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What Barrier?



A

F

E

D

C

B

G

A

F

E

D

C

B

G



A B C D E F G

Weir
110 120 130 140 150 160 170

P
er

ce
nt

 S
uc

ce
ed

in
g

0

20

40

60

80

100

1999
2000
2001
2002
2003



Passage success is a discrete 
measure of a continuous 

process

Permeability = 
Proportion Passing=

Probability
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Predictive Models S(D): 1 – 5 m s-1



Pros and Cons of the 
Empirical Approach

• Maximum parsimony
• Engineering-friendly

• Species, populations differ
• Complex, site-specific hydraulics
• Insufficient resources for general 

application
• Ignores key behaviors



Fish Passage Polemics
• Dam/Barrier removal
• Stream simulation
• Nature-like fishways
• Technical fishways
• Improved culvert/channel design
• Parsimony vs. Cost Efficiency



The Problem:
• Hydraulic and other site characteristics define 

boundaries on designs for culverts, fishways, 
and other barriers

• Need to integrate physiology, biomechanics, and 
behavior into predictions of fish passage

• Need to reconcile feasibility and reliability



Current (historic) practices



What’s wrong with Beach (1984)?

• Flawed biological basis
– Assumes broad similarities within and across 

taxa
– Ignores 30 years of research

• Variables:
– Hydraulics
– Swim speeds
– Condition and swimming performance



The next generation:
• User-control of 

swimming 
performance 
parameters

• Extensive literature 
base for finding best 
approximation of a 
given site

• Differential mode 
selection and swim 
speeds 3.0



Swim Speed (BL s-1)
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Swim Speed (BL s-1)
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Swim Speed (Us)
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Speed of flow (Uf)
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Swim speeds are neither constant 
nor optimal!   Which means…
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Passage success is not 
determinsitic
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Swim Speed (BL s-1)
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…to here?
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First, ‘account’ for 
hydraulic complexity



Flow
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Swim Speed (BL s-1)
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The next challenge: 

Varying swim speeds and 
cumulative fatigue
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Distance from culvert outlet (m)
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Necessary Data

• Swim speed-fatigue time
– Variability

• Behavioral optimization and variability

• Attempt rate/attraction



Conclusions

• Fish passage is stochastic, not 
deterministic

• Models are getting better, but…
• They’re only as good as the data they’re 

fed
• It’s possible to be right for the wrong 

reasons



Recommendations

• Significant cost savings can be realized 
with better data

• Existing models of swimming performance 
underestimate actual performance in the 
field

• Lots of unanswered questions:

•Perched outlets
•Attempt rate

•Turbulence
•Water depth





Dogma
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