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Preface

Members of Congress:

Each of us has a stake in the health
of wetlands across our country.
Wetlands are highly productive and
biologically diverse systems that
are a critical driver of economic
activity. Wetlands enhance water
quality, control erosion, maintain
stream flows, sequester carbon, and
provide a home to about half of all

threatened and endangered species.

Decades ago, Congress recognized
the importance of wetlands when

it wisely mandated this periodic
report on the status and trends

of wetlands across the Nation.
These reports reveal that despite
landmark environmental laws like
the Clean Water Act, Swampbuster
Provision of the Food Security

Act, and National Environmental
Policy Act; Executive Order 11990,
among others; and policies pledging
no net loss of wetlands, we are
failing as a Nation to sufficiently
protect our wetlands. This report
indicates that wetland loss rates
have increased by 50 percent over
the last decade and continue to
disproportionally impact vegetated
wetlands such as marshes and
swamps. Approximately 670,000
acres of vegetated wetlands, an
area greater than the land extent of
Rhode Island, disappeared between
2009 and 2019.

The reasons for these losses are
complex, but the results are clear
—wetland loss leads to the reduced
health, safety, and prosperity of
all Americans. When wetlands

are lost, society loses services

such as clean water; slowing of
coastal erosion; protection against
flooding, drought, and fire; and
resilience to climate change and
sea level rise. Wetland losses also
cause declines in fish, wildlife, and
plant populations that many in our
communities depend upon to make
a living, feed their families, and
enjoy the outdoors.

Wetlands status and trends reports
are the yardstick used to measure
the effectiveness of existing laws
and policies aimed at protecting
wetlands. This latest report makes
it clear that these policies and laws
are not sufficient. Over the nearly
70 years covered by the wetlands
status and trends reports, the
country has achieved the “No Net
Loss” goal only once—in the early
2000s. The rate of wetland loss has
continued to increase since 2004.
In the face of a changing climate
and associated increases in storm
intensity, flooding, and drought, we
cannot afford to lose more wetlands.

AENT OF 5

The important scientific information
in this report is a call to action

and provides an opportunity for

the country to work together

in response. The health of our
Nation requires stronger wetlands
conservation legislation, Executive
action, and partnerships. Federal
agencies, Tribes, States, and all
landowners must work together
now to protect and restore wetlands
for the health of our communities,
today and into the future. We must
commit to raising the bar related to
“No Net Loss” to a more explicitly
defined standard of “No Net

Loss” of vegetated wetlands going
forward.

This report delivers the hard truth
that we need to act now. I urge you
to work with me to accomplish the
recommendations in the report.
Furthermore, I look forward to
working with you to propose and
enact stronger laws protecting
wetlands, so the next status and
trends report tells a positive story.

b2l

Deb Haaland
Secretary, Department of the Interior

Right: Southern Appalachian Mountain bogs are a rare wetland habitat, and in turn are home to several rare plants and
animals, including the endangered mountain sweet pitcher plant. Photo by Gary Peeples, USFWS.







Executive Summary

This is the 6% in a series of hectares [ha]) of wetlands in the (12.1M ha), 19.1M ac (7.7M ha),
Congressionally mandated conterminous U.S. in 2019, and6.9M ac (2.8M ha), respectively.
Wetlands Status and Trends accounting for <6% of the The most common saltwater
reports spanning nearly 70 years. conterminous U.S by area. The wetland type was salt marsh (4M ac
It provides scientific estimates of vast majority of wetlands were [1.6M ha]), followed by non-
wetland area in the conterminous freshwater (95% or 110.4M ac vegetated areas (e.g., mud flats,
United States as well as change [ 44.7TM hal), with saltwater beaches, shoals, and sand bars;

in wetland area between 2009 and wetlands occupying 6.1M ac (2.5M 1.0M ac [405K ha]) and forested/
2019. The information in this and ha). Most wetlands were vegetated, shrub (800K ac [324K hal]).
past Status and Trends reports is including 92% (101.56M ac [41.1M

used by natural resource managers  ha]) of freshwater and 80% (4.8M Net wetland loss increased

and policy makers to make strategic ac [1.9M ha]) of saltwater wetlands. ~ substantially (>50%) since the last

decisions regarding the future of Freshwater forested wetlands were ~ Wetlands Status and Trends study

America’s wetlands. the most abundant wetland type period (2004-2009), resulting in the
overall (52.4M ac [21.2M ha]), with  loss of 221K ac [89K ha] of

There were an estimated 116.4 freshwater emergent, scrub-shrub, ~ wetlands, primarily to uplands,

million (M) acres (ac) (47.1M and ponds occupying 30.0M ac between 2009 and 2019. These

Bombay Hook National Wildlife Refuge in Delaware protects one of the largest remaining expanses of tidal salt marsh in the
mid-Atlantic region.

Tim Williams/USFWS



losses disproportionately affected
vegetated wetlands (forested,
serub-shrub, and/or emergent)
resulting in a net loss of 670K ac
[271K ha] of these wetlands, more
than the land area of Rhode Island.
In contrast, there was a net gain in
non-vegetated wetlands of 488K ac
[197K ha].

Net annual losses of freshwater
vegetated wetlands increased

by about 50% relative to annual
losses in the last study period. The
wetlands that were most affected
by these losses were freshwater
forested wetlands (-426K ac [-172K
ha]). Saltwater systems also
experienced substantial declines of
vegetated wetlands, with total salt
marsh area decreasing by

2%. Loss of vegetated wetlands,
even if replaced by non-vegetated
wetlands, alters wetland function
and leads to the reduction of
wetland benefits, including
mitigation of severe storms

and sea level rise, water quality
improvement, and provision of food
and other natural resources like
timber.

In contrast to the rapidly increasing
loss of vegetated wetlands, net area
of non-vegetated wetlands, like
ponds, mud flats, shoals, and sand
bars, increased by 488K ac

[197K ha]. Non-vegetated wetland
gains include an increase in ponds
of 455K ac [184K ha] or 7% of total
pond habitat and an increase in
non-vegetated saltwater wetlands
of 33K ac [13K ha] or 3% of that
habitat. The loss of vegetation in
saltwater wetlands may foreshadow
future wetland loss. Studies have
shown that the loss of wetland
vegetation often precedes the
transition from salt marsh to
deepwater (e.g., open ocean) due to
relative sea level rise and coastal
storm impacts.

When net change to all wetlands is
considered (-221K ac [-89K ha]),
gains in non-vegetated wetlands
obscure the magnitude of vegetated
wetland losses. Most importantly,
the data show an overall increase in

the proportion of non-vegetated
wetlands at the expense of
vegetated wetlands, a trend
consistent with previous Wetlands
Status and Trends studies.

The substantial loss and alteration
of wetlands documented by this
study, including the long-term shift
towards decreasing vegetated
wetlands and increasing non-
vegetated wetlands, reduces the
prosperity, health, and safety of
communities. This occurs through
increased susceptibility of people
and infrastructure to natural
disasters like flood, drought, and
wildfire, as well as decreased

food security, reduction in clean
water, increased harmful algal
blooms and related increases in
toxins and oxygen depleted “dead
zones,” greater vulnerability to sea
level rise and storms, and reduced
recreational opportunities. Wetland
loss patterns have also affected and
are likely to continue to
substantially affect plant and
animal populations. This includes
rare as well as commerecially,
culturally, and recreationally
valuable species. When the effects
of changes in wetland condition are
taken into account, even greater
loss of wetland functions and
services are indicated. These
impacts can happen rapidly and are
often difficult to reverse.

To achieve no net loss of all
wetlands, including
vegetated wetlands, a
strategic update is needed
to America’s approach to
wetland conservation.

Based on a review of wetland policy

and management needs, the
following strategies are suggested
to support this recommendation:
Strategy 1) Achieve “No Net Loss”

of wetlands and robust coordination

with government and non-
governmental partners to achieve
this goal; Strategy 2) Produce a
contemporary NWI Geospatial
Dataset and spatially explicit

information on wetland function;
Strategy 3) Develop and implement
enhanced wetland conservation and
management approaches based on
a holistic review of current and past
actions; and Strategy 4) Commit to
long-term adaptive conservation,
management, and monitoring.
These foundational strategies are
especially important because most
wetlands in the conterminous U.S.
have already been lost, wetland loss
has recently accelerated, and future
declines will likely be magnified by
the effects of climate and land use
and land cover change. Scientific
information, like this report, is
foundational to the strategic
implementation of all natural
resource policy actions and will be
critical to the success of this effort.



Introduction

Situated at the transition between
dryland and deepwater habitats,
wetlands are characterized by
unique biological, chemical, and
hydrological conditions and, as a
result, provide abundant ecosystem
services (i.e., benefits that people
receive from ecosystems?).
Wetlands have long provided food
and building materials®?, as well

as recreational opportunities (e.g.,
hunting, fishing, kayaking, and bird
watching) that benefit the health
and well-being of tens of millions

of Americans each year!34567,
Wetlands are especially valued
today because they help to avoid or
mitigate many of our most pressing
environmental challenges, including
increasing temperatures®®’, sea
level rise!®?, hurricanes and other
severe storms*1#12 droughts

and floods®31, wildfires'®, and

the growing need for readily
available clean water®'¢7!4, The
ecosystem services provided by
wetlands are unmatched by any
other habitat except coral reefs.

In terms of ecosystem services,
wetlands have an economic value
over 11 times higher than lakes and
rivers, over 36 times higher than
forests, and over 33 times higher
than grasslands!. We estimate

that ecosystem services related to
commercial fishing, water quality
and supply, recreation, and flood
control alone provide over $7.7T

in benefits annually within the
conterminous United States’®.

Wetlands also support a wide range
of plant and animal species, many of
which are rare or have a commercial
or recreational value. Roughly

half of the species protected under
the U.S. Endangered Species

Act (16 U.S.C. 1531-1544) are
wetland-dependent'®?, including
the American crocodile, chinook
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conterminous United States in 2019.

salmon, whooping crane, bog turtle,

manatee, and several orchid species.

North American populations of
wetland-dependent species are
declining much more rapidly than
other types of plants and animals!,
and half of locally extinct (i.e., no
longer living in states where they
used to reside) U.S. vascular plants
live in wetlands?!. This means

that the importance of America’s
wetland habitats for vulnerable
species will likely increase.
Additionally, up to half of North
American bird species?? and ~80%
of protected birds® depend on
wetlands. Approximately 46 to 95%
of U.S. commerecial fish landings
and 80 to 85% of recreational
landings were found to depend on
coastal wetlands and estuaries®.
For these reasons and more, the
U.S. Fish and Wildlife Service
(Service) recognizes wetlands

as a “trust resource” —i.e., a

Figure 1. Relative wetland area (i.e., high to low wetland density) for the

nationally important resource that
the government protects for all
Americans. Many of the pictures in
this report highlight Service efforts
and lands, including National
Wildlife Refuges. These Refuges
are 50% wetland by area and

strive to conserve and strategically
manage wetlands and wetland-
dependent species®.

History and Importance of Wetlands
Status and Trends Reports
Recognizing the importance of
America’s wetlands, Congress
enacted the Emergency Wetlands
Resources Act (Public Law 99-645)
in 1986. Under the provisions of
this Act, the Service is required

to produce publicly available

maps of U.S. wetlands, as well as
report to Congress every 10 years
on the status and trends of the
Nation’s wetlands. These mandates
are carried out by the Service’s



National Wetlands Inventory
(NWI) Program, which provides
foundational scientific information
and geospatial data in support

of wetland education, science,
management, and policy.

Wetlands Status and Trends
reports provide impartial scientific
estimates of the extent of 17
wetland and deepwater habitats
(Table 1) within the conterminous
U.S., as well as change in their area
over time. Each Status and Trends
report builds on the last, providing
an invaluable historical perspective
and increasing our understanding
of landscape patterns and
processes. Several regional reports
complement the national reports by
focusing on areas within the U.S.
that are experiencing relatively
high rates of wetland loss, including
two Coastal Watersheds reports?*
and one Prairie Pothole report®.

Status and Trends reports quantify
the cumulative effects of multiple
wetland change drivers, including
but not limited to climate change,
development, agriculture, and
federal, Tribal, state, and local
government actions. Change
drivers are diverse and can lead
to wetland gain and loss, as well
as change between wetland

types. Governmental actions

are wide ranging, including the
implementation of wetland policies
and regulations, compensatory
and voluntary restoration, and
protection. The information in
Status and Trends reports enables
natural resource managers and
policy makers to make strategic
decisions regarding the future of
our Nation’s wetlands.

Wetlands Status and Trends
reports have long catalyzed wetland
protection and restoration, and

this trend continues today. Status
and Trends findings of substantial
wetland loss in the mid-1900s*
catalyzed the creation of highly
effective wetland protection and
restoration programs and policies,
including the Swampbuster

Table 1. Descriptions of wetland, deepwater, and upland categories used in the

Wetlands Status and Trends study.

Saltwater

Marine Subtidal**

Marine Intertidal*

Estuarine Subtidal**

Estuarine Intertidal Emergent*
Estuarine Intertidal Forested/Shrub*

Estuarine Intertidal Unconsolidated Shore*

Common Description

Open ocean

Near shore

Open-water, bays

Salt marsh

Mangroves or other estuarine shrubs

Beaches, bars, flats

Freshwater

Palustrine Forested*

Palustrine Shrub*

Palustrine Emergent*

Palustrine Farmed*

Palustrine Unconsolidated Bottom (ponds)*

Pond - Natural characteristics

Pond — Industrial

Pond — Urban use

Pond - Agriculture use

Pond - Aquaculture

Lacustrine**

Riverine** (may be tidal or non-tidal)

Common Description

Swamps (wetlands with woody plants >6m [6.6
yd] tall)

Wetlands with woody plants <6m [6.6 yd] tall

Inland marshes, wet meadows

Farmed wetlands

Open-water ponds, aquatic beds

Small bog lakes, vernal pools, kettles, beaver

ponds, alligator holes

Flooded mine or excavation sites (including
highway borrow sites), in-ground treatment
ponds or lagoons, holding ponds

Aesthetic or recreational ponds, golf course
ponds, residential lakes, ornamental ponds,
water retention ponds

Ponds in proximity to agricultural, farming,
or silviculture operations such as farm ponds,
livestock dug-outs, agricultural waste ponds,
irrigation or drainage water retention ponds

Ponds singly or in series used for aquaculture
including fish rearing

Lakes and reservoirs

Rivers and streams

Uplands
Agriculture
Urban

Forested Plantation

Rural Development

Other Uplands

*wetland categories
** deepwater categories

Common Description
Cropland, pasture, managed rangeland
Cities and incorporated developments

Planted or otherwise intensively managed
forests

Non-urban developed areas and infrastructure
Rural uplands not in any other category

including non-intensively managed forests,
grasslands, and barren lands

"



Provision of the 1985 Food Security
Act (Public Law 99-198), U.S. Farm
Bill wetland easement programs
(e.g., Agricultural Conservation
Easement Program Wetlands
Reserve Easements), and the
addition of wetland mitigation
measures within the Clean Water
Act (33 U.S.C.A. 1251 et seq.)
permitting process®. Although the
Wetlands Status and Trends project
was not designed to determine the
effectiveness of any specific policy,
the data have been used to measure
progress toward the overarching
federal “No Net Loss” wetlands
goal®'#2, The reports continue to
support strategic wetland policy
and management today by driving
collaboration and innovative
planning between and amongst
federal, Tribal, state, and local
partners.

Within the Service and many
other federal agencies, Status

and Trends reports are used

to guide the funding, planning,

and implementation of wetland
restoration and enhancement,
habitat assessments, strategic
habitat conservation, and ecosystem
management activities. These

data have also been used to inform
species listing determinations

and other actions related to
implementation of the Endangered
Species Act.

This is the sixth national U.S. Fish
and Wildlife Service Wetlands
Status and Trends report. Several
federal and state agencies, as

well as commercial and non-profit
organizations, provided data
analysis and technical resources
that were critical to its completion.
The U.S. Environmental Protection
Agency and the National Oceanic
and Atmospheric Administration
provided financial support.

Bald cypress trees at Great Dismal
Swamp National Wildlife Refuge in
Virginia. Photo by R. Winn, USFWS.
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Horicon National Wildlife Refuge in Wisconsin helps to protect one of the largest freshwater marshes in the United States. This
marsh is a critical rest stop for thousands of migrating ducks and Canada geese.

of base and ancillary imagery,
and digital collection of Global
Positioning System-enabled field
verification data.

Wetlands were identified using

a biological definition®, which
differs from the federal regulatory
definition and does not imply
regulatory jurisdiction. The
biological definition requires
wetland hydrology, and if soil and/
or vegetation are present, they
must be hydric or hydrophytic,
respectively. Freshwater and
saltwater wetlands were classified
into three main types based on
salinity: palustrine [salinity <0.5
pptl), estuarine [salinity between
0.5 and 30 ppt], and marine [salinity
>30 ppt]. These three wetland
types were further divided into

13 subcategories based primarily
on vegetation presence and type,
and according to the Federal
Geographic Data Committee
Wetlands Mapping Standard?®
(Table 1).

In addition to wetland categories,
four deepwater and five upland
categories were tracked (Table 1).

Deepwater habitats have water
that is too deep to be considered
wetland, including water depth
exceeding spring tide in tidal
habitats and depth that exceeds 8.2
ft (2.5 m) at low water in non-tidal
habitats. “Upland” is used in this
report to denote land areas that are
too dry to be wetlands. The upland
categories were used to help track
common drivers of wetland loss
and gain and therefore included
land use types as well as land

cover. Change between wetland,
deepwater, and upland categories
was only documented when it was
clearly indicated in the remotely
sensed imagery (e.g., non-ditched
inundated area replaced by a
ditched non-inundated area) and
determined to be long-term and not
temporary due to weather or other
factors. For more information on
procedures used to help ensure the
quality of Status and Trends change
data please see National Standards
and Support Team 20173

The area and area change of
wetland and deepwater habitats
in the conterminous U.S. (with
the exception of the Great Lakes)

and associated standard errors
were estimated using conventional
mathematical and statistical
methods. Reported area change
values represent net change

unless otherwise noted. Net

change represents the balance
between increases and decreases
and is calculated as the difference
between all increases and decreases
(increases minus decreases) to the
area of a particular category. For
example, if category A increased by
100 units and decreased by 50 units
the net change would be 50 units
(100 - 50 = 50 units). In contrast,
gross change accounts for all
increases and decreases and would
be 150 units in this example (100

+ 50 = 150 units). We evaluated
the magnitude of wetland change
relative to measured uncertainty
with p-values (2019-2009, paired
t-test, df = 5048 plots - 215 strata).
Additional information on study
methods, including wetland, upland,
and deepwater categories, sampling
scheme, quality control, and
statistical analysis can be found in
Dahl 2011% and National Standards
and Support Team 2017,
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Results

Area of U.S. Wetlands

There were an estimated 116.4M
ac (47.1M ha) of wetlands in

the conterminous U.S. in 2019,
accounting for <6% of the

total area of the conterminous

U.S. (Table 2; Figure 3). The

vast majority of wetlands were
freshwater (palustrine; 95%

or 110.4M ac [44.7TM ha]), with
saltwater (estuarine and marine)
wetlands occupying 6.1M ac (2.5M
ha; 5%). Most wetlands were
vegetated, including 92% (101.5M
ac [41.1M ha]) of freshwater

and 80% (4.8M ac [1.9M hal]) of
saltwater wetlands. Freshwater
(i.e., palustrine) forested wetlands
were the most abundant type
overall (52.4M ac [21.2M ha]), with
freshwater emergent, scrub-shrub,
and ponds occupying 30.0M ac
(12.1M ha), 19.1M ac (7.7M ha), and
6.9M ac (2.8M ha), respectively. The
most common saltwater wetland
type was estuarine emergent marsh
(i.e., salt marsh; 4M ac [1.6M hal)),
followed by estuarine and marine
non-vegetated areas (e.g., beaches,
mud flats, shoals, and sand bars;
1.0M ac [405K ha]) and estuarine
forested/shrub (800K ac [324K
ha]). In 2019 deepwater habitats
occupied a total of 44.7M ac (18.1M),
including 20.0M ac (8.1M ha) of
estuarine subtidal, 17.2M ac (7.0M
ha) of lacustrine (not including the
Great Lakes), and 7.4M ac (3.0M
ha) of riverine habitat. A summary
of data for the 2009-2019 study
period, including p-values from
paired t-tests, can be found in Table
2.

Change in All Wetland Types
Wetland losses within the
conterminous U.S. exceeded gains,
resulting in a net wetland loss of
221K ac [89K ha] during the study
period (Table 2). This net loss
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Figure 3. Area of upland, deepwatey; and wetlands within the conterminous United
States in 2019.



Table 2. Summary of 2019 area and 2009-2019 area change for select wetland and deepwater categories.
Avrea, In Thousands of Acres (%CV)

Wetland/Deepwater Category

Marine Intertidal

Estuarine Intertidal Unconsolidated Shore

Estuarine Intertidal Vegetated

All Intertidal Wetlands

Palustrine Ponds

Palustrine Farmed

Freshwater Vegetated
Palustrine Emergent
Palustrine Shrub
Palustrine Forested

All Freshwater Wetlands

All Non-Vegetated Wetlands

All Vegetated Wetlands

All Wetlands

Lacustrine

Riverine

Estuarine Subtidal

All Deepwater Habitats

Note that only non-vegetated wetland categories increased in area, whereas all area decreases were associated with vegetated wetlands.
Coefficient of variation (CV: [standard errov/mean] * 100) for each entry expressed as percent is given in parentheses below area and
change values. P-value is provided for change. The estuarine intertidal vegetated category includes estuarine intertidal emergent and

Estimated
Area, 2009

206
(13.7)

1,005
(11.7)

4,880
(3.5)

6,091
@.1)

6,421
(1.3)

2,012
(23.4)

102,134
1.n

30,092
(7.8)

19,187
4.9)

52,854
2.1

110,567
0.9

7,632
1.1)

107,014
1.2)

116,658
0.7

17,068
10.3)

7,435
(8.4)

19,987
2.2)

44,490
23)

Estimated
Area, 2019

209
(13.5)

1,035
(11.3)

4817
3.5)

6,061
2.2)

6,876
(1.3)

1,973
(24.0)

101,527
@

30,008
(7.8)

19,091
(5.0)

52,428
2.7

110,376
(0.9)

8,120
(1.0)

106,344
(1.2)

116,437
0.7)

17,227
(10.1)

7,402
8.4)

20,043
(2.2)

44,672
@23)

Change, Change
2009-2019 (In Percent)
3 1.3%
(75.7)
30 3.0%
(41.4)
-63 -1.3%
(17.8)
-30 -0.5%
(24.4)
455 7.1%
4.3)
-40 2.0%
(63.6)
-607 -0.6%
(11.0)
-84 -0.3%
(160.2)
-97 -0.5%
(206.8)
-426 -0.8%
(42.1)
-191 -0.2%
(18.7)
488 6.4%
(3.4)
-670 -0.6%
(7.6)
-221 -0.2%
(34.3)
159 0.9%
(63.2)
-33 -0.4%
(155.1)
56 0.3%
(28.3)
182 0.4%
(34.7)

Change
P-Value

0.187

0.016

<.001

<.001

<.001

0.116

<.001

0.533

0.629

0.018

<.001

<.001

<.001

<.001

0.094

0.653

<.001

0.002

forested/shrub. The lacustrine category does not include the open water areas of the Great Lakes. Farmed wetlands are neither vegetated

nor non-vegetated by definition and therefore were not included in either group. Any apparent discrepancy between the area estimates

and their reported difference is due to rounding.

was driven by the conversion of
wetlands to upland and deepwater
land cover types (Figure 4).
Conversion to upland was the
dominant driver of net wetland
loss resulting in a total wetland
reduction of 194K ac (79K ha).
Conversion to deepwater areas
accounted for a loss of 27K ac [11K
ha].

The rate of net wetland loss (-21K

ac/yr [-8.5K ha/yr]) accelerated
by over 50% between this study

period (2009-2019) and the previous

period (2004-2009). This finding
extends a long-term pattern of
net wetland loss (Figure 5) that

likely began hundreds of years ago
with European colonization. This
trend has already resulted in the

conterminous U.S. losing over half

of its wetland area®.

In addition to net wetland loss,

Status and Trends data for

2009-2019 indicate a fundamental
alteration of wetland type at a
national scale. While the area of
all vegetated wetland categories

decreased, all non-vegetated
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Figure 4. Wetland gain and loss between 2009 and 2019 in the conterminous United States attributed to different change drivers.
Note: Only categories associated with amounts of change that were large enough to be clearly visible were included in the graph.

wetland categories increased in
area (Table 2). The net decrease

in vegetated wetlands was 670K

ac. In contrast, non-vegetated
wetlands and deepwater categories
gained net area (488K and 182K ac
[197K and 74K ha], respectively).
When net change to all wetlands

is considered (-221K ac [-89K

ha]), the gains in non-vegetated
wetlands obscure the magnitude

of the vegetated wetland losses.
Most importantly, the data show an
overall increase in the proportion
of non-vegetated wetlands at the
expense of vegetated wetlands,

a trend consistent with previous
Status and Trends studies.

Saltwater Wetland Trends

Saltwater wetlands within the
conterminous U.S. experienced a
net decrease of 30K ac (12K ha)
between 2009 and 2019 (Table

3). Estuarine emergent marsh
(i.e., salt marsh) experienced the
largest net percent reduction of
any wetland category (2% or -70K
ac [-28K ha]), while non-vegetated
saltwater wetland area increased by
3% (33K ac [13K ha]). There were
small net increases in estuarine
marsh in areas formerly occupied
by freshwater wetlands (22K ac
[9K ha]) and uplands (2K ac [800
ha]; Figures 6). The pattern of
decreasing estuarine marsh and
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Figure 5. Average annual net wetland gain or loss across Wetlands Status and
Trends study periods. Width of bars represents length of study period.

increasing non-vegetated saltwater
wetlands (estuarine intertidal
unconsolidated shore and marine
intertidal) has been consistent for
the past 70 years with the exception
of a small amount of non-vegetated
wetland loss between 1986 and 1997
(Figure 7).

Net decrease in estuarine emergent
marsh (i.e., salt marsh) was
primarily associated with change

of marsh to non-vegetated habitats
(Figure 6). In most cases, estuarine
marsh was converted to marine
and estuarine subtidal (deepwater;
61K ac [25K ha]), but change to
intertidal non-vegetated wetlands
(e.g., beaches, mud flats, shoals,
and sand bars) also occurred (24K
ac [10K ha]). Dynamic exchange
between land cover categories

is common within the saltwater
environment. However, it is



Table 3. Summary of 2019 area and 2009-2019 area change for saltwater wetlands.

Wetland Category

Marine Intertidal

Estuarine Intertidal Unconsolidated Shore
Marine and Estuarine Intertidal Non-
Vegetated

Estuarine Emergent

Estuarine Forested/Shrub

Estuarine Intertidal Vegetated

All Estuarine and Marine Intertidal

Area, In Thousands of Acres (%CV)

Estimated Estimated Change,
Area, 2009 Area, 2019 2009-2019
206 209 2.7
(13.7) (13.5) (75.7)
1,005 1,035 30.1
117 (11.3) (30.1)
1,211 1,244 32.8
(6.9) (6.7) (25.7)
4,070 4,000 -69.5
(5.5) (5.5) (25.5)
810 816 6.7
(12.1) (12.0) (114.2)
4,880 4,817 -62.8
(&5) (3.5) (17.8)
6,091 6,061 -30.1
2.1) (2.2) (24.4)

% of

Change

(Inc %%ent) %%%g Palue
1.3% 3.4% 0.187
2.9% 17.1% 0.016
2.6% 20.5% <.001
-1.7% 66.0% <.001
0.8% 13.5% 0.381
-1.3% 79.5% <.001
-0.5% <.001

Marine and estuarine intertidal non-vegetated category includes estuarine intertidal unconsolidated shore and marine intertidal.
Estuarine intertidal vegetated includes estuarine emergent and estuarine forested/shrub. Coefficient of variation (CV; [standard error/
mean] * 100) for each entry expressed as percent is listed in parentheses below area and change values. Any apparent discrepancy
between the area estimates and their reported difference is due to rounding.
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Forested/ Subtidal  Unconsolidated  Intertidal Subtidal Emergent Forested Scrub/ Other
Shrub Shore Wetland Wetland Wetland Shrub
Wetland Wetland Wetland

Figure 6. Salt marsh (estuarine intertidal emergent) area change between 2009 and 2019 in the conterminous United States
attributed to different drivers. Note: Only categories associated with amounts of change that were large enough to be clearly

visible were included in the graph.

important to note that the net loss

of estuarine marsh exhibits a highly
significant (p <.001), long-term, and
disproportionately one-way pattern.

Freshwater Wetland Trends

The conterminous U.S. is still
losing large amounts of vegetated
freshwater wetlands to deepwater
and upland (Table 4). The net
area decrease of all freshwater
vegetated wetlands was -607K ac

[-246K ha]). Freshwater forested
wetlands experienced a larger net
decrease in area (-426K ac [-172K
ha]) than any other category during
this study period. Approximately
288K ac [117K ha] of this decrease
was due to loss of forested wetlands
to uplands, and almost twice as
much (559K ac [226K ha]) forested
wetland was changed to freshwater
emergent wetland. Gross change
(i.e., all increases and decreases)

between forested and emergent or
scerub-shrub wetland types (3.7M
[1.5M ha]) was likely driven in
large part by timber harvest. This
wetland type change eclipsed gross
gains and losses related to uplands
(307K ac [124K ha]).

The net decrease of vegetated
wetlands co-occurred with a
substantial net increase in open-
water ponds of 455K ac [184K ha].
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Table 4. Summary of 2019 area and 2009-2019 area change for freshwater wetlands.

Avea, In Thousands of Acres (%CV) % of Change

Wetland Category Estimated Estimated Change Change Freshwater P-Value
Area, 2009 Area, 2019 2009-2019  (In Percent) ~ Wetlands

Palustrine Emergent 30(’?23%4 30(’3‘%?2 (i%% -0.3% 27.2% 0.9225
Palustrine Shrub 1%;113)7‘4 19(,3%?.9 (é%%_g) -0.5% 17.3% 0.6180
Palustrine Forested 52(5%'2 52(’3%2 -(122%()) 08% 475% 0.0176
e w0 W e owe <
Aquaculture Ponds (1350980) (1350?,'% (1-65 é(.)S) -3.1% 0.1% 0.5489
Agriculture Ponds 353?97)'0 3{3}9(;'2 (215239(; 8.3% 3.0% <.001
Industrial Ponds f’ﬁg{; 21130%1) (gi:g) 18.5% 0.4% <.001
Natural Ponds 1’(%?5)'7 1’(%’_337)'6 (ig:(f) 2.7% 1.7% 0.0416
Urban Ponds %2?8'? 1’(%?59)'3 ég:g) 9.1% 1.0% <.001
Palustrine Ponds 6’(‘;?:%9 6’(51736)'1 ‘353)2 7.1% 6.2% <.001
Palustrine Farmed (22g142) (12’2703; (639?((55) 2.0% 1.8% 0.1160
All Freshwater Wetlands* 1 1?(’53)7 = 11‘()6?97)6'2 (11%15 -0.2% 0.0737

Freshwater vegetated wetlands include the palustrine emergent, shrub, and forested categories. Coefficient of variation (CV: [standard
error/mean] * 100) for each entry expressed as percent is listed in parventheses below area and change values. Any apparent discrepancy
between the area estimates and their reported difference is due to rounding.
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Figure 7. Net annual change in salt marsh and non-vegetated saltwater wetlands within the conterminous United States between
the mid-1900s and 2019. Width of bars represents length of study period.
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Pond area increased by over 7%
during the study period (Table 4).
These increases were primarily
gains of agricultural ponds (253K
ac [102K ha]) but also included
urban (91K ac [37K ha]), industrial
(68K ac [28K ha]), and natural (49K
ac [20K ha]) ponds. The increase

in agricultural ponds was likely
associated with a combination of

excavation and diking to support
farming practices (e.g., irrigation/
water supply and conservation
practices) as well as changes in
weather and climate. In contrast,
increases in urban and industrial
ponds were primarily driven by
development (e.g., stormwater
management ponds). All upland
categories experienced some

conversion to ponds, but most
ponds were gained from upland
agriculture and upland other;,
resulting in net gains of 184K

and 126K ac (74K and 51K ha),
respectively (Figure 8). Vegetated
wetlands were also changed to
ponds, resulting in a net pond
area increase of 106K ac (43K ha)
and a commensurate decrease in
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Figure 8. Pond area change between 2009 and 2019 in the conterminous United States attributed to different drivers. Note: Only
categories associated with amounts of change that were large enough to be clearly visible were included in the graph.
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Figure 9. Net annual non-vegetated and vegetated freshwater wetland change within the conterminous United States between the
mid-1900s and 2019. Width of bars represents length of study period.
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vegetated wetland area. These
changes continue a long-term
pattern of freshwater vegetated
wetland decrease and pond increase
that has persisted for about 70
years (Figure 9). This pattern has
obscured vegetated wetland losses.

The magnitude and dominant
drivers of change varied depending
on wetland type (e.g., vegetated
versus non-vegetated). The largest
driver of all freshwater wetland
net loss (-191K ac [-77K ha]) was
an increase in upland forested

plantations (83K ac [34K ha]),
followed by increases in upland
agriculture (78K ac [32K ha]),
upland urban (49K ac [20K ha]),
upland rural development (27K

ac [11K ha]), and lacustrine area
(25K ac [10K ha]). There was also
a net gain of 39K ac (16K ha) in
freshwater wetlands from upland
other (Figure 10). When only
vegetated freshwater wetlands
are considered, net loss to upland
was substantially higher (-607K ac
[-246K ha])), including net losses to
upland agriculture (-211K ac [-85K

ha]), upland forested plantation
(-107K ac [-43K ha]), upland other
(-86K ac [-35K ha]), upland urban
(-64K ac [-26K ha]), and upland
rural development (-51K ac [-21K
ha]; Figure 10).

Right: Ghost forest at St. Marks National
Wildlife Refuge along the Gulf coast of
Florida. Ghost forests form when salt
water kills trees, often due to sea level
rise. Photo by Megan Lang, USFWS.
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Figure 10. Freshwater all wetland (top) and vegetated wetland (bottom) change between 2009 and 2019 in the conterminous
United States attributed to different drivers. Note: Only categories associated with amounts of change that were large enough to be
clearly visible were included in the graph.
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Discussion

Drivers of Change

The losses documented by this
study extend a long-term pattern
of net wetland loss* within the
conterminous U.S., the primary
causes of which have shifted
through time. During the mid-
1900s (i.e., twentieth century), net
loss was dominated by drainage
and fill, primarily associated

with agriculture®. By the late
1900s (i.e., 1986-1997), urban

and rural development was
associated with over half (53%)

of net wetland loss, followed by
agriculture (26%) and silviculture
(i.e., upland forested plantations;
23%)*". While we estimate that
conversion of wetlands to upland
through drainage and fill is still
the main driver of loss (Figure

4), other less direct mechanisms
are also important, including
those associated with the effects
of climate change (e.g., increased
temperature and therefore
evaporation and changes in
precipitation patterns)**#4, These
varying drivers often interact,
accelerating loss*#2%, The result
has been the loss of more than half
of wetlands in the conterminous
U.S. since European colonization®.

Loss accelerated during this study
period, resulting in substantial net
reduction of all wetlands (-221K

ac [-89K ha]) and an even greater
reduction in vegetated wetlands.
Vegetated wetland decreases (-670K
ac [271K ha]) exceeded the land
area of Rhode Island, while non-
vegetated wetland increase (488K
[197K ha]) was equivalent to ~75%
of that state’s area. Estuarine
emergent marsh (i.e., salt marsh)
demonstrated the largest net
percent reduction of any wetland
category (2% or -70K ac [-28K
ha]), while non-vegetated saltwater
wetland area increased by 3%
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Federally endangered whooping cranes at Quivira National Wildlife Refuge in Kansas.

(33K ac [13K ha]). Net freshwater
vegetated wetland area decreased
by 607K ac [246K ha] during the
study period. The majority of that
decrease is attributable to declines
in freshwater forested wetlands
(-426K ac [-172K ha]). In contrast,
pond area increase (455K ac [184K
ha] exceeded forested wetland
decrease, resulting in a 7% gain of
pond habitat.

Significance of Wetland Loss

The substantial loss of wetlands
documented by this study (Table

2) reduces the prosperity, health,
and safety of communities through
increased susceptibility of people
and infrastructure to natural
disasters like flood, drought, and
Wﬂdﬁre43’44’11’8’45’12’46’13, decreased
food security?, reduction in clean
water?#164 increased harmful algal
blooms and related increases in
toxins and oxygen depleted “dead
zones 4" greater vulnerability to
sea level rise and stormg®11:841.129,

and reduced recreational
opportunities®’. The impacts of
natural disasters, heightened by
wetland loss, have been especially
substantial*'13, Since 1980, 355
U.S. weather and climate related
disasters with damages over $1B
have occurred at a total cost of
$2.54T and 15,955 related deaths®.
Hurricane Sandy is estimated to
have cost $4.4B in lost ecosystem
services through damage to New
Jersey’s wetlands alone*'.

Wetland loss also leads to

declines in fish, wildlife, and

plant populations, including

rare, commercially important,

and culturally valuable
Species50,51,52,53,54,55,23,3,16,56,57. FOI'
example, a five-county area

in Minnesota that historically
supported about 300,000 dabbling-
duck breeding pairs could support
less than 59,000 pairs after about
half of its historical wetland

area was lost?®. Similar declines

Dan Severson/USFWS



in wetland area and wetland-
dependent species are occurring
globally, including an 83% decline

in freshwater wildlife species
populations between 1970 and 2018,
more than for any other wildlife
type®. The impact of wetland loss
on biodiversity and other ecosystem
services may not be fully evident
for several decades®".

Human and environmental impacts
stem from not only the loss of
wetlands but their replacement
with other land covers. For
example, replacement of wetlands
with development and agriculture
reduces wetland pollutant removal
services, and increases pollutant
inputs in the form of fertilizer,
waste, sediment, and toxins.
Replacement of wetlands with
development also increases the

amount of impervious surfaces

in a watershed, which has been
linked to degraded watershed
health®!. Additionally, replacement
of wetlands with development often
places people and infrastructure in
locations that are more vulnerable
to natural disasters, such as storm
surge along the coasts and flooding
near streams.

Vegetated vs. Non-Vegetated
Wetlands

Status and Trends reports indicate
a consistent and fundamental

shift towards more non-vegetated
wetlands and fewer vegetated
wetlands for at least the past

70 years. During the 2009-2019
study period, this pattern within
freshwater systems was primarily
driven by increases in agricultural,
urban, and industrial ponds paired

with vegetated wetland losses to
upland (agriculture, development,
and forested plantations) and lakes.
Change of wetlands to ponds also
played a role (Figure 10). This is
particularly notable because ponds
do not naturally occur in many
parts of the U.S.

Within saltwater systems, the
pattern of increasing non-vegetated
wetlands and decreasing vegetated
wetlands was driven primarily

by the replacement of estuarine
emergent marsh (i.e., salt marsh)
by non-vegetated wetlands,
accompanied by the loss of marsh
to deepwater (Figures 6 and 11).
The loss of emergent vegetation in
saltwater wetlands may foreshadow
future wetland loss. In saltwater
wetlands, vegetation loss often
precedes the transition from

Figure 11. Aerial imagery showing salt marsh (estuarine emergent marsh) loss between 2009 (left) and 2019 (right) in Louisiana.



estuarine marsh to deepwater

due to relative sea level rise and
coastal storm impacts®*#!. Although
coastal habitats are dynamic by
nature due to waves, currents, and
other natural forces, this highly
significant (p <.001), long-term
pattern of net estuarine marsh
decrease and non-vegetated
wetland and deepwater gain is
consistent with the documented
effects of human modification®

and climate change!®1%, Similarly,
findings of freshwater wetland and
upland change to saltwater wetland
is most likely the result of landward
migration of saltwater wetlands
with relative sea level rise?*6:6364,

Vegetated wetland decreases
primarily occurred in the Southeast
and Great Lakes regions. Decreases
were particularly prevalent within
the Southeast, including the coastal
watersheds of Texas, Louisiana,
Florida, the Carolinas, and the
Delmarva Peninsula, as well as
near the Mississippi and Mobile
River alluvial plains (Figure 12). In
addition to other drivers of wetland
change, the Southeast experienced
multiple hurricanes during the
study period including Irma [2017],
Harvey [2017], Michael [2018],
Florence [2018], and Dorian [2019].
Wetland losses are predicted to
continue in these areas due to the
dual pressures of land use and
climate change®.

Loss of wetland vegetation is

an important driver of ecologic
deterioration, partially because
non-vegetated wetlands function
differently than vegetated wetlands
and often provide fewer ecosystem
services®5764%, For example, in

the Peconic Estuary, New York the
annual economic value of estuarine
marsh was found to be five times
that of intertidal mud flats®. Plants
dissipate wave energy and trap
sediment while their roots stabilize
shorelines, building resilience

to storms and sea level rise®!,
This benefit is substantial, saving
infrastructure and lives. Salt marsh
(i.e., estuarine emergent marsh)
can reduce wave heights by 72%"™.
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Figure 12. Map showing relative density of net vegetated wetland decrease (loss to
upland and deepwater and change to non-vegetated wetlands) in the conterminous

United States between 2009 and 2019.

Every year coastal wetlands are
estimated to provide over $23B in
storm protection™. Wetland plants
are often used for construction and
energy production®*, including
through the harvest of timber and
thatch. Vegetation also enhances
water quality by trapping sediment,
oxygenating the water column,

and reducing the concentration

of excess nutrients and other
pollutants®%,

Vegetated wetlands help to regulate
the climate by capturing carbon
dioxide from the atmosphere and
storing it in plant material and
sediment®*%. The rate at which
estuarine and marine vegetated
wetlands sequester this “blue
carbon” is estimated to be more
than ten times greater than the rate
at which tropical forests sequester
carbon™. Estuarine and marine
vegetated wetlands have been
found to store at least three to five
times more carbon than tropical
forests®. When wetland plants are
lost, carbon is often released to

the atmosphere, increasing carbon
dioxide, a major greenhouse gas’.
Pendelton et al. (2012)™ estimated

that the current global cost of
carbon dioxide emissions associated
with mangrove, salt marsh, and
seagrass loss is between $6.1 and
$42B annually.

Wetland plants provide vital food
and habitat for imperiled species
(e.g., saltmarsh sparrow and

black rail) as well as commerecially
valuable species, including shrimp,
crab, oyster, and salmon®,
Vegetated wetlands make excellent
nurseries because plants prevent
large predators from reaching
young fish and shellfish™. The
connection between fisheries and
vegetated wetlands is so strong
that scientists have directly linked
fishery yields to vegetated wetland
area and yield declines to vegetated
wetland area decreases (e.g.,
shrimp and estuarine marsh)?™.
In summary, the presence of
vegetation enables a much wider
range of important ecosystem
functions relative to non-vegetated
wetlands.

Although non-vegetated wetlands
do not provide the same type and
number of functions as vegetated



wetlands, many provide important  features in ways that extend other factors™™. Some artificial

benefits. For example, ponds can beyond the lack of vegetation. For water bodies have compacted
improve water quality and reduce example, artificial water bodies soil, which deters groundwater
flooding™%67, However, artificial often differ from natural water exchange and reduces water quality
water bodies, including many bodies in size, shape, distribution, benefits. In total, these differences
ponds, often differ from natural depth, inundation pattern, and lead to variations in function at the

Figure 13. Net change in saltwater wetland, deepwater, and upland categories between 2009 and 2019 and fluxes between
categories. The relative size of each category is indicated by the size of the circle. Net acreage change for each category is included within
the circles and changes between categories are indicated by the size of the arrows and the nearby numbers. Values are acres rounded to
the nearest hundreds. Note that the largest fluxes are from salt marsh to deepwater and non-vegetated wetlands.
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individual and landscape scale that
can reduce ecosystem services®™
such as water quality benefits®™
and habitat for waterbirds and
other species®-8%2,

Because of the relationship
between wetland type and
ecosystem services, it is critical
that change between wetland types
be considered along with wetland
loss and gain when developing
wetland policies and management
approaches. Ideally, the loss of

one type of wetland would be
mitigated with a replacement of the
same type of wetland; otherwise,
substantial losses of ecosystem
services may result even if total
wetland area does not decrease.
This is especially important when
long-term, highly significant shifts
between fundamentally different
wetland types are evident (e.g.,
Figures 7 and 9). Conservation and
management approaches that are
geared only to overall wetland loss
will not provide long-term support
for the full range of wetland
functions and services.

Impacts to Animals and Plants

Substantial long-term net wetland
loss paired with a fundamental shift
from vegetated to non-vegetated
wetlands has affected and is likely
to continue to substantially affect
plant and animal populations. This
was highlighted by a recent State
of the Birds report by the North
American Bird Conservation
Initiative®, which documented
trends in bird populations that

are likely related to wetland and
deepwater patterns described in
this report (i.e., loss of vegetated
wetlands and gain of ponds and
lakes). For example, about a third
of waterbirds are experiencing
population declines, including
several rail species (e.g., black

rail and king rail) that rely almost
exclusively on vegetated wetlands
(e.g., marshes). In addition to these
rail species, other “Tipping Point”
species (i.e., cumulative population
loss exceeded 70% since 1980)
include the seaside and saltmarsh
sparrow, which also rely heavily on
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vegetated wetlands and one third of
shorebirds. However, most species
of diving and dabbling ducks that
use both vegetated wetlands and
open water habitats (e.g., ponds
and lakes) have been generally
stable or increasing. These recent
findings illustrate the strong link
between animals and their habitats
and emphasize the importance of
monitoring change among different
wetland types’.

In addition to birds, species

of amphibians, fish, mollusks,
crustaceans, and turtles have and
will likely continue to experience
substantial declines partly due

to wetland loss and degradation.
For example, 43% of amphibian
species populations are declining
and nearly a third of the world’s
amphibian species are threatened
with extinction!. Within the U.S.,
61% of amphibian species are
declining®. Additionally, half

of crayfish and two thirds of
freshwater mollusks in the U.S. are
at risk of extinction. About 10% of
U.S. freshwater mollusks are likely
to already be extinct!.

Wetland loss affects species through
various mechanisms, including
overall reduction of suitable habitat
and habitat fragmentation. When
fragmented, habitat can be too
small, isolated, or disconnected

to maintain plant and animal
populations. Habitat fragmentation
affects a wide array of organisms,
including some migratory species
(e.g., anadromous fish) and species
with limited dispersal abilities (e.g.,
plants, aquatic insects, amphibians,
and small mammals)®°!. The
reduction of small prey species can
negatively affect wider-ranging
species, like raptors®. Migratory
birds can also be affected when
reductions in wetland habitat force
individuals into smaller areas,
reducing the availability of food and
nesting sites and sometimes leading
to disease and death®. Wetland
losses in the Prairie Pothole Region
(i.e., a grassland ecoregion that
extends across the central United
States and Canada) are thought

to have reduced populations of
wetland-dependent species by half
and caused the complete removal of
many species from that landscape?.

Impacts of the wetland loss and
change patterns highlighted by
this study will likely be magnified
by future climate change®4%1057,
The combined effect could lead to
extinetion of additional wetland-
dependent species, especially
those that cannot move through
remaining wetland fragments to
reach suitable habitat. Climate
change impacts are predicted to
increase along the coast®*, as well
as in inland areas like the Prairie
Pothole Region where wetlands
support 50-80% of North America’s
duck population®”. Long-term and
often rapid reduction of wetland
habitat and a shift towards more
non-vegetated wetlands has already
resulted in the decline of many
wetland-dependent species and is
predicted to continue to do so.

Effects of Disturbance

Status and Trends results indicate
that the combined effects of
wetland loss and disturbance on
some ecosystem functions may

be much larger than predicted
based on wetland loss alone.

Even wetlands that remain on the
landscape can be substantially
altered by disturbance, including
harvesting or planting of
commodity crops. Wetlands near
urban, suburban, and even rural
development are often affected

by pollutants, changes in water
regime, alteration of hydrologic
connectivity, changing salinity, and
the introduction of invasive species.
These factors can lead to declines
in important ecosystem services,
such as filtering water, protecting
people and infrastructure from
natural disasters, and maintaining
biodiversity!3255988,

The magnitude of this disturbance
can begin to be approximated by
considering gross (instead of net)
wetland change and by considering
change to other wetland categories
instead of solely net loss/gain to



upland or deepwater (Figures versus 117K ha]). Furthermore, category even though net estimates

13 and 14). For example, almost total gross wetland changes (e.g., of change for this category were
twice as much freshwater (i.e., increases and decreases to area extremely low (i.e., <1%). These
palustrine) forested wetland was caused by loss or gain to upland or  findings likely demonstrate that the
replaced by freshwater emergent deepwater and change to or from magnitude of disturbance due to
wetland than was lost to upland other wetland classes) affected timber harvest is much higher than
(559K versus 288K ac [226K 22% of the freshwater scrub/shrub ~ might be predicted solely based on

Figure 1. Net change in freshwater wetland, deepwater; and upland categories between 2009 and 2019 and fluxes between categories.
Relative size of each category is indicated by the size of the circle. Net acreage change for each category is included within circles and
changes between categories are indicated by the size of the arrows and the nearby numbers. Values are acres rounded to the nearest

thousands. Note that the largest fluxes are between vegetated wetland categories and that there is net loss of these wetlands to upland.
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net wetland loss to upland forested
plantation (Figures 14 and 15).
Similar conclusions can be drawn
when considering the impacts

of development and agriculture
disturbance.

In addition to direct disturbance
(i.e., impacts to the wetland

itself), wetland persistence and
function over time can be affected
by impacts to adjacent areas.

These include the hardening of
shorelines®?, reduction in the
quality of incoming water®4°,
change in water levels due to levees,
dams, dikes, and water control
structures®*!, groundwater and
hydrocarbon withdrawal'’, and
reduction of sediment transported
by rivers and other waterways!1%,

This mix of direct and indirect
disturbance is likely to have
cumulative and/or synergistic
effects resulting in even greater
wetland loss and degradation®?.
Status and Trends reports can
begin to approximate the effects

of disturbance on wetland

condition but were not intended
specifically for this purpose. The
U.S. Environmental Protection
Agency documents the effects of
human disturbance on wetlands,
and recently reported that 80% of
wetlands in the conterminous U.S.
were in fair or poor condition due to
human-driven physical alteration,
like vegetation removal or
replacement, obstruction of water
flow, soil compaction, and ditching®.

Accumulation of Impacts Over Time
The impacts of wetland loss, gain,
and change on the functions and
services provided by wetlands are
cumulative over space and time and
may be difficult to reverse. Recent
studies indicate that declines

in wetland function associated

with loss may be punctuated by
tipping points that lead to rapid,
potentially difficult to reverse,
declines in ecosystem services and
the viability of wetland-dependent
species®1#44%57 Other studies have
concluded that the full impact

of wetland loss on ecosystem
function may not be evident

right away. It can take decades,
centuries, or longer before restored
wetlands function like natural
wetlands? 94479589697 Tn many cases,

Figure 15. Aerial imagery of a forested plantation in 2009 (left) and 2019 (right). Examples of tree harvest in wetlands (A) and
tree regrowth in uplands (B) are provided. Tree harvest without change in wetland hydrology would alter wetland type. It would

not indicate wetland loss.




this equivalency may never be
achieved. All these findings indicate
that once wetland services are

lost, they may never be completely
regained.

The long-term cumulative effect

of wetland impacts can be seen

in studies concluding that certain
types of wetlands may disappear
from some regions within the next
several decades. For example,
under high sea level rise scenarios,
all salt marsh is predicted to be lost
in California and Oregon by 2100%.
Globally, between 20-90% of coastal
wetlands are predicted to be lost
before 2100%.

Importance of Long-Term Wetland
Monitoring

The monitoring of land use

and land cover change is an
essential"*®% but often under-
resourced part of effective
natural resource conservation
and management'2191%_The type
and size of a wetland largely
determines its potential to provide
human and wildlife benefits, but

Mallards take flight at Rainwater Basin Wetland Management District in Nebraska.

these benefits and their connection
to wetlands may only become
apparent at the landscape scale™.
Thus, by tracking wetland and
deepwater area (status) and
change (trends) at the landscape
scale, Wetlands Status and Trends
reports provide metrics by which
the effectiveness of environmental
policy and management actions
can be evaluated. This information
allows all Americans to plan for the
ecosystem service needs of current
and future generations, including
needs related to changes in climate,
land cover, and population.

To be most effective, monitoring
must occur at spatial and
temporal scales relevant to
policy development and should
include the land cover and/or
land use categories necessary

to understand drivers and
implications of change!®. Wetland
change most commonly occurs
through small, incremental steps
over an extended time!®, Change
often affects small wetlands,
which play a disproportionally

large role in the delivery of
ecosystem services®1041%.67 a5
well as small portions of larger
wetlands™. Wetland management
(e.g., restoration, cultivation,

and drainage) often occurs at

the parcel or individual wetland
scale’®, Therefore, implementing
effective wetland policies requires
a long-term monitoring approach
(e.g., decades!; Figure 5) that is
well suited for measuring small
changes to specific wetland types.
The Service’s decadal Wetlands
Status and Trends studies meet
these requirements by measuring
change to 17 different wetland and
deepwater classes over a 70-year
period using 1 m (1.1 yd) imagery
to detect very small changes (e.g.,
0.1 ac [0.04 ha]) that could not be
reliably detected using Landsat or
similar moderate resolution (e.g., 30
m [32.8 yd]) satellite sensors.
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Conclusions

Net wetland loss increased
substantially (>50%) since the

last Wetlands Status and Trends
study period (2004-2009), thereby
extending a long-term pattern of
wetland loss in the conterminous
U.S. This loss was coupled with

a shift towards fewer vegetated
wetlands and decreased woody
biomass within remaining vegetated
wetlands (e.g., remaining wetlands
more likely to be emergent instead
of forested). These longstanding
patterns have and will continue to
result in reductions in ecosystem
functions and services. The
reduction of these benefits has
negatively affected human health,
safety, and prosperity, and, if this
trend endures, will continue to do
so. Populations of fish, wildlife,

and plants will also continue to

be negatively affected. Because
Wetlands Status and Trends reports
do not directly assess changes in
wetland condition, the patterns

of wetland loss, gain, and change
documented in these reports are a
conservative estimate of the effects
of human, climate, and other change

drivers on ecosystem services!®.
When the effects of changes in
wetland condition are taken into
account, even greater losses of
wetland functions and services are
indicated. These negative impacts
will likely be magnified by the
effects of future climate change and
increasing changes in land use and
land COVQI'38’42’65’39’107.

Net wetland losses decreased
substantially after the
implementation of a series of broad
U.S. wetland policies in the 1970s
and ‘80s (Figure 5). However, the
U.S. has not achieved the bipartisan
“No Net Loss” wetlands goal
originally recommended in 1987
and adopted by multiple federal
administrations, as well as many
states. This goal accounts for the
inevitability of some wetland loss
by focusing on net change (i.e., the
balance of losses and gains) in both
wetland area and function'®. Failure
to achieve this goal is documented
by this Status and Trends report, as
well as a wide assemblage of other
Studies109’53’110’111’100’64’112. Although the

“No Net Loss” goal was established
over 35 years ago, the need to
reverse wetland loss trends is even
more critical today as society faces
a growing number and/or intensity
of natural disasters, sea level rise,
and the increasing need for clean,
abundant fresh water?"64113,

Measuring the effectiveness of
wetland policy and management
actions requires the consideration
of changes in wetland area and
type as well as broader trends in
the environment and the needs

of people®13, These broader
trends include increasing human
populations, especially in wetland-
dense and natural disaster-
vulnerable locations like coastal
watersheds, as well as the effects
of climate and land use and land
cover change?"!!4, The growing
demand for wetland benefits paired
with the decreased capacity of
wetlands to provide them highlights
the need for additional proactive
solutions to reverse the persistent
and accelerating national trend of
wetland loss.

Shiras moose bull at Seedskadee National Wildlife Refuge in Wyoming. Photo by Tom Koerner, USFWS.




Recommendation

To achieve no net loss of all
wetlands, including vegetated
wetlands, a strategic update is
needed to America’s approach to
wetland conservation. This update
should address foundational
wetland policy and management
gaps that have been identified

by numerous researchers and
Organizati0n825’115’116’117’118’13’101’64’113,
including the need for: 1) more
effective coordination and
leveraging within and across
governance levels and 2) enhanced
scientific information that

meets policy and management
requirements. These gaps can

be addressed by implementing
the strategies described below.
Implementing these strategies
would support Executive Order
11990 (Protection of Wetlands) and
enable the evidence-based policy
analysis and strategic
implementation necessary to
conserve America’s remaining
wetlands.

Strategy 1: Achieve “No Net Loss” of
wetlands and robust coordination with
government and non-governmental
partners to achieve this goal.
Wetland conservation depends on
an inter-related array of federal,
Tribal, state, and local policies
and management actions that

are implemented across public
and private lands. Although past
federal policies (e.g., Executive
Order 11990) mandated that
individual agencies take action

to minimize wetland loss and
degradation, and ad hoc groups,
like the Interagency Coastal
Wetlands Workgroup!?, endeavor
to reduce wetland losses in some
geographies, holistic national
coordination towards achieving no
net loss is not currently mandated
nor is it occurring. An important
first step towards enhanced

coordination would be to establish
the requirement to work effectively
across and within government
levels to achieve no net loss of
wetlands, with an emphasis on
vegetated wetlands. Establishing
this requirement would facilitate
the creation of related governance
structures and dedication of
requisite staff time, the lack of
which has hampered wetland
conservation efforts in the past.
However, meaningful progress will
also depend on sufficient resources
and mechanisms to share or pool
resources once collaborative
actions are identified. Endter-
Wada et al. (2020)* suggest that
creating a governance structure
like a national wetland commission
with the requisite autonomy,
authority, incentives, resources, and
connections to existing stakeholder
groups would facilitate more
effective wetland conservation.
Enhanced coordination is needed
not only across multiple agencies/
levels of government, but also with
the private sector and individuals.

Coordination is often hampered
not only by the challenge of
working between and within levels
of government but also by the
complex suite of authorities and
regulations that influence wetland
conservation'®13, Many authorities
provide a mechanism through which
wetlands and their benefits can be
conserved, but these authorities are
often focused on different outcomes
(e.g., water quality, water supply,
and habitat) and geographies

(e.g., federal properties, states, or
regions like the Chesapeake Bay

or Great Lakes Watersheds). The
importance of fully understanding
these disparate mechanisms

(see Strategy 3 below) as well as
enhanced coordination will become
even more critical as the drivers of

wetland loss become increasingly
more complex®,

Strategy 2: Produce a contemporary
NWI Geospatial Dataset and spatially
explicit information on wetland
function.

Strategic planning and coordination
are required to reverse
longstanding wetland loss trends
within the conterminous U.S. A
prerequisite for this planning is a
contemporary wetlands geospatial
dataset!?*3, The strategic
conservation decision-making that
will be required to achieve no net
loss of wetlands is dependent on
knowing the location, abundance,
and type of America’s wetlands.
This information is the foundation
of national analyses and decision-
support tools. The geospatial
dataset should be interoperable
with other components of

the U.S. National Spatial

Data Infrastructure (e.g., 3D
Hydrography Program datasets)
to enable effective modeling of
wetland functions and services
within the context of the broader
landscape and the needs of people.
Information must be provided at a
spatial resolution that is relevant
to national planning and funding
efforts as well as to parcel scale
implementation?6:64113,

The necessary information is
provided by the Service’s NWI
Geospatial Dataset, but to fully
meet this need it should be updated
in some geographies!?'. In addition
to its operational spatial scale,

the NWI dataset provides highly
detailed information on wetland
type, which is critical for assessing
wetland functions and ecosystem
services®»1%24L118 Tnformation on
wetland functions and services

is increasingly being sought by
government and non-governmental
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organizations'® and the NWI
Geospatial Dataset is routinely used
to help provide this information'?.
However, national landscape scale
functional assessment standards
and the resources to enhance and
host wetland functional data are
needed before the information can
be most effectively used. Standards
provide consistent workflows and
specifications which help to ensure
that data meet the needs of a
larger community and are FAIR —
findable, accessible, interoperable,
and reusable — in accordance with
the Geospatial Data Act of 2018.

Strategy 3: Develop and implement
enhanced wetland conservation and
management approaches based on
a holistic review of current and past
actions.

A key task for the coordination
group described in Strategy

1 (above) will be to develop

and implement more effective
conservation and management
approaches to meet the goal of no
net loss of wetlands. Doing this
will necessitate an understanding
of the effectiveness of current
and past authorities, regulations,
programs, and other actions
relative to the “No Net Loss” goal
as well as future requirements.
Building understanding will
require an unsparing evaluation of
wetland conservation approaches,
their outcomes, and why those
outcomes occurred. This could be
accomplished by bringing together
experts from a wide range of
disciplines and focus areas in a
process similar to the way reviews
are conducted by the National
Academy of Science. In addition
to driving strategic development
of enhanced approaches, the
information would serve to more
fully leverage the contemporary
geospatial inventory of wetlands
referenced in Strategy 2 (above)
within an adaptive management
framework and more fully enable
the development of landscape scale
decision-support tools. Only by
understanding why the “No Net
Loss” goal has not been met can
new conservation approaches be
developed that will achieve the goal.
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The Sand Lake Wetlands Management District in South Dakota. This area includes the
Sand Lake National Willdife Refuge and supports some of the highest concentrations of
nesting waterfowl in North America.

Strategy 4: Commit to long-term
adaptive conservation, management,
and monitoring.

Addressing America’s wetland
conservation needs requires a
long-term commitment to adaptive
conservation, management, and
monitoring. The U.S. has been
working to address net wetland
loss for over half a century and yet
the consequences of continuing
wetland losses are increasingly
affecting our communities through
increased susceptibility to natural
disasters, poor water quality, and
failing infrastructure. Current
conservation policies have not

met their goals, including no net
loss, and predicted environmental
change will make this even more
difficult. These challenges highlight
the need for not only long-term
resolve but also commitment to
improving our approaches over time
through the adaptive management
process®. Data provided by the
Wetlands Status and Trends study
are foundational to this process
because they measure progress

towards achieving conservation
goals. It is recommended that

the coordination group described

in Strategy 1 (above) use future
Wetlands Status and Trends studies
along with other scientific findings
to evaluate and reconsider policies
and management approaches in
light of current trends.

Tom Koerner /USFWS



Looking Forward

New approaches are needed to and land cover change. Scientific loss of all wetlands, especially
conserve and restore our Nation’s information, like this report, vegetated wetlands, will require
wetlands. Foundational strategies is foundational to the strategic a collaborative approach that

to develop these approaches implementation of all natural includes Tribal, state, local, and
are outlined in the preceding resource policy actions and will be private partners to ensure the
Recommendation Section. The critical to success. The Service will ~ lasting health of America’s people,
need is especially urgent today continue to work with all partners environment, and economy.
because most wetlands in the to conserve and restore wetlands, in

conterminous U.S. have already part by producing Wetlands Status

been lost, wetland loss has recently  and Trends reports to Congress
accelerated, and future declines will as mandated by the Emergency
likely be magnified by the effects of = Wetlands Resources Act (Public
climate change as well as land use Law 99-645). Achieving no net

View of Beaver Pond at Aroostook National Wildlife Refuge in Maine.

S

Keith Ramos/USFWS
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Appendix A: Data Matrix

Rows identify the 2019 classification. Columns identify the 2009 classification. Percent coefficients of variation for estimates appear below the acreage entry.
An example of how to interpret this matrix is as follows: 88,757 acres of estuarine emergent wetland in 2009 are estimated to have changed to estuarine
subtidal wetland in 2019.

2009 Classification, Estimated Acreage, and Percent Coeficient of Variation
Saltwater Wetland Habitats Uplands
. g q q Estuarine Estuarine Acreage
Marine Marine | Estuarine | Estuarine g g Forested Rural Totals, 2019
Intertidal | Subtidal | Subtidal | Emergent Roreestizdl || (imenis e Salenle Do itz Plantation | Development
Shrub Shore
Mari:.ne 198,925 1,304 965 4,591 35 928 0 0 144 32 0 0 6 6 0 0 86 0 4 2,061 0 6 209,092 Ma.ri;le
Intertidal 14 49 41 39 59 52 - - 9% i - - 95 95 - - 99 1 96 25 - 95 14 Intertidal
" Marine 4,952 | 2,364,418 6,370 3,197 238 3,354 0 0 0 0 0 0 0 0 0 0 0 0 0 2,043 0 0 2,384,572 Marine Subtidal
5 Subtidal 36 12 47 46 71 47 - - - - - - - - - - - - 12
2
£ Estuarine 99 0 | 19,920,823 88,757 1,886 15,996 25 361 990 2,028 0 10 73 208 16 0 422 2,117 739 8,012 1 127 20,042,689 Estuarine
= Subtidal 95 - 2 9 35 16 98 69 56 50 - 71 89 60 70 - 95 92 72 38 96 30 2 Subtidal
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'% - - - - - - 25 46 39 46 99 58 - 7 - - - 25 - - 100
-
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= = = = 59 2 93 9 3 9 13 = 54 = 38 = 76 36 58 = 35 49
5]
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