analyses is provided in Appendix II. 
 
 
 
OVERALL CONCLUSION 
Bear sighting and radio telemetry data for our analysis period appear typical and suggest 
that no new or increasing threats are impacting the subpopulations.  CMR data indicate 
that there is a high probability of long-term persistence (>95%) for the TRB and UARB 
subpopulations, based on apparent female survival rates that exceed 0.91 for both 
subpopulations.  Our analysis of permanently protected lands and forested habitat in the 
vicinity of breeding subpopulations indicate that bear habitat is stable to increasing.  
Based on the analyses described above, we conclude that all Category I standards have 
been achieved as described in Section IV of the PDM Plan indicating that the “Louisiana 
black bear metapopulation remains secure without ESA protections.” 
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POPULATION MONITORING FIELD ACTIVITIES 
 
In order to collect information needed as per the Louisiana black bear Post Delisting Monitoring 
Plan, we collected data in accordance with section VI.C of the PDM.  This report covers the first 
year of annual data collection and analysis activities which covers April 1, 2015 through March 
31, 2016.  As stated in the PDM, trends in population demographics will be based on an average 
of annual estimates and compared to baseline data.  It has been agreed upon that we will use 5 
year averages. 
 
We live‐captured bears and outfitted these individuals with VHF or VHF‐GPS radio‐collars, or 
marked bears based on sex and age class.  Using monthly aerial telemetry, we monitored 58 
radio‐collared bears (10M; 48F) from all four subpopulations.  We conducted our ninth 
consecutive year of non‐invasive hair trapping in the Tensas River and Upper Atchafalaya River 
basin subpopulations during May‐July 2015.  Samples were collected from 209 and 116 sites in 
both subpopulations, respectively, resulting in 3,264 hair samples.  Lab results were analyzed by 
USGS and that report is attached.  To collect information on reproductive vital rates, we 
conducted 22 adult female den visits across all four subpopulations during February‐March, 
2016 to count and mark cubs‐of‐the‐year, and to count yearlings.  Adult female collars were 
changed as necessary.  We continued carcass recovery and documented 48 mortalities from all 
causes during the reporting period.  The Beartrak database was routinely updated and we 
logged 140 sightings and 182 complaints during this reporting period.  All complaints received a 
response as detailed in the LDWF Louisiana black bear Management Plan.   
 
RADIO‐TELEMETRY DATA 

Survival.––The radio telemetry data to be analyzed consisted of known‐fate survival data from 
2002 to 2016 and cub and yearling recruitment data from the same time period.  Data from 
2002‐12 were from Laufenberg et al. (2016) and the more recent data came from the Louisiana 
Department of Wildlife and Fisheries (LDWF).  Data from 2002–12 will be referred to as the pre‐
delisting monitoring period (pre‐DMP) and 2013–2016 will be the post‐DMP. 
The objective of the survival analysis was to use known‐fate analysis in Program MARK to 
estimate annual survival rates (White and Burnham 1999).  The known‐fate analysis in MARK is 
based on a Kaplan‐Meyer staggered entry procedure that is simple and works well for radio‐
telemetry analyses (Pollock et al. 1989).  The format that Laufenberg et al. (2016) used for 
estimating survival from the 2002–2012 data was based on a hazard rate survival function in a 
Bayesian analysis which had to be converted to a capture history format for MARK.  Once 
reformatted, the 2002–12 data were appended with the LDWF data from 2013 to 2016.  
Survival rates (S) were annual rates beginning on 1 April (approximate date of den exit) to 31 
March.  The models were based on the assumption that every bear was radio located monthly.  
Entries were censored only if the bear was not detected for >4 months.  Annual survival rates 
were estimated by censoring animals whose collars unexpectedly ceased to function (SAA or 
assumed alive) and also estimated survival parameters assuming those animals died at the time 
of signal loss (SAD or assumed dead).  I estimated annual survival rates for the post‐DMP by sex 
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and by study area.  The study areas consisted of the Tensas River Basin (TRB), Upper 
Atchafalaya River Basin (UARB), and Three Rivers Complex (TRC). 
 
Annual survival rates for 110 females at TRB (SAA) averaged 0.937 (95% CI = 0.817–0.979) during 
the post‐DMP period, and were essentially the same assuming lost signals were from dead 
animals (SAD = 0.937, 95% CI = 0.819–0.979).  Fourteen females were monitored at UARB with 
SAA and SAD averaging 0.924 (95% CI = 0.731–0.981) and 0.908 (95% CI = 0.682–0.976), 
respectively, during the post‐DMP period.  At TRC, 57 females were monitored and SAA and SAD 
were 0.846 (95% CI = 0.643–0.940) and 0.839 (95% CI = 0.627–0.936), respectively, during the 
post‐DMP period. 
   
Annual survival rates for 15 males at TRC during the post‐DMP averaged 0.931 (95% CI = 0.607–
0.990, SAA) and 0.927 (95% CI = 0.588–0.989, SAD).  Likewise, male survival at UARB (n = 3) was 
0.636 (95% CI = 0.172–0.894, SAA) and 0.504 (95% CI = 0.012–0.911, SAD).  Only 1 male was 
monitored at TRB. 
 
Fecundity.—Data compiled by Laufenberg et al. (2016) from 2002–12 and LDWF from 2013–16 
were used to estimate per capita recruitment or fecundity (ftelem).  Transition data from 2015 to 
2016 are needed to estimate some 2015 parameters, so 2017 data will be needed before 2016 
reproductive parameters can be estimated.  Therefore fecundity rates are reported for 2013–
2015.  The first step was to estimate the proportion of the radiocollared females that were in 1 
of 3 reproductive states: no cubs (Pno cubs), with cubs (Pcubs), and with yearlings (Pyearlings).  That 
distribution is assuming that the collared females are representative of adult females in the 
population.  Subadult females are not routinely collared so the per‐capita recruitment based 
solely on adult females is likely biased high.  These reproductive state proportions we based on 
a Bayesian formulation developed by Laufenberg et al. (2016).  Cub and yearling litter sizes and 
cub and yearling fecundity rates were similarly estimated.  I reported the modes of posterior 
distributions and used 2.5 and 97.5% credible intervals.  Because modes are reported, the 
reproductive stable state proportions will not necessarily sum to 1. 
 
On TRB, 10 female bears were monitored during the post–DMP with 14.8 (95% CI = 3.4–55.2), 
47.8 (95% CI = 25.1–55.2), and 37.9% (95% CI = 18.3–46.1) without cubs, with cubs, and with 
yearlings, respectively.  The mean number of cubs and yearlings during this time period was 
2.30 (95% CI = 1.88–2.74) and 1.91 (95% CI = 1.52–2.42, respectively.  Cub fecundity (fcub) 
averaged 0.52 (95% CI = 0.29–0.68) during the post‐DMP.   Yearling fecundity (fyearling) averaged 
0.34 (95% CI = 0.17–0.49) female yearlings annually produced per breeding age female during 
the post‐DMP. 
 
On UARB, 10 female bears were monitored during the post–DMP with 21.2 (95% CI = 6.8–62.6), 
48.3 (95% CI = 24.4–57.8), and 31.0% (95% CI = 10.7–42.6) without cubs, with cubs, and with 
yearlings, respectively.  The mean number of cubs and yearlings during this time period was 
2.22 (95% CI = 1.76–2.76) and 1.90 (95% CI = 1.35–2.81), respectively.  Cub fecundity (fcub) 
averaged 0.52 (95% CI = 0.27–0.70) during the post‐DMP.   Yearling fecundity (fyearling) averaged 
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0.26 (95% CI = 0.10–0.49) female yearlings annually produced per breeding age female during 
the post‐DMP period. 
 
On TRC, 5 female bears were monitored during the post–DMP with 20.2 (95% CI = 4.9–88.9), 
50.5 (95% CI = 7.4–70.8), and 21.7% (95% CI = 2.8–39.8) without cubs, with cubs, and with 
yearlings, respectively).  The mean number of cubs and yearlings during this time period was 
2.22 (95% CI = 1.82–2.73) and 2.28 (95% CI = 1.62–3.25), respectively.  Cub fecundity (fcub) 
averaged 0.55 (95% CI = 0.08–0.83) during the post‐DMP.   Yearling fecundity (fyearling) averaged 
0.27 (95% CI = 0.03–0.52) female yearlings annually produced per breeding age female during 
the post‐DMP period. 
 
CAPTURE‐MARK‐RECAPTURE DATA 

The capture‐mark‐recapture data (CMR) to be analyzed consisted of bear captures as a result of 
DNA extracted from hair collected at barbed‐wire sampling sites at TRB from 2006 to 2015 and 
at UARB from 2007 to 2015.  The data were reformatted and analyzed as a Pradel robust design 
framework in Program Mark (White and Burnham 1999).  The data were analyzed based on 
apparent survival (φ) and the finite rate of population increase (λ) differing by sex but constant 
from 2012‐13 to 2014‐15 (post‐DMP).  Models whereby capture probabilities (p) were 
estimated as time independent, by sex, with an additive behavioral effect, and as 2 
heterogeneous mixtures (Pledger 2000) were most supported.   

At TRB, φ for females post‐DMP was 0.936 (95% CI = 0.868–0.970) and λ for females was 1.023 
(95% CI = 0.967–1.079).   At UARB, φ for females post‐DMP was 0.969 (95% CI = 0.754–0.997) 
and λ for females was 1.054 (95% CI = 0.975–1.134). 
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Habitat Monitoring 

Monitoring Changes in Permanently Protected Lands  

Annual updates were obtained for state and federally owned wildlife managed lands, privately owned 

mitigation banks and USDA‐NRCS Wetland Reserve Program permanent easement enrollments within the 

Louisiana black bear habitat restoration planning area (HRPA). These datasets were verified for accuracy, 

summarized acreages and depicted their spatial locations using geographic information systems (GIS) ArcGIS 

10.4.1 (ESRI, Redlands, California, USA). 

From 2014 to the end of 2016, there has been an addition of over 7,800 acres of permanently protected lands 

(NWR/WMA/WRP/MB) within the HRPA. This is a continuation of a positive trend of lands being placed in 

permanent conservation from when the Louisiana black bear five‐year review was completed in 2011.  Since 

2011, there have been over 33,000 acres of land permanently protected within the HRPA. 

 

Conservation Lands 
Within HRPA 

HRPA Acres Change 
(2011 to 2014) 

HRPA Acres Change 
(2014 to 2016) 

HRPA Acres Change 
(2011 to 2016) 

NWR/WMA/WRP/MB  25,372.26  7,869.73  33,241.99 

 

 Tensas River Basin (TRB) of HRPA 

Conservation Lands 
Within HRPA  TRB Acres (2011)  TRB Acres (2014)  TRB Acres (2016) 

National Wildlife Refuge 
(NWR)  109,334.11  111,965.56  112,224.64 

Wildlife Management 
Area (WMA)  143,248.78  143,933.45  143,584.53 

Wetland Reserve 
Program (WRP)  120,668.96  136,869.81  142,188.63 

Mitigation Banks (MB)  5,216.94  5,929.94  6,233.07 

Totals:  378,468.79  398,698.75  404,230.87 

 

Changes within Tensas River Basin (TRB) of HRPA 

Conservation Lands 
Within HRPA 

TRB Acres Change (2011 
to 2014) 

TRB Acres Change (2014 
to 2016) 

TRB Acres Change (2011 
to 2016) 

National Wildlife Refuge 
(NWR)  2,631.46  259.08  2,890.53 

Wildlife Management 
Area (WMA)  684.66  ‐348.92  335.74 

Wetland Reserve 
Program (WRP)  16,200.85  5,318.82  21,519.67 

Mitigation Banks (MB)  712.99  303.13  1,016.13 

Totals:  20,229.96  5,532.11  25,762.07 
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Upper Atchafalaya River Basin (UARB) of HRPA 

Conservation Lands 
Within HRPA  UARB Acres (2011)  UARB Acres (2014)  UARB Acres (2016) 

National Wildlife Refuge 
(NWR)  17,340.52  17,614.20  17,611.82 

Wildlife Management 
Area (WMA)  58,718.25  59,422.91  61,430.82 

Wetland Reserve 
Program (WRP)  9,722.97  11,530.24  11,064.04 

Mitigation Banks (MB)  2,020.97  2,726.21  3,571.00 

Totals:  87,802.72  91,293.56  93,677.68 
 

Changes within Upper Atchafalaya River Basin (UARB) of HRPA 

Conservation Lands 
Within HRPA 

UARB Acres Change 
(2011 to 2014) 

UARB Acres Change 
(2014 to 2016) 

UARB Acres Change 
(2011 to 2016) 

National Wildlife Refuge 
(NWR)  273.67  ‐2.38  271.30 

Wildlife Management 
Area (WMA)  704.66  2,007.91  2,712.57 

Wetland Reserve 
Program (WRP)  1,807.27  ‐466.20  1,341.07 

Mitigation Banks (MB)  705.24  844.79  1,550.03 

Totals:  3,490.84  2,384.12  5,874.97 
 

Lower Atchafalaya River Basin (LARB) of HRPA 

Conservation Lands 
Within HRPA  LARB Acres (2011)  LARB Acres (2014)  LARB Acres (2016) 

National Wildlife Refuge 
(NWR)  7,505.31  7,426.19  7,379.68 

Wildlife Management 
Area (WMA)  1,474.09  1,474.09  1,474.09 

Wetland Reserve Program 
(WRP)  0.00  0.00  0.00 

Mitigation Banks (MB)  941.82  2,672.41  2,672.41 

Totals:  9,921.22  11,572.68  11,526.18 
 

Changes within Lower Atchafalaya River Basin (LARB) of HRPA 

Conservation Lands 
Within HRPA 

LARB Acres Change (2011 
to 2014) 

LARB Acres Change (2014 
to 2016) 

LARB Acres Change (2011 
to 2016) 

National Wildlife Refuge 
(NWR)  ‐79.12  ‐46.51  ‐125.63 

Wildlife Management 
Area (WMA)  0.00  0.00  0.00 

Wetland Reserve Program 
(WRP)  0.00  0.00  0.00 

Mitigation Banks (MB)  1,730.58  0.00  1,730.58 

Totals:  1,651.46  ‐46.51  1,604.95 
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Monitoring Change in Agricultural Land Uses using CropScape 

2014 CropScape data for HRPA Basins 

Crop  TRB 2014  UARB 2014  LARB 2014  Total Acres  Percent 

Alfalfa  284.24  0.22  0.22  284.69  0.01% 

Aquaculture  424.75  2,687.73  895.38  4,007.87  0.11% 

No Data  0.00  0.00  2,692.46  2,692.46  0.07% 

Barren  1,505.80  317.59  294.67  2,118.07  0.06% 

Corn  153,114.93  14,295.35  16.23  167,426.52  4.62% 

Cotton  101,275.45  2,168.62  0.67  103,444.74  2.86% 

Dbl Crop Corn/Soybeans  583.05  0.00  0.00  583.05  0.02% 

Dbl Crop Soybeans/Cotton  175.17  0.00  0.00  175.17  0.00% 

Dbl Crop Soybeans/Oats  172.73  101.16  0.67  274.56  0.01% 

Dbl Crop WinWht/Corn  0.44  9.78  0.00  10.23  0.00% 

Dbl Crop WinWht/Cotton  0.00  0.00  0.00  0.00  0.00% 

Dbl Crop WinWht/Sorghum  6.45  0.00  0.00  6.45  0.00% 

Dbl Crop WinWht/Soybeans  25,129.37  18,225.95  81.36  43,436.68  1.20% 

Deciduous Forest  2,174.69  1,019.99  1,459.13  4,653.82  0.13% 

Developed/High Intensity  556.98  612.57  790.93  1,960.48  0.05% 

Developed/Low Intensity  10,552.69  19,409.12  6,921.28  36,883.08  1.02% 

Developed/Med Intensity  3,455.94  1,400.54  1,019.91  5,876.39  0.16% 

Developed/Open Space  54,306.49  19,382.13  3,528.80  77,217.42  2.13% 

Evergreen Forest  1,123.44  70.91  13.34  1,207.70  0.03% 

Fallow/Idle Cropland  229,174.38  10,331.64  10,858.17  250,364.19  6.91% 

Grass/Pasture  25,134.52  50,314.59  7,149.65  82,598.76  2.28% 

Herbaceous Wetlands  9,589.99  18,595.86  147,506.85  175,692.70  4.85% 

Herbs  141.18  0.00  0.00  141.18  0.00% 

Misc Vegs & Fruits  0.44  0.00  0.00  0.44  0.00% 

Mixed Forest  6,951.95  261.31  45.57  7,258.83  0.20% 

Oats  1,954.18  0.89  0.00  1,955.07  0.05% 

Open Water  81,609.02  80,216.93  23,183.43  185,009.38  5.11% 

Other Crops  27.34  13.12  0.44  40.90  0.00% 

Other Hay/Non Alfalfa  8,416.53  1,473.68  84.42  9,974.63  0.28% 

Peaches  0.67  0.00  0.00  0.67  0.00% 

Peanuts  1.78  0.00  0.00  1.78  0.00% 

Peas  0.00  0.00  0.00  0.00  0.00% 

Pecans  672.81  2.00  0.00  674.81  0.02% 

Pop or Orn Corn  369.68  0.00  0.00  369.68  0.01% 

Rice  30,470.31  10,556.33  240.17  41,266.81  1.14% 

Rye  7.56  0.00  0.00  7.56  0.00% 

Shrubland  7,987.06  4,276.82  193.62  12,457.50  0.34% 

Sod/Grass Seed  32.02  13.12  2.45  47.59  0.00% 

Sorghum  32,722.30  4,685.60  8.45  37,416.35  1.03% 

Soybeans  522,686.17  106,326.82  2,679.08  631,692.06  17.44% 

Spring Wheat  8.23  0.00  0.00  8.23  0.00% 

Sugarcane  512.39  63,446.04  33,832.89  97,791.32  2.70% 

Sunflower  78.26  3.78  0.00  82.04  0.00% 

Sweet Potatoes  1,102.80  0.00  0.00  1,102.80  0.03% 

Winter Wheat  13,569.47  955.52  58.46  14,583.46  0.40% 

Woody Wetlands  726,747.27  769,668.05  122,442.69  1,618,858.02  44.70% 

Total  2,054,810.95  1,200,843.78  366,001.38  3,621,656.11  100.00% 
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2015 CropScape data for HRPA Basins 

Crop  TRB 2015  UARB 2015  LARB 2015  Total Acres  Percent 

Alfalfa  102.43  0.00  0.00  102.43  0.00% 

Aquaculture  855.36  3,100.82  955.65  4,911.83  0.14% 

No Data  0.00  0.00  2,692.46  2,692.46  0.07% 

Barren  1,281.77  374.31  839.54  2,495.63  0.07% 

Corn  145,666.71  12,478.51  14.67  158,159.90  4.37% 

Cotton  56,018.45  1,262.67  0.00  57,281.13  1.58% 

Dbl Crop Corn/Soybeans  0.00  0.00  0.00  0.00  0.00% 

Dbl Crop Soybeans/Cotton  0.00  0.00  0.00  0.00  0.00% 

Dbl Crop Soybeans/Oats  12.45  23.34  0.44  36.24  0.00% 

Dbl Crop WinWht/Corn  0.00  0.00  0.00  0.00  0.00% 

Dbl Crop WinWht/Cotton  0.67  0.00  0.00  0.67  0.00% 

Dbl Crop WinWht/Sorghum  6.23  0.00  0.00  6.23  0.00% 

Dbl Crop WinWht/Soybeans  12,866.29  10,488.69  3.11  23,358.09  0.64% 

Deciduous Forest  1,907.38  1,142.46  1,973.91  5,023.75  0.14% 

Developed/High Intensity  537.24  577.83  785.24  1,900.31  0.05% 

Developed/Low Intensity  9,871.78  19,100.67  6,754.50  35,726.95  0.99% 

Developed/Med Intensity  4,113.33  1,365.97  971.18  6,450.48  0.18% 

Developed/Open Space  51,831.01  18,401.01  3,337.89  73,569.92  2.03% 

Evergreen Forest  1,412.49  38.24  28.23  1,478.96  0.04% 

Fallow/Idle Cropland  164,651.10  14,812.71  11,490.39  190,954.19  5.27% 

Grass/Pasture  16,972.84  42,320.54  6,092.54  65,385.91  1.81% 

Herbaceous Wetlands  8,832.90  16,115.13  148,779.28  173,727.31  4.80% 

Herbs  0.22  0.00  0.00  0.22  0.00% 

Misc Vegs & Fruits  0.00  0.00  0.00  0.00  0.00% 

Mixed Forest  5,559.23  233.89  46.91  5,840.02  0.16% 

Oats  1,763.75  0.00  0.00  1,763.75  0.05% 

Open Water  79,190.28  81,707.60  22,303.38  183,201.27  5.06% 

Other Crops  0.00  0.00  0.00  0.00  0.00% 

Other Hay/Non Alfalfa  12,271.23  1,402.07  6.45  13,679.75  0.38% 

Peaches  0.44  0.00  0.00  0.44  0.00% 

Peanuts  0.00  0.00  0.00  0.00  0.00% 

Peas  4.89  0.00  0.00  4.89  0.00% 

Pecans  1,597.23  8.23  0.00  1,605.45  0.04% 

Pop or Orn Corn  511.07  0.00  0.00  511.07  0.01% 

Rice  23,314.16  9,378.62  503.28  33,196.06  0.92% 

Rye  37.13  0.00  0.00  37.13  0.00% 

Shrubland  4,958.23  6,606.95  426.13  11,991.31  0.33% 

Sod/Grass Seed  4.16  36.91  3.34  44.41  0.00% 

Sorghum  21,821.71  5,334.74  1.33  27,157.79  0.75% 

Soybeans  685,269.07  116,016.95  3,433.21  804,719.22  22.22% 

Spring Wheat  0.00  0.00  0.00  0.00  0.00% 

Sugarcane  235.49  63,448.67  33,132.20  96,816.36  2.67% 

Sunflower  3.78  0.00  0.00  3.78  0.00% 

Sweet Potatoes  2,766.91  0.00  0.00  2,766.91  0.08% 

Winter Wheat  10,895.24  2,272.55  45.79  13,213.59  0.36% 

Woody Wetlands  727,666.26  772,793.71  121,380.34  1,621,840.30  44.78% 

Total  2,054,810.95  1,200,843.78  366,001.38  3,621,656.11  100.00% 
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2014 to 2015 Changes in CropScape data for HRPA Basins 

Crop 
TRB 2014 to 

2015 
UARB 2014 to 

2015 
LARB 2014 to 

2015 
HRPA 2014 to 

2015 
HRPA  2014 to 

2015 

Alfalfa  ‐181.81  ‐0.22  ‐0.22  ‐182.25  ‐0.005% 

Aquaculture  430.61  413.08  60.27  903.96  0.025% 

No Data  0.00  0.00  0.00  0.00  0.000% 

Barren  ‐224.03  56.72  544.87  377.56  0.010% 

Corn  ‐7,448.22  ‐1,816.84  ‐1.56  ‐9,266.61  ‐0.256% 

Cotton  ‐45,257.00  ‐905.95  ‐0.67  ‐46,163.61  ‐1.275% 

Dbl Crop Corn/Soybns  ‐583.05  0.00  0.00  ‐583.05  ‐0.016% 

Dbl Crop Soybns/Cotn  ‐175.17  0.00  0.00  ‐175.17  ‐0.005% 

Dbl Crop Soybns/Oats  ‐160.28  ‐77.82  ‐0.22  ‐238.32  ‐0.007% 

Dbl Crop WinWht/Corn  ‐0.44  ‐9.78  0.00  ‐10.23  0.000% 

Dbl Crop WinWht/Cotn  0.67  0.00  0.00  0.67  0.000% 

Dbl Crp WinWht/Sorgm  ‐0.22  0.00  0.00  ‐0.22  0.000% 

Dbl Crp WinWht/Soybn  ‐12,263.08  ‐7,737.26  ‐78.25  ‐20,078.60  ‐0.554% 

Deciduous Forest  ‐267.31  122.46  514.78  369.93  0.010% 

Dev/High Intensity  ‐19.74  ‐34.74  ‐5.69  ‐60.18  ‐0.002% 

Dev/Low Intensity  ‐680.91  ‐308.45  ‐166.78  ‐1,156.13  ‐0.032% 

Dev/Med Intensity  657.40  ‐34.57  ‐48.73  574.09  0.016% 

Developed/Open Space  ‐2,475.47  ‐981.12  ‐190.90  ‐3,647.50  ‐0.101% 

Evergreen Forest  289.04  ‐32.68  14.89  271.26  0.007% 

Fallow/Idle Cropland  ‐64,523.29  4,481.07  632.22  ‐59,410.00  ‐1.640% 

Grass/Pasture  ‐8,161.68  ‐7,994.05  ‐1,057.12  ‐17,212.85  ‐0.475% 

Herbaceous Wetlands  ‐757.09  ‐2,480.73  1,272.43  ‐1,965.39  ‐0.054% 

Herbs  ‐140.96  0.00  0.00  ‐140.96  ‐0.004% 

Misc Vegs & Fruits  ‐0.44  0.00  0.00  ‐0.44  0.000% 

Mixed Forest  ‐1,392.72  ‐27.42  1.34  ‐1,418.81  ‐0.039% 

Oats  ‐190.42  ‐0.89  0.00  ‐191.31  ‐0.005% 

Open Water  ‐2,418.74  1,490.68  ‐880.05  ‐1,808.12  ‐0.050% 

Other Crops  ‐27.34  ‐13.12  ‐0.44  ‐40.90  ‐0.001% 

Other Hay/Non Alfalfa  3,854.70  ‐71.61  ‐77.97  3,705.12  0.102% 

Peaches  ‐0.22  0.00  0.00  ‐0.22  0.000% 

Peanuts  ‐1.78  0.00  0.00  ‐1.78  0.000% 

Peas  4.89  0.00  0.00  4.89  0.000% 

Pecans  924.42  6.23  0.00  930.64  0.026% 

Pop or Orn Corn  141.39  0.00  0.00  141.39  0.004% 

Rice  ‐7,156.15  ‐1,177.71  263.11  ‐8,070.75  ‐0.223% 

Rye  29.57  0.00  0.00  29.57  0.001% 

Shrubland  ‐3,028.83  2,330.13  232.51  ‐466.19  ‐0.013% 

Sod/Grass Seed  ‐27.86  23.79  0.89  ‐3.17  0.000% 

Sorghum  ‐10,900.59  649.14  ‐7.12  ‐10,258.57  ‐0.283% 

Soybeans  162,582.90  9,690.13  754.13  173,027.16  4.778% 

Spring Wheat  ‐8.23  0.00  0.00  ‐8.23  0.000% 

Sugarcane  ‐276.90  2.63  ‐700.69  ‐974.96  ‐0.027% 

Sunflower  ‐74.48  ‐3.78  0.00  ‐78.26  ‐0.002% 

Sweet Potatoes  1,664.11  0.00  0.00  1,664.11  0.046% 

Winter Wheat  ‐2,674.23  1,317.03  ‐12.67  ‐1,369.87  ‐0.038% 

Woody Wetlands  918.98  3,125.66  ‐1,062.35  2,982.28  0.082% 
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Forested Habitat Image Classification 

High resolution aerial photography acquired through the USDA National Aerial Imagery Program (NAIP) was used to 

classify ground features into suitable (forested) and non‐suitable (non‐forested) habitats.  ESRI’s Feature Analyst GIS 

software provided the mechanism to conduct the habitat classification. The NAIP program acquires aerial photography 

of the United States, roughly fifteen states per year, normally on a three‐year rotational basis.  Louisiana’s photography 

was flown in 2013, the year used for the Louisiana black bear proposed delisting habitat classification in 2014. Outside of 

the normal photo acquisition schedule, USDA flew Louisiana in 2015, the year used for the first Louisiana black bear 

post‐delisting monitoring plan’s image classification habitat assessment.  The three sites used for analysis, north, central 

and south, the total acreages combined is 4,631.1 acres.  Comparing the 2013 results to 2015, there was an 11.8 acre 

increase in forested habitat from all three sites combined.  This increase was mainly from the closing in of tree canopy 

and the growth of existing trees since 2013. There were no large‐scale habitat changes noted on any of these sites.   

 

Year/Site  Forested Acres  Non‐forested Acres  Total Acres 

2013 North Site  831.4  712.6  1,544.0 

2015 North Site  834.3  709.7  1,544.0 

Change 2013 To 2015  2.9  ‐2.9  0.0 

           

2013 Central Site  799.4  743.9  1,543.2 

2015 Central Site  800.6  742.6  1,543.2 

Change 2013 To 2015  1.3  ‐1.3  0.0 

           

2013 South Site  1,389.2  154.7  1,543.9 

2015 South Site  1,396.8  147.1  1,543.9 

Change 2013 To 2015  7.6  ‐7.6  0.0 
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BACKGROUND AND JUSTIFICATION  

In 1992, the U.S. Fish and Wildlife Service (USFWS) granted the Louisiana black bear (Ursus 

americanus luteolus) threatened status under the U.S. Endangered Species Act (ESA), listing 

loss and fragmentation of habitat as the primary threats (USFWS 1992).  The 1995 Recovery 

Plan outlines recovery goals designed to meet the objective of reducing threats to the Louisiana 

black bear metapopulation and the habitat supporting it (USFWS 1995).  To meet that objective, 

the Recovery Plan required 1) at least 2 viable subpopulations, 1 each in the Tensas and 

Atchafalaya River Basins, 2) movement corridors between the 2 viable subpopulations, and 3) 

long-term protection of the habitat supporting each viable subpopulation and interconnecting 

corridors.   

Laufenberg et al. (2016) performed a population viability analysis (PVA) for the Tensas 

River Basin (TRB), the Upper Atchafalaya River Basin (UARB), and the Three Rivers Complex 

(TRC) bear subpopulation in Louisiana and, based on capture-mark-recapture (CMR) and radio-

telemetry data, concluded that the probability of persistence of >1 subpopulation over the next 

100 years, assuming current habitat conditions do not change, was >0.999.  Based on these and 

other data, the USFWS removed U. a. luteolus from the list of threatened species in March 2016 

(USFWS 2016a).   

Section 4(g)(1) of the Endangered Species Act (16 United States Code 1431 et seq.) 

requires the Secretary of the Interior to implement a system in cooperation with the States to 

monitor, for no less than 5 years, the status of all delisted species.  A post-delisting monitoring 

(PDM) plan was developed by the Louisiana Department of Wildlife and Fisheries (LDWF) and 

USFWS (USFWS 2016b).   That plan was based on monitoring both population demographics 

and habitat.  This report is focused on the population demographics component of the PDM plan.  
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The PDM plan stated that population demographics and vital rate monitoring could consist of 

regular live-capture, radio-collaring, winter den checks, and radio-telemetry monitoring to 

estimate litter sizes, cub recruitment, and survival.  The plan also called for continued non-

invasive mark-recapture to estimate change in population size (λ), apparent survival (𝜑), and per-

capita recruitment including immigrants (f).  The plan also states that should better methods for 

population monitoring become available during the post-delisting monitoring period, those 

methods would be explored.   

The current PDM plan calls for a 3-week data collection period (compared with an 8-

week period for the PVA) for non-invasive mark-recapture analyses on the UARB and TRB 

subpopulations.  That protocol was based on some preliminary analyses of 2006–2012 non-

invasive capture-mark-recapture (CMR) data for the TRB and UARB subpopulations (J. Clark, 

USGS, unpublished report).  Pradel robust design CMR (Pradel 1996) was used to evaluate the 

sensitivity and accuracy of a variety of monitoring scenarios to detect changes in abundance (λ).  

USFWS and LDWF were interested in refining the protocols to optimize the robustness and cost 

effectiveness of monitoring.  Such refinement is not only desirable but essential for adaptive 

resource management (Walters 1986).   In addition, the recent advent of spatially explicit 

methods (Efford et al. 2004, Borchers and Efford 2008, Royle et al. 2014) has resulted in 

opportunities to improve the robustness of population estimation.  Finally, Chandler and Clark 

(2014) reported on a method that combines the CMR data with presence/absence data to estimate 

these same vital rates.  They found that hair samples need not be genotyped every year for DNA-

based CMR monitoring to be effective if presence/absence data are collected in the intervening 

years.  That could result in a substantial cost savings over time.  Furthermore, presence/absence 

data could also be used to predict and monitor bear range expansion.  However, their analysis 
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was based on some simplified assumptions regarding subsampling biases, capture heterogeneity, 

etc.  Thus, more cost-efficient and robust methods may exist that can provide better insight into 

Louisiana black bear population dynamics but a more thorough evaluation is needed.   

OBJECTIVES 

Our objective was to use existing Louisiana black bear mark-recapture data and recently 

developed spatially explicit integrated population models to refine and develop cost-efficient 

long-term protocols for monitoring the vital rates and demographics of the Louisiana black bear.   

METHODS 

General approach 

Our overall goal was to use CMR-based information on population demographics and spatial 

detection processes collected during the Louisiana black bear recovery monitoring period (2006–

2012) to develop alternative study designs for monitoring.  Our general approach was comprised 

of 3 separate stages of analysis (Fig. 1).  First, we conducted a sensitivity analysis using 

stochastic population simulations combined with machine learning techniques to identify 

demographic rates most important to extinction risk for bears of the TRB and UARB 

subpopulations and to identify demographic thresholds that can be used to develop population 

monitoring plans.  The second stage was to use spatially referenced CMR data and a spatially 

explicit open-population CMR model (SCRO) to estimate abundance and parameters governing 

the spatial detection process that could be used to simulate new data based on prospective study 

designs.  The final stage was to conduct a power analysis to test alternative study designs that 

would reduce labor and financial requirements yet produce reliable demographic rate estimates 

for long term monitoring.  We focused the final stage on the UARB because it was the smallest 

of the subpopulations identified at time of listing and, as such, levels of sampling effort required 
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would also be sufficient to obtain reliable estimates for the larger subpopulations.  Unless 

otherwise noted, all analyses were focused on the female portion of each subpopulation 

consistent with approaches used in the PVA.  

Population simulations 

To perform a sensitivity analysis, it was first necessary to develop a population projection model 

for calculating extinction rates.  Population simulations were conducted using CMR-based 

demographic rate estimates for the TRB and UARB reported in Laufenberg et al. (2016).  Our 

projection model was similar to models used by Laufenberg et al. (2016) to conduct population 

viability analyses because ours also included demographic and environmental (i.e., temporal) 

stochasticity.  Demographic rates used in the projection model included mean annual apparent 

survival on the logit scale (𝜇𝜑), temporal process variance for φ expressed as standard deviation 

(σφ), an intercept (β0) and slope (β1) for a log-linear model describing density dependence in 

annual per-capita recruitment (f), and temporal process variance for f expressed as standard 

deviation (σf).  Apparent survival is defined as the probability that an animal survives and 

remains a member of the subpopulation (i.e., does not permanently emigrate).  Per-capita 

recruitment is the ratio of the number of new recruits (i.e., in situ births or permanent immigrants 

available for detection) to the total number of current residents (i.e., breeding or non-breeding 

age) in the subpopulation.  Survival and recruitment are combined to derive λ which represents 

the annual realized rate of change in abundance as a function of births, deaths, permanent 

immigration, and permanent emigration.  We made 2 modifications to the original projection 

model that enabled us to explore a greater diversity of demographic rate combinations compared 

with that observed in the original analysis.  The first modification was to randomly sample 

individual parameter values for each trajectory from uniform distributions defined by the 
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minimum and maximum of respective parameter posterior distributions reported in Laufenberg 

et al. (2016, Table 1).  This produced a more varied combination of values than sampling the 

posterior distribution.  The second modification was to independently sample each parameter 

value in contrast to sampling from the joint posterior distribution as was done in Laufenberg et 

al. (2016).   

We generated 2,000 random combinations of projection model parameters from the 

above uniform distributions for the TRB and 2,000 for the UARB.  We then used each of those 

combinations to assess stochasticity by simulating 500 population trajectories for 100 years 

resulting in 1,000,000 trajectories for each subpopulation.  For each trajectory, we recorded the 

model parameter values used in the projection and annual abundance (N), λ, 𝜑, and f.  The goal 

of this analysis was to generate simulated data that would be used to identify individual 

population parameters most associated with extinction risk and identify demographic thresholds 

indicative of long-term persistence. 

Variable importance 

We first created a binary response variable (EXTANT) by assigning a value of 1 to each 

simulated trajectory with the number of bears in the population after 100 years (N100) ≥ 1 and 

assigned a value of 0, otherwise.  We then randomly selected 500,000 of the 1,000,000 simulated 

trajectories as a training data set for which we constructed a random forest of conditional 

classification trees for the TRB and the UARB using the cforest function in the R package 

party (Hothorn et al. 2006a, Strobl et al. 2007, Strobl et al. 2008).  Explanatory variables 

included all 5 data-generating parameter values (𝜇𝜑, σφ, β0, β1, and σf).  We restricted the size of 

individual trees by limiting tree depth to 4 levels to ensure interpretability of individual trees and 

to reduce suboptimal performance associated with overfitting when sample size is large and the 
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number of explanatory variables is small (Lin and Jeon 2006).  We set the number of explanatory 

variables randomly selected for determining individual splits at 3 and the number of trees in the 

forest to 100.  All other function arguments were left at default values.  Variable importance 

scores were calculated using the varimp function in the party package.  We assessed model 

fit and predictive performance of the random forest by calculating the overall classification error 

rate and Type II error rate (i.e., incorrectly classifying a trajectory that went extinct as extant) for 

a holdout sample independent of the training data set that was comprised of 10,000 trajectories 

randomly selected from those trajectories not selected for the training data set.  We considered 

Type II error to be the most relevant from a management standpoint. 

In addition to factors influencing long-term extinction rates, we wanted to also evaluate 

shorter-term rates which would be more appropriate for a typical post-delisting monitoring 

period (e.g., 5 years).  To evaluate importance of short-term rates to extinction risk, we derived 

new predictor variables based on values for N, 𝜑, and λ extracted from the training data set.  We 

calculated the mean value for each variable observed during first 5 (𝑁̅5, 𝜑̅5, and 𝜆̅5) and first 10  

(𝑁̅10, 𝜑̅10, and 𝜆̅10) years of each population projection resulting in 2 sets of predictor variables 

that reflected population monitoring durations that could be implemented post delisting and meet 

ESA monitoring requirements.  We then used those 2 sets of explanatory variables in separate 

random forest analyses each for the TRB and UARB using the same function settings as the 

long-term analysis.  We assessed model fit and predictive performance as we did for the long-

term analysis. 

Demographic thresholds 

Demographic thresholds or triggers are effective components of population monitoring plans 

when relationships between demographic rate values and some measure of population vigor can 
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be reliably determined.  For example, survival might serve as a useful index of population 

persistence probability for which some minimum tipping point could be established.  Traditional 

statistical analysis methods (e.g., generalized linear models or analyses of variance) often are 

inadequate for revealing complex relationships in high-dimensional ecological data, whereas 

machine-learning methods such as classification trees are well suited to such situations (De’ath 

and Fabricius 2000, Strobl et al. 2009).  Therefore, we used single conditional-inference 

classification tree analysis to explore relationships and identify robust predictive thresholds 

between demographic rates and the likelihood of population extinction. 

We were primarily interested in identifying demographic rate thresholds that would be 

reliable indicators of long-term population persistence (i.e., persistence probability >95%) that 

could be measured over relatively short monitoring durations (e.g., 5 years) consistent with post-

delisting monitoring requirements of the ESA.  Additionally, we were interested in identifying 

thresholds in demographic rates governing population dynamics that could be used to gain a 

broader understanding of the underlying demographic requirements for long-term persistence of 

the TRB and UARB subpopulations.  Therefore, we constructed 3 separate conditional 

classification trees for the TRB and UARB based on demographic rates consistent with our 

variable importance analysis: 1 for a 5-year monitoring duration, 1 for a 10-year monitoring 

duration, and 1 for long-term demographic rates.  The first 2 classification trees were focused on 

duration-specific average values derived from annual demographic rates generated by our 

population simulations.  Those averages were defined based on rate-specific numeric scales 

where N and λ could range from 0 to ∞ and 𝜑 could range from 0 to 1.  The third classification 

tree was based on the long-term data-generating demographic rates used in our population 

simulations.  Those values were defined on numeric scales related to link functions used to 
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model and estimate those rates.  Specifically, values that corresponded to survival (𝜇𝜑 and σφ) 

were on the logit scale and values that corresponded to the log-linear model describing density 

dependence in per-capita recruitment (β0, β1, and σf) were on the natural log scale. 

For the short-term and long-term threshold analyses, we used the same training data sets 

and explanatory variables as our variable importance analysis except that the EXTANT variable 

was converted from a binary variable to a factor variable with 2 levels: EXTINCT when N100 <1 

and EXTANT otherwise.  We used the ctree function in the R package party (Hothorn et al. 

2006b) to separately grow classification trees for each set of predictor variables (5-year, 10-year, 

and long-term) for the TRB and UARB resulting in 6 conditional classification trees.  Again, we 

restricted the size of the trees to 4 levels; all other function arguments were left at default values.  

We assessed model fit and predictive performance based on a hold-out sample of 10,000 

trajectories independent of the training data set as we did for random forests used to evaluate 

variable importance.  For the purpose of monitoring long-term persistence, we defined reliable 

demographic rate thresholds as scenarios (i.e., classification tree branches) from our 

classification trees that resulted in persistence probabilities >95% for 100 years. 

Given the findings from our power analysis of prospective monitoring designs that 

suggested λ could be reliably monitored (see Results), we conducted post hoc classification tree 

analyses solely based on 5-year (𝜆̅5) and 10-year (𝜆̅10) averages of λ to identify thresholds for the 

TRB and UARB that would predict population persistence.  All procedures were the same except 

that these analyses only incorporated either 𝜆̅5 or 𝜆̅10 rather than multiple demographic rates as 

in the previous classification tree analyses. 

Spatial capture-recapture 
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We used a spatially explicit open-population capture-mark-recapture (SCRO) modeling approach 

to analyzing DNA-based CMR data collected in the UARB from 2007 to 2012.  This approach 

enabled us to obtain estimates of sex-specific N, 𝜑, f, λ, weekly detection probabilities (p), and 

spatial scale parameter (σSCR) on which we could base our simulations for population trajectories 

and design-specific data collection.  Although our power analysis only considered the UARB, we 

also fit SCRO models to the CMR data collected in the TRB from 2006 to 2012 to provide 

demographic and detection rate estimates that could be used in future sampling designs for that 

subpopulation. 

Spatially explicit capture-recapture (SCR) methods differ from traditional non-spatial 

CMR modeling approaches in that they explicitly model the detection process as a function of 

the juxtaposition of animal activity centers to sampling devices and as a function of animal space 

use conditional on activity center location.  The basic model used for space use represents use as 

a bivariate normal kernel defined by a mean location (i.e., activity or home range center) and a 

scale parameter 𝜎𝑆𝐶𝑅 that regulates use as a declining function of distance from the mean 

location.  In practice, this basic space-use model scales p by the distance between a detection 

device (e.g., hair snare, camera, etc.) and an activity center which translates to the detection of an 

animal by a device being greatest when that device is placed at the activity center of that animal.  

The baseline detection probability (p0) is defined as the probability of detection at a trap placed 

at the activity center and the detection probability for individual i at a trap j is defined as 𝑝𝑖,𝑗 =

𝑝0 × 𝑒𝑥𝑝 (−‖𝒙𝑗 − 𝐬𝑖‖
2

2𝜎𝑆𝐶𝑅
2⁄ ) where xj is a coordinate vector for trap j and si is the coordinate 

vector of the activity center for individual i (Borchers and Efford 2008, Royle et al. 2014).  Note 

that when distance is zero (i.e., trap j is located at activity center i), the detection function 

reduces to 𝑝𝑖,𝑗 = 𝑝0.  Although this model can be extended to account for heterogeneity in space 
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use caused by resource selection (Royle et al. 2013), we chose to use the basic formulation in 

analyzing our empirical data to reduced complexities in simulating data for our power analysis.   

A second difference between SCR models and non-spatial methods is that the SCR 

approach includes an explicit model for the distribution of animal activity centers across the 

landscape (i.e., spatial point process model) which requires a prior delineation of the area that the 

population of interest occupies.  This area is commonly referred to as the state space or area of 

integration and must, at a minimum, include an area sufficiently large to include the sampled 

population, but should exclude areas (e.g., urban areas, water bodies, large agricultural areas) 

where animals are highly unlikely to locate their activity centers (Royle et al. 2014).  Because the 

UARB is primarily comprised of a matrix of patches of bear habitat (e.g., bottomland hardwood 

forests) and non-habitat (e.g., large expanses of row-crop agricultural lands), we defined our 

state-space to only include forested areas identified as quality bear habitat.  To identify those 

areas, we used a statewide habitat model (Murrow et al. 2013) based on the Mahalanobis 

distance statistic to identify suitable bear habitat in the TRB and UARB.  The Mahalanobis 

statistic (D2) quantifies habitat quality as a continuous non-negative value whereby habitat 

quality is inversely related to D2 values (Clark et al. 1993).  We used a threshold D2 value of 80 

to derive a binary raster layer from the fitted D2 model that differentiated between bear habitat 

and non-habitat (Murrow et al. 2013).  We then converted that raster to an ArcGIS (ArcGIS 

10.2.2 for Desktop, c 1999-2013 ESRI Inc., www.esri.com) shapefile (D2HAB) containing 

polygons of bear habitat; we excluded all polygons <2 km2 as areas unlikely to contain activity 

centers given their relatively small size (Fig. 2).   

 To maintain consistency between empirical data analysis, population simulations, and 

power analyses, we derived a common state space for all analyses.  To do so, we based our 
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derivation on the combined set of original trap locations during recovery monitoring and trap 

configurations (see below) considered for our power analysis.  We first buffered the combined 

set of locations by 5 km to define the furthest extent of our state space.  Next, we clipped the 

extent buffer by our D2HAB shapefile to derive a final state space that contained only areas 

defined as bear habitat in which potential activity centers for all bears with access to trapping 

arrays could occur.  The resulting state spaces were 924.8 km2 and 356.3 km2 in size for the TRB 

and the UARB, respectively. 

 The complete CMR data sets for the TRB and UARB consisted of DNA-based detection 

records of individual bears obtained from hair-collection surveys conducted each year from 2006 

to 2012 in the TRB and from 2007 to 2012 in the UARB (Laufenberg et al. 2016).  In contrast to 

analysis of this data set by Laufenberg et al. (2016), we included capture data from both sexes 

whereas the former only used data from females.  The final data set used for analysis consisted of 

count records (yi,j,t) indicating the number of occasions out of a maximum of K occasions that 

individual i  was detected at trap j (j = 1,…,J) of year t (t = 1,…,T),  where n is the 

total number of individuals ever detected, J is the number of traps operated each year, and T is 

the number of years.  

We assumed constant density across space (i.e., homogeneous point process model) for 

areas defined by our state space.  Because the state spaces to which our SCRO-based estimates 

of N encompassed areas well beyond the extent of trap arrays used during the recovery period 

and likely encompassed larger populations, direct comparisons between estimates of our current 

analysis and those from Laufenberg et al. (2016) are not appropriate.  We also note that we did 

not account for changes in field methods or effects of the 2011 flooding event in the UARB 

(O’Connell et al. 2014) in this analysis as was done in Laufenberg et al. (2016), which may also 

( 1,..., )i n
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contribute to differences between the 2 studies.  We allowed annual values of 𝜑, f, and λ to vary 

independently by year, which differed from the random effects modeling approach for annual 

demographic rates used in Laufenberg et al. (2016).  We also allowed p0 to differ across years 

independently for each sex.  Although SCR methods explicitly account for detection 

heterogeneity caused by individual-level differences in exposure to traps and differences 

between sexes, we also accounted for additional latent sources of heterogeneity by assuming a 

sex-specific finite-mixture distribution for p0 (Pledger 2000).   

We used Markov chain Monte Carlo (MCMC) sampling methods within a Bayesian 

inference framework implemented in JAGS (https://sourceforge.net/projects/mcmc-jags) 

accessed through Program R (Version 3.0.2, http://cran.us.r-project.org/, accessed 30 Jan 2014) 

via the package rjags (Plummer 2011) for model fitting and parameter estimation.  We ran a 

single MCMC sampling chain of 10,000 steps after 2,000 burn-in samples were discarded.  We 

report posterior modes and 95% credible intervals for all parameter point estimates unless 

specified otherwise.  We chose the posterior mode as the point estimator instead of the posterior 

mean to avoid potential influence of skewed posterior distributions on parameter estimates.  We 

conducted all analyses using vague prior distributions. 

Power analysis 

Our goal was to develop study designs that would reduce the logistical costs (e.g., personnel, 

materials, time) compared with those used during the recovery period yet still produce reliable 

estimates of important demographic rates required for population monitoring.  Based on the 

estimate of female 𝜎𝑆𝐶𝑅 from our SCRO analysis for the UARB, we considered 2 different levels 

for trap spacing (i.e., 1 × 𝜎𝑆𝐶𝑅 and 2 × 𝜎𝑆𝐶𝑅) that would result in a lower total number of traps 

compared with the study design used during recovery monitoring (Figs. 2 and 3).  For each 



14 

 

spacing, we laid a grid of points over a predefined sampling area within the GIS environment 

and extracted all points that fell within 100 m of the boundary of that area.  The sampling area 

was defined by first adding a 2-km buffer to a polygon shapefile provided by LDWF that 

outlined an area of primary interest for population monitoring in the UARB.  We then extracted 

areas that were classified as bear habitat by our D2HAB shapefile and used the resulting 

shapefile as our sampling area as previously described. 

We considered designs with the original number of 1-week occasions (K = 8) and also 

tested designs with 4 occasions.  We chose 4 because it represented a substantial reduction in 

cost and number of personnel yet still met minimum sampling requirements for fitting CMR 

models that account for detection heterogeneity based on finite-mixture models with 2 mixtures.  

In total, we tested designs based on all possible combinations of the 2 levels of trap spacing and 

2 study durations which resulted in the following 4 study designs: 1) traps spaced at 1 × 𝜎𝑆𝐶𝑅 and 

operated for 4 weeks (Design 1-4), 2) traps spaced at 1 × 𝜎𝑆𝐶𝑅 and operated for 8 weeks (Design 

1-8), 3) traps spaced at 2 × 𝜎𝑆𝐶𝑅 and operated for 4 weeks (Design 2-4), and 4) traps spaced at 2 

× 𝜎𝑆𝐶𝑅 and operated for 8 weeks (Design 2-8).   

We simulated 100 population trajectories for the UARB using a stochastic population 

model parameterized, in part, by demographic rates set at threshold values for those identified as 

important from our variable importance analysis.  Because mean female φ was identified as the 

most important short-term demographic rate for predicting persistence of the UARB 

subpopulation over 5-year (𝜑̅5) and 10-year (𝜑̅10) periods (see Results), we chose annual values 

of φ that would result in a mean of 0.91.  We chose that value because it met the threshold value 

from demographic scenarios in our 5-year and 10-year duration classification trees for the UARB 

that resulted in high probabilities of persistence (>95%).  We set annual f for females to values 



15 

 

that, when summed with corresponding 𝜑, would result in annual λ, 5-year mean λ (𝜆̅5), and 10-

year mean λ (𝜆̅10) equal to 1.0.  We set annual φ for males to values that would result in a 5-year 

mean of 0.85 and set annual male f to values that summed to 1.0 as we did for females.  For all 

simulated trajectories, we used the mean estimated density in the UARB from 2007 to 2012 

multiplied by the area of our state space as the starting population size (N = 127) pooled across 

sexes and assumed an average sex ratio of 0.25M:0.75F estimated from our empirical data.  For 

each trajectory, we then simulated spatially referenced CMR data for 5 years based on the trap 

configuration and sampling duration for each prospective study design, resulting in a total of 400 

data sets.   

For each data set, we evaluated the following 3 open population modeling approaches 

each of which provide estimates of different sets of demographic rates: 1) open population 

spatial-explicit capture-recapture models (SCRO, Royle et al. 2014), 2) spatially explicit 

Cormack-Jolly-Seber models (SCJS, Brownie and Robson 1983), and 3) open population non-

spatial Pradel models (PRADEL, Pradel 1996).  For the SCRO models, we assumed the same 

model structure as that used in our analysis of empirical data collected in the UARB.  Apparent 

survival is the only structural demographic parameter in SCJS models which we modeled as sex 

and year specific.  The SCJS model essentially is a spatial version of the CJS model whereby 

only φ and p are estimated.  The SCJS version has the added advantage of being able to use >1 

capture per occasion in estimating p whereas multiple captures must be discarded for typical CJS 

analysis.  We modeled detection-related parameters for the SCJS analysis same as we did for the 

SCRO analyses.  For our PRADEL analysis, we modeled 𝜑, f, and λ as year and sex specific.  

Pradel models enable the estimation of λ, 𝜑, and f but are not spatially explicit.  Because the 

Pradel models we used were not spatially explicit, we could not account for detection 
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heterogeneity caused by proximity of animals to the trap array.  Therefore, we accounted for 

heterogeneity only by modeling p as sex specific and by using-finite mixture models.   

We again used MCMC and Bayesian inference for model fitting and parameter 

estimation for the SCRO and SCJS power analyses.  For the SCRO analysis, we ran a single 

MCMC sampling chain of 10,000 steps after 2,000 burn-in samples were discarded whereas we 

ran a chain of 15,000 steps with 5,000 burn-in samples for the SCJS analysis.  We summarized 

posterior samples using the mode and 95% credible intervals and used vague priors as before.  

For the PRADEL analysis, we used robust design Pradel recruitment full likelihood data type 

and MLE methods available in Program MARK (White and Burnham 1999) accessed through 

the R package RMark (Laake 2013) for model fitting and to obtain estimates of 𝜑, f, and λ.  For 

each modeling approach, we derived applicable estimates of 5-year averages of N, 𝜑, and λ 

depending on model type that corresponded to short-term demographic rates (𝑁̅5, 𝜑̅5, and 𝜆̅5) 

from our sensitivity analyses.  We evaluated the performance of each modeling approach for 

each design by summarizing derived parameter estimates across all 100 replicates in terms of 

overall bias, root mean squared error (RMSE), and confidence interval coverage. 

RESULTS 

Variable Importance 

Mean annual female φ on the logit scale (𝜇𝜑) was identified as the long-term rate with the 

greatest relative importance for predicting extinction of the TRB subpopulation (Fig. 4A).  

Annual variation of φ (σφ) was also a strong predictor for the TRB.  Conversely, σφ had the 

greatest relative importance to extinction risk and 𝜇𝜑was only moderately important in the 

UARB (Fig. 4B).  The overall classification error rate for the random forest model predicting 

extinction in the TRB was 12.4% and the Type II error rate (i.e., predicted outcome is EXTANT 
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when true outcome is EXTINCT) was 7.5% indicating reasonable predictive power.  The random 

forest model for the UARB performed better than for the TRB with an overall error rate of 5.9% 

and Type II error rate of 3.2%. 

Of the 3 short-term rates evaluated for the TRB and UARB, average apparent female 

survival (𝜑̅5 and 𝜑̅10) was most important for predicting extinction for both monitoring durations 

and both subpopulations (Fig. 4C–F).  Overall and Type II error rates for the TRB random forest 

based a 5-year duration were 8.5% and 3.2% whereas those rates for the 10-year duration were 

slightly lower at 6.7% and 2.7%.  For the UARB, overall and Type II error rates were 8.6% and 

3.7% based on a 5-year duration and were 6.4% and 2.0% for the 10-year duration. 

Demographic thresholds 

The overall error rate of the conditional classification tree for long-term demographic rate 

thresholds in the TRB was 13.6% and the Type II error rate was 4.9%.  Based on the default rule 

implemented in the party package that classifies a terminal node with >50% of its samples 

having true values of 0 as extant, 8 combinations of demographic threshold values (hereafter 

scenarios) were classified as extant (Fig. 5).  Only 1 scenario met our criterion as a reliable 

demographic rate threshold with a likelihood of the TRB subpopulation remaining extant for 100 

years >95%, although a second scenario nearly met that criterion (94%; Fig. 5).  Despite those 

scenarios differing in complexity (i.e., 3 different demographic rates vs 1 demographic rate), 

both occurred when 𝜇𝜑 was relatively high (>2.01 on the logit scale, Fig. 5). 

Overall error rates of the classification tree for 5-year and 10-year durations in the TRB 

were 8.5% and 6.8% and Type II error rates were 3.2% and 3.0% indicating strong predictive 

power.  Based on the default rule implemented in the party package, the same 8 combinations 

of demographic threshold values were classified as extant for both monitoring durations (Fig. 6 
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and Fig. 7).  Based on a 5-year monitoring duration, scenarios for which 𝜑̅5 was >0.91 resulted 

in likelihoods of >95% that the TRB subpopulation would remain extant for 100 years (Fig. 6), 

whereas similar likelihoods for the 10-year duration required values of 𝜑̅10 >0.90 (Fig. 7).  

The overall error rate of 6.3% for long-term demographic thresholds in the UARB was 

much lower than that of the TRB and the Type II error rate was slightly lower at 4.6%.  Six 

demographic rate scenarios resulted in terminal nodes being classified as extant (Fig. 8).  The 2 

scenarios that resulted in likelihoods >95% of the UARB subpopulation remaining extant were 

solely based on thresholds for 𝜇𝜑 and σφ indicating a strong interaction between those variables 

(Fig. 78).  

Performance of the conditional classification trees for short-term rates in the UARB was 

similar to the TRB tree with overall and Type II error rates of 8.7% and 3.8% for the 5-year 

duration and 6.4% and 2.1% for the 10-year duration.  Similar to the TRB, the same 8 

demographic scenarios resulted in probabilities of persistence >0.5 for both monitoring durations 

(Fig. 9 and Fig. 10).  Of the 3 scenarios with high likelihoods of persistence (i.e., >95%) for the 

5-year duration, 2 were solely based on thresholds for 𝜑̅5 and the remaining scenario included 

thresholds for 𝜑̅5 and 𝜆̅5.  The same was true for the 10-year duration.  The minimum threshold 

for scenarios involving only apparent survival was 0.90 (𝜑̅5) and 0.91 (𝜑̅10) for the 5- and 10-

year durations, respectively, which were identical to the values for the TRB subpopulation.   

We conducted a post hoc evaluation of 𝜆̅5 and 𝜆̅10 to identify thresholds that would lead 

to reliable predictions of population persistence.  Compared with classification trees including all 

3 short-term demographic rates, our post-hoc classification tree analyses generally produced 

much higher overall error rates for the TRB (5-year = 18.3%, 10-year = 18.0%) and for the 

UARB (5-year = 17.1%, 10-year = 16.7%).  However, Type II error rates were only slightly 
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greater for the TRB (5-year = 4.8%, 10-year = 4.4%) and the UARB (5-year = 3.7%, 10-year = 

4.8%).  Based on a slightly lower definition of persistence (>0.94), persistence was predicted for 

the TRB subpopulation when 𝜆̅5 or 𝜆̅10 were >1.03 and >1.02, respectively, and for the UARB 

subpopulation when 𝜆̅5 or 𝜆̅10 were >1.08 (Figs. 11–14).   

Spatial capture-recapture 

We detected 392 individual bears (191M:201F) 3,222 times over 7 years in the TRB and 109 

bears (47M:62F) 1,399 times over 6 years in the UARB.  Depending on the year, annual 

estimates of male and female abundance for the TRB study area ranged from 280 (95% CI = 

238–349) and 182 (95% CI = 141–338) to 480 (95% CI = 405–557) and 280 (95% CI = 234–

349), respectively (Fig.15A).  The realized annual population growth rates (λ) fluctuated between 

0.90 (95% CI = 0.75–1.15) and 1.21 (95% CI = 0.70–1.67) for males and between 0.70 (95% CI 

= 0.54–1.04) and 1.23 (95% CI = 1.01–1.53) for females (Fig. 15B).  Annual 𝜑 varied between 

0.66 (95% CI = 0.47–0.87) and 0.95 (95% CI = 0.54–0.99) for males and between 0.68 (95% CI 

= 0.52–0.95) and 0.99 (95% CI = 0.91–1.00) for females (Fig. 15C).  Estimates of baseline 

weekly detection probabilities (p0) were relatively low (range = 0.035–0.069) for a majority of 

females (πA = 0.72, 95% CI = 0.65–0.82; Fig. 16A) and males (p0 range = 0.005–0.012, πA = 

0.90, 95% CI = 0.80–0.95; Fig. 16B).  Estimated 𝜎𝑆𝐶𝑅 for detection was 3.87 km (95% CI = 

3.70–4.07) for males and 1.75 km (95% CI = 1.71–1.81) for females. 

In the UARB, annual point estimates of female N ranged from 62.4 (95% CI = 44–100) 

to 106.0 (95% CI = 82–148) and estimates for males ranged from 23.1 (95% CI = 16–39) to 45.1 

(95% CI = 35–63) during the study period (Fig. 17A).  Annual estimates of male λ varied 

between 1.00 (95% CI = 0.58–1.60) to 1.32 (95% CI = 0.85–1.85) and female estimates varied 

between 0.84 (95% CI = 0.67–1.05) to 1.25 (95% CI = 0.92–1.85; Fig. 17B).  Apparent survival 
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rates (𝜑) were variable for males and females ranging from 0.64 (95% CI = 0.39–0.94) to 0.93 

(95% CI = 0.59–0.99) for males and from 0.77 (95% CI = 0.60–0.90) to 0.98 (95% CI = 0.76–

1.00) for females (Fig. 17C).  Again, estimates of baseline detection probabilities (p0) were 

relatively low (range = 0.017–0.108) for a majority of females (πA = 0.65, 95% CI = 0.57–0.73; 

Fig. 18A) and males (range = 0.005–0.011, πA = 0.81; 95% CI = 0.69–0.90; Fig. 18B).  Estimated 

𝜎𝑆𝐶𝑅 for detection was 6.17 km (95% CI = 5.66–7.23) for males and 2.37 km (95% CI = 2.26–

2.47) for females. 

Power analysis 

Our SCRO analysis based on Design 2-4 and Design 2-8 resulted in high bias (-0.113–-0.077) 

and RMSE (0.087–0.136) and poor credible interval coverage (51–61%) for all demographic 

rates considered.  We concluded that those designs were insufficient for reliable population 

monitoring given the modeling approach used and did not pursue those designs further with 

SCRO modeling.  The absolute average bias of estimates for female 𝜑̅5 (true 𝜑̅5 = 0.91) was -

0.060 (95% CI = -0.133–-0.009) for Design 1-4 (Table 4) and was slightly lower at -0.046 (95% 

CI = -0.102–0.019) for Design 1-8 (Table 5).  However, credible interval coverage generally was 

poor for both designs (68 and 77%, respectively).  Absolute average bias of female 𝜆̅5 (true 𝜆̅5 = 

1.0) for Design 1-4 was similar to that of 𝜑̅5 at -0.067 (95% CI = -0.181–0.050), whereas 

average bias for Design 1-4 was lower -0.038 (95% CI = -0.115–0.034).  Credible interval 

coverage was also considerably less than nominal for Design 1-4 (54%) and for Design 1-8 

(81%).   

 For the SCJS analysis, average bias in 𝜑̅5 steadily decreased across study designs as 

sampling effort increased in terms of number of traps and occasions (Tables 2–5).  Design 1-4 
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and Design 1-8 both resulted in average bias <0.01 and achieved near to better than nominal 

credible interval coverage.   

 Our non-spatial Pradel modeling approach resulted in bias of 𝜑̅5 ranging from -0.092 

(95% CI = -0.201–0.010) for Design 2-8 to -0.046 (95% CI = -0.113–0.023) for Design 1-8 

(Tables 2–5).  Credible interval coverage was substantially lower than nominal ranging from 62 

to 77%.  Estimates of 𝜆̅5 (true 𝜆̅5 = 1.0) were nearly unbiased for all designs (i.e., absolute 

average bias <0.007), although estimates were highly variable across simulations for all designs 

with the narrowest percentile range (CI = -0.089–0.097) for bias in 𝜆̅5 corresponding to Design 

1-8 (Table 5).  Credible interval coverage was near to better than nominal (i.e., >92%) for all 

study designs. 

DISCUSSION 

A better understanding of which demographic rates drive population dynamics is vital to long-

term planning, especially for monitoring persistence, and our sensitivity analysis for long-term 

demographic rates provided that.  For example, viability of the UARB subpopulation was most 

sensitive to variation in annual female 𝜑, whereas the TRB subpopulation was most affected by 

the long-term mean of annual female 𝜑.  Indeed, greater importance of temporal variation to 

persistence of the UARB is to be expected given its relatively small size which makes it more 

susceptible to environmental stochasticity even when long-term average female λ is positive 

(Shaffer 1987, Mills 2007).   

Another benefit of the sensitivity analysis was that our classification trees also allowed us 

to place long-term demographic rate estimates from Laufenberg et al. (2016) into a broader 

context.  By simulating population trajectories across a much wider range of conditions (i.e., 

different combinations of survival and recruitment parameters) than did Laufenberg et al. (2016), 
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we were able to identify demographic scenarios, other than those observed during the PVA 

period, which could also result in high persistence probabilities.  Those results relax the 

assumption made in the original PVA that the population dynamics (i.e., means and variances) 

observed during that study must persist for the determination of long-term viability to hold.  We 

believe this is especially important because it acknowledges that long-term viability can occur 

under a wider range of demographic conditions which may provide greater flexibility to 

managers. 

Our variable importance analysis for short-term demographic rates indicated that average 

annual female φ over 5-year (𝜑̅5) or 10-year (𝜑̅10) periods were good predictors of extinction 

risk for both subpopulations.  The importance of female φ also was evident in our short-term 

demographic rate classification trees as it was included in every scenario that resulted population 

persistence (>95%).  Although we identified scenarios whereby a single demographic rate 

corresponded to high persistence probabilities (e.g., 𝜑̅5 > 0.91), all parameters should be 

evaluated.  For example, if at TRB 𝜑̅5 = 0.89 and 𝑁̅5 = 120, the probability of population 

persistence would still be high (p = 0.94) based on scenario S14 in Fig. 6.  

Our power analysis revealed a negative bias in 𝜑̅5 estimated with SCJS models for 

designs with the greatest trap spacing (Designs 2-4 and 2-8).  Although capture biases can result 

in biases in φ if not accounted for, they are typically low (Carothers 1973) though more recent 

work has suggested that negative biases in 𝜑 associated with ignoring individual capture 

heterogeneity can be significant, especially if 𝜑 is used to estimate λ for long-lived species for 

which growth rates are highly sensitive to variation in survival (Fletcher et al. 2012).  Our Pradel 

analysis results also indicated negative bias in 𝜑̅5 but not in 𝜆5 despite explicitly accounting for 

capture heterogeneity with finite-mixture models.  This is in agreement with Marescot et al. 
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(2011) who reported that estimates of 𝜑 were biased low and estimates of λ were unaffected by 

individual capture heterogeneity, although bias was greater when heterogeneity was more 

extreme.  We contend that difficulties associated with obtaining unbiased estimates of φ are 

prevalent when strong heterogeneity is present because capture data are dominated by 

individuals that are more detectable which artificially inflates detection probability estimates 

resulting in negatively biased estimates of 𝜑.  Such effects are even more pronounced for sparse 

data sets, such as those produced by our Design 2-4 and Design 2-8, because detecting and 

reliably estimating capture biases can be difficult when data are limited (Laufenberg et al. 2013, 

Augustine et al. 2014).  Our estimates from the SCRO analysis indicated that both 𝜑̅5 and 𝜆̅5 

were negatively biased, though credible intervals for 𝜆̅5 were wide.  We suspect that the 

additional parameters associated with SCRO models require more data to obtain reliable 

estimates than Design 2-4 and Design 2-8 could produce. 

   Our post-hoc evaluation suggested that λ > 1.03 at TRB and >1.08 at UARB would 

predict population persistence with probability >0.94.  Small populations are at greater risk than 

larger populations due to greater susceptibility to stochastic processes such as environmental 

variation in demographic rates over time or demographic stochasticity even when average 

growth rates are stable (White 2000, Mills 2007).  Therefore, small populations such as the 

UARB would be expected to require long-term average growth rates greater than larger 

populations such as the TRB to ensure viability as our post-hoc analysis indicated.  Although 

overall error rates were much higher for λ-only trees, Type II error rates were <5% for all 

durations and subpopulations indicating trigger points based on thresholds identified from those 

trees would be conservative.  One of the assumptions of the Pradel model is that the study area 

size does not change, so the ability to monitor range expansion with the method is limited (Hines 
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and Nichols 2002) unless adjustments for changing study area size is accommodated (Clark and 

Eastridge 2006).  Again, different combinations of parameter values can produce viable 

population predictions so no one parameter should be relied on exclusively. 

 The overall poor performance of the SCRO models across all prospective sampling 

designs can probably be explained by the additional parameters that had to be estimated with 

spatially explicit models that included finite mixtures.  The analysis by Chandler and Clark 

(2014) did not account for capture heterogeneity beyond spatial aspects of the sampling process 

and used a sampling design that was more intensive than the designs we tested.  The sparse data 

coupled with the additional parameters resulted in poor model fits and biased estimates.  

Spatially explicit designs for estimating population trend are undoubtedly possible, but the 

sampling effort would be greater than what is currently planned.  Spatially explicit models have 

an advantage over non-spatial models in that spatial capture heterogeneity is explicit in the 

modeling process.  However, given our finding that λ can be reliably estimated with non-spatial 

Pradel models, there is little motivation for the SCRO estimate other than to perhaps obtain a 

more rigorous estimate of N.  That analysis could always be done on an ad hoc basis or intensive 

sampling required to estimate N can be implemented at more affordable intervals (e.g., every 5 

years) which could better ensure population sizes do not decline to precarious levels.  Radio 

telemetry data to independently estimate survival and recruitment are also being collected; those 

data could be used to construct a projection matrix similar to that used in the PVA for TRB and 

TRC (Laufenberg et al. 2016) from which asymptotic growth rate could be derived.  

Alternatively, those data could be combined with the noninvasive capture-recapture data set to 

produce an integrated population analysis (Powell et al. 2000, Schaub and Abadi 2011, Dudgeon 
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et al. 2015) or to improve the performance of SCRO models (Sollmann et al. 2013) but that is 

beyond the scope of this study. 

MANAGEMENT IMPLICATIONS 

Estimating long-term demographic rates similar to those used in Laufenberg et al. (2016) to 

assess population viability requires substantial effort and financial resources.  Therefore, 

identifying alternative short-term demographic parameters capable of predicting long-term 

persistence yet requiring fewer resources to collect is critical for long-term monitoring 

initiatives.  Our simulations suggest that a threshold of 𝜑̅5 = 0.91 can reliably predict a 95% 

probability of persistence for both study areas.  All of the sampling designs we evaluated 

indicated negative bias in 𝜑, meaning that the real parameters are probably higher than those 

estimated.  Consequently, it is possible that 𝜑̅5 slightly <0.91 will also be indicative of 

population persistence over the long term.  Regardless, non-invasive capture-recapture data 

planned to be collected during the post-delisting monitoring period can easily be used to estimate 

of λ and f in addition to 𝜑 based on Pradel robust design models.  Our research and that of others 

suggests that λ is unbiased using a variety of methods, even for Design 2-4, which represents a 

much wider spacing of traps than what is currently being employed.  Although the current 

protocol is 3 weeks of hair sampling, we simulated 4 weeks because it was possible to evaluate 

mixture models for individual capture heterogeneity (Pledger 2000), which is not possible with 

only 3 weeks of sampling.  Therefore, Design 2-4 may represent a reasonable compromise 

between reliability and efficiency for estimating both 𝜑 and λ. 

 We emphasized tipping points or triggers in our analysis, and such concepts are useful for 

endangered species management.  Other tipping points are possible depending on different 

probabilities of persistence or levels of uncertainty that managers are comfortable with.  
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Regardless, we suggest that managers should look at the entirety of the data available for species 

monitoring, rather than rely on a single go, no-go tipping point for any one subpopulation.  The 

planned monitoring protocols allow for the calculation of a variety of important population 

parameters based on the CMR data, and other parameters can be estimated with the telemetry 

data.  We suggest that the totality of the data should be considered across all the subpopulations 

in a broad context when evaluating post-delisting trends and prospects for re-listing under the 

ESA. 
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Table 1.  Minimums and maximums of posterior distributions for demographic rates estimated 

by Laufenberg et al. (2016) from DNA-based capture-mark-recapture data collected from 

Louisiana black bears in the Tensas River Basin (TRB; 2006–2012) and in the Upper 

Atchafalaya River Basin (UARB; 2007–2012), Louisiana, USA. 

 

 TRB UARB 

 
Minimum Maximum Minimum Maximum 

Recruitment intercept (β0)
1 

-

3.6321600 42.5942900 -3.9625500 43.2671000 

Recruitment slope (β1) 

-

0.3268900 -0.0000340 -1.3392500 -0.0000017 

Recruitment standard deviation (σf) 0.0000633 1.9998470 0.0000106 1.9999760 

Survival mean (𝜇𝜑)2 0.8456470 3.6779160 0.3466130 4.0957950 

Survival standard deviation(σφ) 0.0001330 0.9997030 0.0000859 0.9999690 

1 Recruitment parameters estimated on the natural log scale 
2 Survival parameters estimated on the logit scale 
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Table 2.  Estimates of absolute average bias, root mean squared error (RMSE), and credible 

interval coverage for demographic rates in the Upper Atchafalaya River Basin estimated from 

simulated data using open population spatially explicit Cormack-Jolly-Seber (SCJS) and non-

spatial Pradel modeling approaches.  Population simulations were based on annual survival rates 

that averaged 0.91 and population growth rates that averaged 1.0 over a 5 year period.  Spatially 

referenced detection data were simulated based on a sampling design with a 5-km trap spacing 

and 4 occasions (Design 2-4). 

 

      Bias1 Bias 

LCL2 

Bias 

UCL 

RMSE RMSE 

LCL 

RMSE 

UCL 

Coverage3 

SCJS        

  Mean 𝜑 (𝜑̅5)4 
-0.065 -0.151 0.004 0.078 0.001 0.149 0.95 

Pradel        

  Mean 𝜑 (𝜑̅5) -0.079 -0.207 0.090 0.114 0.001 0.207 0.77 

  Mean λ (𝜆5)  0.007 -0.192 0.198 0.099 0.000 0.198 0.93 

1 Average over values from 100 simulated data sets. 
2 2.5% (LCL) and 97.5% (UCL) percentiles of values from 100 simulated data sets. 
3 Proportion of confidence intervals containing the true value from 100 simulated data sets. 
4 Means of annual demographic rates over 5-year period.  
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Table 3.  Estimates of absolute average bias, root mean squared error (RMSE), and credible 

interval coverage for demographic rates in the Upper Atchafalaya River Basin estimated from 

simulated data using open population spatially explicit Cormack-Jolly-Seber (SCJS) and non-

spatial Pradel modeling approaches.  Population simulations were based on annual survival rates 

that averaged 0.91 and population growth rates that averaged 1.0 over a 5 year period.  Spatially 

referenced detection data were simulated based on a sampling design with a 5-km trap spacing 

and 8 occasions (Design 2-8). 

 

 Bias1 Bias 

LCL2 

Bias 

UCL 

RMSE RMSE 

LCL 

RMSE 

UCL 

Coverage3 

SCJS        

  Mean 𝜑 (𝜑̅5)4 -0.027 -0.103 0.024 0.042 0.001 0.098 0.95 

Pradel        

  Mean 𝜑 (𝜑̅5)    -0.092 -0.201 0.011 0.109 0.006 0.187 0.66 

  Mean λ (𝜆5) 0.005 -0.117 0.152 0.071 0.000 0.152 0.96 

1 Average over values from 100 simulated data sets. 
2 2.5% (LCL) and 97.5% (UCL) percentiles of values from 100 simulated data sets. 
3 Proportion of confidence intervals containing the true value from 100 simulated data sets. 
4 Means of annual demographic rates over 5-year period. 
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Table 4.  Estimates of absolute average bias, root mean squared error (RMSE), and credible 

interval coverage for demographic rates in the Upper Atchafalaya River Basin estimated from 

simulated data using open population spatially explicit capture-mark-recapture (SCRO), spatially 

explicit Cormack-Jolly-Seber (SCJS), and non-spatial Pradel modeling approaches.  Population 

simulations were based on annual survival rates that averaged 0.91 and population growth rates 

that averaged 1.0 over a 5 year period.  Spatially referenced detection data were simulated based 

on a sampling design with a 2.5-km trap spacing and 4 occasions (Design 1-4). 

 

 Bias1 Bias 

LCL2 

Bias 

UCL 

RMSE RMSE 

LCL 

RMSE 

UCL 

Coverage3 

SCRO        

  Mean 𝜑 (𝜑̅5)4 -0.060 -0.133 -0.009 0.069 0.001 0.120 0.68 

  Mean λ (𝜆5) -0.067 -0.181 0.050 0.091 0.001 0.167 0.54 

SCJS        

  Mean 𝜑 (𝜑̅5) -0.005 -0.060 0.035 0.038 0.027 0.000 0.99 

Pradel        

  Mean 𝜑 (𝜑̅5) -0.073 -0.166 0.011 0.087 0.001 0.149 0.62 

  Mean λ (𝜆5) 0.006 -0.092 0.123 0.060 0.000 0.123 0.96 

1 Average over values from 100 simulated data sets. 
2 2.5% (LCL) and 97.5% (UCL) percentiles of values from 100 simulated data sets. 
3 Proportion of confidence intervals containing the true value from 100 simulated data sets. 
4 Means of annual demographic rates over 5-year period. 
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Table 5.  Estimates of absolute average bias, root mean squared error (RMSE), and credible 

interval coverage for demographic rates in the Upper Atchafalaya River Basin estimated from 

simulated data using open population spatially explicit capture-mark-recapture (SCRO), spatially 

explicit Cormack-Jolly-Seber (SCJS), and non-spatial Pradel modeling approaches.  Population 

simulations were based on annual survival rates that averaged 0.91 and population growth rates 

that averaged 1.0 over a 5 year period.  Spatially referenced detection data were simulated based 

on a sampling design with a 2.5-km trap spacing and 8 occasions (Design 1-8). 

 

 Bias1 Bias 

LCL2 

Bias 

UCL 

RMSE RMSE 

LCL 

RMSE 

UCL 

Coverage3 

SCRO        

  Mean 𝜑 (𝜑̅5)4 -0.046 -0.102 0.019 0.056 0.002 0.102 0.77 

  Mean λ (𝜆5) -0.038 -0.115 0.034 0.054 0.000 0.106 0.81 

SCJS        

  Mean 𝜑 (𝜑̅5) 0.010 -0.031 0.052 0.024 0.000 0.044 0.93 

Pradel        

  Mean 𝜑 (𝜑̅5) -0.046 -0.113 0.023 0.058 0.002 0.107 0.72 

  Mean λ (𝜆5) -0.002 -0.089 0.097 0.047 0.001 0.097 0.92 

1 Average over values from 100 simulated data sets. 
2 2.5% (LCL) and 97.5% (UCL) percentiles of values from 100 simulated data sets. 
3 Proportion of confidence intervals containing the true value from 100 simulated data sets. 
4 Means of annual demographic rates over 5-year period. 
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Figure 1.  Conceptual relationships among the 3 stages of analysis to evaluate performance of sampling for predicting probability of 

persistence of Louisiana black bears.

Sensitivity Analysis 

Stochastic population simulation to 
identify the most important 

parameters and triggers 

TRB and UARB 

Estimate Real Population 
Parameters from CMR Data 

SCRO, SCJS, Pradel models 

TRB and UARB 

Power Analysis of 4 Sampling 
Designs 

Estimate bias and precision in φ and λ 

UARB only 
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Figure 2.  Trap configuration for the Upper Atchafalaya Louisiana black bear subpopulation 

based on a trap spacing of 2.5 km approximately equivalent to 1 × 𝜎𝑆𝐶𝑅 (𝜎𝑆𝐶𝑅 = 2.4 km).  Traps 

depicted by blue circles and gray areas define the state space used for all spatially explicit 

analyses.  
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Figure 3.  Trap configuration for the Upper Atchafalaya Louisiana black bear subpopulation 

based on a trap spacing of 5 km approximately equivalent to 2 × 𝜎𝑆𝐶𝑅 (𝜎𝑆𝐶𝑅 = 2.4 km).  Traps 

depicted by blue circles and gray areas define the state space used for all spatially explicit 

analyses.
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Figure 4.  Variable importance values estimated from random forests of conditional classification 

trees based on stochastic population simulations for females in the Tensas River Basin (panels A, 

C, and E) and Upper Atchafalaya River Basin (panels B, D, and F) subpopulations.  Explanatory 

variables corresponded to long-term demographic rates used to generate population trajectories 

(panels A and B) or averages derived from the first 5 years (panels C and D) or the first 10 years 

(panels E and F) of population trajectories.  Explanatory variable definitions were as follows: σf 

was temporal variation in per-capita recruitment, β0 and β1 were the intercept and slope 

coefficients describing log-linear density-dependence in per-capita recruitment, σφ was temporal 

variation in apparent survival, 𝜇𝜑 was temporal mean in apparent survival, 𝑁̅5 and 𝑁̅10were 

average abundance over 5 and 10 year periods, 𝜆̅5 and 𝜆̅10 were average population growth rates 

over 5 and 10 year periods, and 𝜑̅5 and 𝜑̅5 were average apparent survival probabilities over 5 

and 10 year periods.  The response for all random forests was a binary variable that coded for 

population extinction.  All demographic rates are for females only.
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Figure 5.  Conditional classification tree for long-term female demographic thresholds for the Tensas River Basin subpopulation.  

Proportions of bars in dark gray and values below bars (e.g., p = 0.73) represent extinction probability.  Values for mean apparent 

survival (𝜇𝜑) and temporal variation of 𝜇𝜑 (σφ) are on the logit scale and values for the intercept (β0), slope (β1), and temporal 

variation (σf) for a log-linear model describing density dependence in annual per-capita recruitment (f) are on the natural log scale.  
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Figure 6.  Conditional classification tree for short-term female demographic thresholds for the for the Tensas River Basin 

subpopulation based on 5-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.98) represent 

extinction probability.  Values for 5-year averages of abundance (𝑁̅5) and apparent survival (𝜑̅5) are on the real scale. 
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Figure 7.  Conditional classification tree for short-term female demographic thresholds for the Tensas River Basin subpopulation 

based on 10-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.99) represent extinction 

probability.  Values for 10-year averages of abundance (𝑁̅5) and apparent survival (𝜑̅5) are on the real scale.  
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Figure 8.  Conditional classification tree for long-term female demographic thresholds for the Upper Atchafalaya River Basin 

subpopulation.  Proportions of bars in dark gray and values below bars (e.g., p = 0.97) represent extinction probability.  Values for 

mean apparent survival (𝜇𝜑) and temporal variation of 𝜇𝜑 (σφ) are on the logit scale and values for the intercept (β0), slope (β1), and 

temporal variation (σf) for a log-linear model describing density dependence in annual per-capita recruitment (f) are on the natural log 

scale.  
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Figure 9.  Conditional classification tree for short-term female demographic thresholds for the Upper Atchafalaya River Basin 

subpopulation based on 5-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.99) represent 

extinction probability.  Values for 5-year averages of abundance (𝑁̅5), apparent survival (𝜑̅5), and population growth rate (𝜆̅5) are on 

the real scale.  
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Figure 10.  Conditional classification tree for short-term demographic thresholds for the Upper Atchafalaya River Basin subpopulation 

based on 10-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 1.0) represent extinction 

probability.  Values for 10-year averages of abundance (𝑁̅10), apparent survival (𝜑̅10), and population growth rate (𝜆̅10) are on the real 

scale.  
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Figure 11.  Conditional classification tree for short-term growth rate thresholds for the Tensas River Basin subpopulation based on 5-

year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.98) represent extinction probability.  All 

population growth rate (𝜆̅5) values are on the real scale.  
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Figure 12.  Conditional classification tree for short-term growth rate thresholds for the Tensas River Basin subpopulation based on 10-

year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.99) represent extinction probability.  All 

population growth rate (𝜆̅10) values are on the real scale.  
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Figure 13.  Conditional classification tree for short-term growth rate thresholds for the Upper Atchafalaya River Basin subpopulation 

based on 5-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.99) represent extinction 

probability.  All population growth rate (𝜆̅5) values are on the real scale.  
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Figure 14.  Conditional classification tree for short-term growth rate thresholds for the Upper Atchafalaya River Basin subpopulation 

based on 10-year monitoring duration.  Proportions of bars in dark gray and values below bars (e.g., p = 0.99) represent extinction 

probability.  All population growth rate (𝜆̅10) values are on the real scale.
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Figure 15.  Male (triangles) and female (circles) demographic rate estimates and 95% credible intervals (error bars) for Louisiana 

black bears based on open-population spatially explicit capture-mark-recapture analysis of DNA-based detection data collected in the 

Tensas River Basin, Louisiana, USA from 2006 to 2012.     
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Figure 16.  Male (panel A) and female (panel B) detection rate estimates and 95% credible intervals (error bars) for Louisiana black 

bears based on open-population spatially explicit capture-mark-recapture analysis of DNA-based detection data collected in the 

Tensas River Basin, Louisiana, USA from 2006 to 2012.   Circles are estimates for mixture A, triangles are estimates for mixture B, 

and diamonds are estimates for the proportion of the population in mixture A.  
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Figure 17.  Male (triangles) and female (circles) demographic rate estimates and 95% credible intervals (error bars) for Louisiana 

black bears based on open-population spatially explicit capture-mark-recapture analysis of DNA-based detection data collected in the 

Upper Atchafalaya River Basin, Louisiana, USA from 2007 to 2012.   
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Figure 18.  Male (panel A) and female (panel B) detection rate estimates and 95% credible intervals (error bars) for Louisiana black 

bears based on open-population spatially explicit capture-mark-recapture analysis of DNA-based detection data collected in the Upper 

Atchafalaya River Basin, Louisiana, USA from 2007 to 2012.  Circles are estimates for mixture A, triangles are estimates for mixture 

B, and diamonds are estimates for the proportion of the population in mixture A.  


