Status and Trends of Wetlands in the Conterminous United States 2009 to 2019 Report to Congress

(w,

Tu
42 2
4,

> 6

Bract

Contents

	History and Importance of Wetlands Status and Trends Reports... 10
	Change In All Wetland Types.. 16
	Freshwater Wetland Trends .. 19
	Significance of Wetland Loss ...
	Vegetated vs. Non-Vegetated Wetlands ...
	Effects of Disturbance ... 28
	Importance of Long-Term Wetland Monitoring ... 31
This report should be cited as follows:	
Lang, M.W., Ingebritsen, J.C., Griffin, R.K. 2024. Status and Trends of Wetlands in the Conterminous United States 2009 to 2019. U.S. Department of the Interior; Fish and Wildlife Service, Washington, D.C. 43 pp.	

[^0]
List of Figures

Figure 1. Relative wetland area for the conterminous United States in 2019 10
Figure 2. Aerial imagery showing wetland change between 2009 and 2019 for an urbanizing area in the southeastern United States 14
Figure 3. Area of upland, deepwater, and wetlands within the conterminous United States in 2019 16
Figure 4. Wetland gain and loss between 2009 and 2019 in the conterminous United States attributed to different change drivers. 18
Figure 5. Average annual net wetland gain or loss across Wetlands Status and Trends study periods. 18
Figure 6. Salt marsh area change between 2009 and 2019 in the conterminous United States attributed to different change drivers 19
Figure 7. Net annual change in salt marsh and non-vegetated saltwater wetlands within the conterminous United States between the mid-1900s and 2019 20
Figure 8. Pond area change between 2009 and 2019 in the conterminous United States attributed to different drivers.. 21
Figure 9. Net annual non-vegetated and vegetated freshwater wetland change within the conterminous United

$$
\text { States between the mid-1900s and 2019.. } 2
$$

Figure 10. Freshwater all wetland and vegetated wetland change between 2009 and 2019 in the conterminousUnited States attributed to different drivers.22
Figure 11. Aerial imagery showing salt marsh loss between 2009 and 2019 in Louisiana 25
Figure 12. Map showing relative density of net vegetated wetland decrease in the conterminous United States between 2009 and 2019 26
Figure 13. Net change in saltwater wetland, deepwater, and upland categories between 2009 and 2019 and fluxes between categories...
Figure 14. Net change in freshwater wetland, deepwater, and upland categories between 2009 and 2019 and fluxeFigure 15. Aerial imagery of a forested plantation in 2009 and 2019 .30

List of Tables

Table 1. Descriptions of wetland, deepwater, and upland categories used in the study .11
Table 2. Summary of 2019 area and 2009-2019 area change for select wetland and deepwater categories. 17
Table 3. Summary of 2019 area and 2009-2019 area change for saltwater wetlands. 19
Table 4. Summary of 2019 area and 2009-2019 area change for freshwater wetlands. 20

Acknowledgements

We are grateful to the many agencies, organizations, and individuals that contributed to the completion of this study. The authors would like to recognize U.S. Fish and Wildlife Service Ecological Services Program leadership, including Gary Frazer, Assistant Dhultz Deputy Assistant Director Ecological Services; Martha Ecological Services; Martha

Budget and Technical Support; and Jonathan Phinney, Chief, Branch o Geospatial Mapping and Technical Services.
Statistical oversight was provided by Emily Silverman, Statistician, U.S. Fish and Wildlife Service Migratory Birds Program.

Layout and publication support was provided by Sarah Kilpatrick, U.S.

Fish and Wildlife Service Ecological Services Program.
Editorial, formatting, and outreach assistance was provided by the
following U.S. Fish and Wildlife following U.S. Fish and Wildlif Program staff: Emilia Bartnick Jane Harner, and Andrew Sturkey.

Additional support for field operations and analysis was
provided by the following U.S. Fish and Wildlife Service National Wetlands Inventory Program staff: Mitch Bergeson (currently with he U.S. Geological Survey), Herb Bergquist (retired), Gary Hunt, Amanda Pachomski, John Swords (retired), and Luke Worsham (currently with Colorado State University).
Mapping and other geospatial services were provided by the following organizations (projec leads): Atkins North America Inc. (Matt Cusack), Dewberry Engineers Inc. (Keith Patterson), Dacks Unimited (Robb Macleo Minnesota Geospatial Services

Andrew Robertson), South Dakota tate University (Peter Bergmann), (Tim O'Neill), and Management Institute (Scott Klopfer).
Peer review of the report was provided by the following subject matter experts: Mark Biddle, Environmental Program Manager, Delaware Departmen of Natural Resources; Jay Christensen, Research Ecologist U.S. Environmental Protection Development: Steve Kloiber Lake Ecology Supervisor Minnesota Department of Natural Resource Susan-Marie Stedman, Wetland

Scientist, National Oceanic and Atmospheric Administration Fisheries Office of Habitat Conservation; Ariana SuttonGrier, Land Change Science/ Climate Research and Development Program Coordinator, U.S. Geological Survey.
Additional technical review was provided by Laurie Alexander, Ecologist, U.S. Environment Protection Agency Office of Research and Development; Palmer Hough, Environmental Protention Agency Office of Water. Amy Agency Office of Water, Amy Kendig, Biometrician/Wetland Department of Natural Resources; Rose Kwok, Environmental Scientist, U.S. Environmenta Protection Agency Office of Water; and Myra Price, Environmental Protection Specialist, U.S. Environmental Protection Agency Office of Water.
We gratefully acknowledge the guidance and support of Bill Wilen, U.S. Fish and Wildlife Service National Wetlands Inventory Program (retired).

We extend our heartfelt acknowledgement to Mathew Halliday, who made significant contributions to this study and the National Wetlands Inventory Program. While he is no longer with us, he will be fondly remembered for his kindness, ingenuity and dedication to wetland science and conservation.

Partial funding for this study was provided by the U.S. Environmental Protection Agency and the National Oceanic and Atmospheric Administration National Marine Fisheries Service.

Preface

Members of Congress:

Each of us has a stake in the health of wetlands across our country. Wetlands are highly productive and biologically diverse systems that are a critical driver of economic activity etlands enhance water quality, flows, sequester carbon, and provide home to about half of all
threatened and endangered species. Decades ago, Congress recognized the importance of wetlands when it wisely mandated this periodic report on the status and trends of wetlands across the Nation. These reports reveal that despite landmark nvironmental laws like the Clean ater Act, Swampbuster Provisio the Focurity Act, and National E Ord 11990 olicy Act; Execative Orders 1reo, among others; and policies pledging no net Nation to sufficiently protect our wetlands. This report indicates that vetland loss rates have increased by 50 percent over the last decade and ontinue to disproportionally impact egetated wetlands such as marshes and swamps. Approximately 670,000 acres of vegetated wetlands, an area reater than the land extent of Rhode Island, disappeared between 2009 and 2019.
The reasons for these losses ar complex, but the results are clear wetland loss leads to the reduced health, safety, and prosperity of all Americans. When wetlands are lost,
water; slowing of coastal erosion protection against flooding drought, and fire; and resilience to climate change and sea level rise. Wetland losses also cause declines in fish, wildlife, and plant populations that many in our communities depend upon to make a living, feed their families, and enjoy the outdoors.
Wetlands status and trends reports are the yardstick used to measure the effectiveness of existing laws and policies aimed at protecting wetlands. This latest report make cear that these policies and law are not sufficient. Over the nearry 0 years cord by the ountry has achieved the "No ountry has achieved the "No Net 2000 s. The rate of wetland loss ha continued to increase since 2004 . In the face of a changing climate and the face of a changing climate intensity, flooding, and drought, we cannot afford to lose more wetlands.

The important scientific information in this report is a cal to action and provides an opportunity for the country to work together in response. The health of our Nation requires stronger wetlands conservation legislation, Executive action, and partnerships. Federal agencies, Tribes, States, and all landowners must work together now to protect and restore wetlands for the health of our communities, today and into the future. We must commit to raising the bar related to "No Net Loss" to a more explicitly defined standard of "No Net Loss" of vegetated wetlands going forward.

This report delivers the hard truth that we need to act now. I urge you to work with me to accomplish the Furthermore I look forward to working with you to propose and enact stronger laws protecting wetlands, so the next status and trends report tells a positive story as in in a net loss of 670 K ac相 hal of these wetlands, more an the land area of Rhode Island In contrast, there was a net gain in non-vegetated wetlands of 488 K a [197K ha].
Net annual losses of freshwater vegetated wetlands increased by out 50% relative to annual losse he last study period. The ey these losses were freshwater rested wetlands (-426 K ac [-172 7). Saltwar a]). Saltwater systems also experienced substantial declines alt marsh area decreasing by salt marsh area decreasing by even if replaced by non-vegetated wetlands, alters wetland function and leads to the reduction of wetland benefits, including mitigation of severe storm and sea level rise, water quality improvement, and provision of food and other natural resources like timber.
In contrast to the rapidly increasing oss of vegetated wetlands, net area of non-vegetated wetlands, me ponds, mud fats, shoals, and and bars, ains ha]. Non-vegetated wetland f 455 K [184K ha] 7% of total ond habitat and an increase in pond habitat and an increase in f 33 K ac [13K hal or 3% of that habitat. The loss of vegetation in saltwater wetlands may foreshadow future wetland loss. Studies have hown that the loss of wetland vegetation often precedes the ransition from salt marsh to deepwater (e.g., open ocean) due to relative sea level rise and coastal torm impacts.

When net change to all wetlands is considered $(-221 \mathrm{~K}$ ac [-89K ha]) gains in non-vegetated wetlands obscure the magnitude of vegetated wetland losses. Most importantly, the in the proportion of non-vegetated
wetlands at the expense of vegetated wetlands, a trend都 with previous Wetlands tatus and Trends studies.

The substantial loss and alteration of wetlands documented by this study, including the long-term shift towards decreasing vegetated wetlands and increasing nonvegetated wetlands, reduces the prosperity, health, and safety of communities. This occurs through ncreased susceptibily of peop dist like flo drought wildfire as well as decreased food security reduction in water increased harmful algal blooms and related increases in toxins and oxygen depleted "dead zones," greater vulnerability to sea level rise and storms, and reduced recreational opportunities. Wetlan loss patterns have also affected and are likely to continue to substantially affect plant and animal populations. This includes rare as well as commercially, culturally, and recreationally valuable species. When the effects of changes in wetland condition are taken into account, even greater loss of wetland functions and services are indicated. These impacts can happen rapidly and are often difficult to reverse

To achieve no net loss of all wetlands, including vegetated wetlands, a strategic update is needed to America's approach to wetland conservation

Based on a review of wetland policy and management needs, the following strategies are suggested to support this recommendation: Strategy 1) Achieve "No Net Loss" of wetlands and robust coordination with government and nongovernmental partners to achieve this goal; Strategy 2) Produce a contemporary NWI Geospatial Dataset and spatially explicit Strategy 3) Develop and implemen
enhanced wetland conservation and management approaches based on a holistic review of current and past actions; and Strategy 4) Commit to long-term adaptive conservation, management, and monitoring. These foundational strategies are especially important because most wetlands in the conterminous U.S. have already been lost, wetland loss has recently accelerated, and future declines will likely be magnified by the effects of climate and land use and land cover change. Scienti is foudatiol to the rert, is roundion the stategic resource policy actions and will critical to the success of this effort.

National Wetlands Inventory NWI) Program, which provides foundational scientific information and geospatial data in support of wetland education, science, management, and policy.
Wetlands Status and Trends reports provide impartial scientific estimates of the extent of 17 wetland and deepwater habitats (Table 1) within the conterminous U.S., as well as change in their area over time. Each Status and rrends eport builds on the last, providing nd inuase his or proding of landscape patterns and processes. Several regional reports complement the national reports by focusing on areas within the U S. hat are experiencing relatively high rates of wetland loss, including two Coastal Watersheds reports ${ }^{26,27}$ and one Prairie Pothole report ${ }^{28}$

Status and Trends reports quantify he cumulative effects of multiple wetland change drivers, including but not limited to climate change, evelopment, agriculture, and federal, Tribal, state, and local government actions. Change drivers are diverse and can lead o wetland gain and loss, as wel as change between wetland ypes. Governmental actions re wide ranging, including the phation or pory and regulations, compensatory protection The information in Status and Trends reports enable hatural resource managers and policy makers to make strategic decisions regarding the future of our Nation's wetlands.

Wetlands Status and Trends eports have long catalyzed wetland protection and restoration, and his trend continues today. Status and Trends findings of substantial wetland loss in the mid-1900s ${ }^{29}$ catalyzed the creation of highly effective wetland protection and restoration programs and policies, ncluding the Swampbuster

Table 1. Descriptions of wetland, deepwater, and upland categories used in the

 Wetlands Status and Trends study.| Saltwater | Common Description |
| :---: | :---: |
| Marine Subtidal**** | Open ocean |
| Marine Intertidal* | Near shore |
| Estuarine Subtidal** | Open-water, bays |
| Estuarine Intertidal Emergent* | Salt marsh |
| Estuarine Intertidal Forested/Shrub* | Mangroves or other estuarine shrubs |
| Estuarine Intertidal Unconsolidated Shore* | Beaches, bars, flats |
| Freshwater | Common Description |
| Palustrine Forested* | Swamps (wetlands with woody plants $>6 \mathrm{~m}$ [6.6 yd] tall) |
| Palustrine Shrub* | Wetlands with woody plants <6m [6.6 yd] tall |
| Palustrine Emergent* | Inland marshes, wet meadows |
| Palustrine Farmed* | Farmed wetlands |
| Palustrine Unconsolidated Bottom (ponds)* | Open-water ponds, aquatic beds |
| Pond - Natural characteristics | Small bog lakes, vernal pools, kettles, beaver ponds, alligator holes |
| Pond - Industrial | Flooded mine or excavation sites (including highway borrow sites), in-ground treatment ponds or lagoons, holding ponds |
| Pond - Urban use | Aesthetic or recreational ponds, golf course ponds, residential lakes, ornamental ponds, water retention ponds |
| Pond - Agriculture use | Ponds in proximity to agricultural, farming, or silviculture operations such as farm ponds, livestock dug-outs, agricultural waste ponds, irrigation or drainage water retention ponds |
| Pond - Aquaculture | Ponds singly or in series used for aquaculture including fish rearing |
| Lacustrine** | Lakes and reservoirs |
| Riverine** (may be tidal or non-tidal) | Rivers and streams |
| Uplands | Common Description |
| Agriculture | Cropland, pasture, managed rangeland |
| Urban | Cities and incorporated developments |
| Forested Plantation | Planted or otherwise intensively managed forests |
| Rural Development | Non-urban developed areas and infrastructure |
| Other Uplands | Rural uplands not in any other category including non-intensively managed forests, grasslands, and barren lands |

[^1] Act (33 U.S.C.A. 1251 et seq.) permitting process ${ }^{30}$. Although the Wetlands Status and Trends project was not designed to determine the ffectiveness of any specific policy, he data have been used to measur progress toward the overarching deral No Net Loss welland upport strategic wetland policy upport ana nd management today by driving ollaboration and innovative federal, Tribal, state, and local partners.

Within the Service and many ther federal agencies, Status and Trends reports are used o guide the funding, planning, and implementation of wetland estoration and enhancement, habitat assessments, strategic habitat conservation, and ecosystem management activities. These data have also been used to inform pecies listing determination nd other actions related to implementation of the Endangered Species Act.

This is the sixth national U.S. Fish This is the sixth national U.S. and Wildlife Service Wetlands Status and Trends report. Several
federal and state agencies, as well as commercial and non-profit organizations, provided data analysis and technical resources hat were critical to its completion. The U.S. Environmental Protection Agency and the National Oceanic and Atmospheric Administration provided financial support.

[^2]

Methods

The goal of this study was to produce statistically valid estimates of wetland and deepwater habitat status (area) and trends (change) between 2009 and 2019 in the conterminous United States. This goal was met with a high degre of survey integrity and data quality standards, while improving technologies and maintaining echnologies and maintaining Trends studies. Data were collected using a survey-based approach carried out within 5,048 plots (four mi^{2} [10.4 $\left.\mathrm{km}^{2}\right]$ each) randomly distributed within strata across
the conterminous U.S. with plots allocated to strata by wetland density (i.e there yere wore at in (i.e., there were more 1) plots in wetter areas; Figure 1). interpreters with ravional used a combination of fine spatial resolution ($\leq 33 \mathrm{ft}[1 \mathrm{~m}]$ pixel size) remotely sensed imagery on-screen digitizing techniques, and field digitizing techniques, and field in some cases land use) types and in some cases land use) types and
area in 2009 and 2019. Change over the 10.5 -year study period was determined by comparing data from those dates (Figure 2). The same plots are sampled during different

Status and Trends study periods to support inter-study comparisons. Data quality was ensured by using a multi-step process involving series of regional and national sexperts, as well as field verification and automated logic checks. Field verification was co checks. Field verification was completed for 1,034 (20% of total plots). Measurement accuracy was enhanced by accuracy was enhanced by
technological improvements, such as the spatial refinement of many 2009 wetland and deepwater boundaries, improvements in the spatial and temporal resolution

Figure 2. Aerial imagery showing wetland change between 2009 (left) and 2019 (right) for an urbanizing area in the southeastern United States. Note some examples of veretated wetland loss (A) and pond gain (B).

Horicon National Wildlife Refuge in Wisconsin helps to protect one of the largest freshwater marshes in the United States. This marsh is a critical rest stop for thousands of migrating ducks and Canada geese.
of base and ancillary imagery,
and digital collection of Global Positioning System-enabled field verification data.

Wetlands were identified using biological definition ${ }^{33}$, which differs from the federal regulatory definition and does not imply regulatory jurisdiction. The biological definition requires wetland hydrology, and if soil and/ or vegetation are present, they must be hydric or hydrophytic, respectively. Freshwater and and three main types bassifie into three main types based on pt]), estuarine [salinity between 0.5 and 30 ppt], and marine [salinity 30 ppt] These three wetland types were further divided into types were further divided into 13 subcategories based primarily and vegetation presence and typ Geographic Data Committee Wetlands Mapping Standard ${ }^{33}$ (Table 1).

In addition to wetland categories, four deepwater and five upland categories were tracked (Table 1).

Deepwater habitats have water that is too deep to be considered wetland, including water depth xceeding spring tide in tidal habitats and depth that exceeds 8.2 $\mathrm{ft}(2.5 \mathrm{~m})$ at low water in non-tidal habitats. "Upland" is used in this eport to denote land areas that are too dry to be wetlands. The upland categories were used to help track common drivers of wetland loss and gain and therefore included and use types as well as land cover. Change between wetland, deepwater, and upland categories was only documented when it was leary indicated in the remotely nundated area replaced by a itched no - replaced by a determined to be long-term and emporary due to weather or other actors For more information on procedures used to help ensure the quality of Status and Trends chang data please see National Standards and Support Team 2017^{34}.

The area and area change of wetland and deepwater habitats in the conterminous U.S. (with the exception of the Great Lakes)
and associated standard errors were estimated using conventional mathematical and statistical methods. Reported area change values represent net change change represents the balance between increases and decreases and is calculated as the difference between all increases and decrease (increases minus decreases) to the area of a particular category. For example, if category A increased by 100 units and decreased by 50 unit the net change would be 50 units ($100-50=50$ units). In contrast gross change accounts for all increases and decreases and would be 150 units in this example (100 the magnitude of wetland chang relative to measured uncertainty with p-values (2019-2009, paired t-test df $=5048$ plots -215 strata Additional information on study methods, including wetland, upland and deepwater categories, sampling scheme, quality control, and statistical analysis can be found in Dahl 2011^{35} and National Standards and Support Team 2017^{34}.

Results

rea of U.S. Wetlands

There were an estimated 116.4 M ac (47.1 M ha) of wetlands in the conterminous U.S. in 2019, accounting for $<6 \%$ of the total area of the conterminous U.S. (Table 2; Figure 3). The vast majority of wetlands were reshwater (palustrine; 95\% or 110.4 M ac 44.7 M ha]), with wetlands occupying 6.1 M ac (2.5 M we 5\% Mon ha; $5 \%)$. Most wetlands were egetated, including 92% (101.5 M and 80% (4.8 M ac $[1.9 \mathrm{M}$ ha]) and 80% (4.8 M ac [1.9M hat) of (i.e., palustrine) forested wetlands (i.e., palustrine) forested wetlan
were the most abundant type were the most abundant type
overall (52.4 M ac $[21.2 \mathrm{M}$ ha]), with freshwater emergent, scrub-shrub, and ponds occupying 30.0 M ac (12.1M ha), 19.1M ac (7.7M ha), and 6.9 M ac (2.8 M ha), respectively. The most common saltwater wetland type was estuarine emergent marsh (i.e., salt marsh; 4M ac [1.6M ha]), followed by estuarine and marine non-vegetated areas (e.g., beaches, mud flats, shoals, and sand bars; .0 M ac [$405 \mathrm{~K} \mathrm{ha])} \mathrm{and} \mathrm{estuarine}$ forested/shrub (800K ac [324K ha]). In 2019 deepwater habitats occupied a total of $44.7 \mathrm{M} \mathrm{ac}(18.1 \mathrm{M})$, including 20.0 M ac (8.1M ha) of estuarine subtidal, $17.2 \mathrm{M} \mathrm{ac}(7.0 \mathrm{M}$ a) of lastr), (not a) of riverine habitat A summary f da for the 2009-2019 study period including p -values from paired t-tests, can be found in Table 2.

Change In All Wetland Types
Wetland losses within the conterminous U.S. exceeded gains, resulting in a net wetland loss of 221 K ac [89 K ha] during the study period (Table 2). This net loss

Table 2. Summary of 2019 area and 2009-2019 area change for select wetland and deepwater categories.

Wetland/Deepwater Category	Area, In Thousands of Acres (\%CV)			Change(In Percent)	Change P-Value
	Estimated Area, 2009	Estimated Area, 2019	$\begin{gathered} \hline \text { Change, } \\ \text { 2009-2019 } \end{gathered}$		
Marine Intertidal	$\begin{gathered} 206 \\ (13.7) \end{gathered}$	$\begin{gathered} 209 \\ (13.5) \end{gathered}$	$\underset{(75.7)}{3}$	1.3\%	0.187
Estuarine Intertidal Unconsolidated Shore	$\begin{gathered} 1,005 \\ (11.7) \end{gathered}$	$\begin{aligned} & 1,035 \\ & (11.3) \end{aligned}$	$\stackrel{30}{(41.4)}$	3.0\%	0.016
Estuarine Intertidal Vegetated	$\begin{aligned} & 4,880 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 4,817 \\ & (.5) \end{aligned}$	$\begin{gathered} -63 \\ (17.8) \end{gathered}$	-1.3\%	<. 001
All Intertidal Wetlands	$\begin{gathered} 6,091 \\ (.1) \end{gathered}$	$\begin{aligned} & 6,061 \\ & (2.2) \end{aligned}$	-30	-0.5\%	<. 001
Palustrine Ponds	$\begin{gathered} 6,4,41 \\ (1.3) \end{gathered}$	$\underset{(1,3)}{6,876}$	$\begin{aligned} & 455 \\ & (4.3) \\ & \hline \end{aligned}$	7.1\%	<. 001
Palustrine Farmed	$\begin{gathered} 2,012 \\ (23.4) \end{gathered}$	$\begin{aligned} & 1,973 \\ & (24.0) \end{aligned}$	$\begin{gathered} -40.6) \\ (63.6) \end{gathered}$	2.0\%	0.116
Freshwater Vegetated	$\underset{(1.7)}{102,134}$	$\underset{(1.7)}{101,527}$	$\begin{gathered} -607 \\ (11.0) \end{gathered}$	-0.6\%	<. 001
Palustrine Emergent	$\begin{gathered} 30,092 \\ (7.8) \end{gathered}$	$\begin{gathered} 30,008 \\ (7.8) \end{gathered}$	$\begin{gathered} -84 \\ (160.2) \end{gathered}$	-0.3\%	0.533
Palustrine Shrub	$\underset{(4.9)}{19,187}$	$\begin{gathered} 19,091 \\ (5.0) \end{gathered}$	$\begin{gathered} -97 \\ (206.8) \end{gathered}$	-0.5\%	0.629
Palustrine Forested	$\begin{gathered} 52,854 \\ (2.7) \end{gathered}$	$\begin{gathered} 52,428 \\ (2.7) \end{gathered}$	$\begin{gathered} -426 \\ (42.1) \end{gathered}$	-0.8\%	0.018
All Freshwater Wetlands	$\begin{gathered} 110,567 \\ (0.9) \end{gathered}$	$\underset{\substack{110,376 \\(0.9)}}{ }$	$\begin{gathered} -191 \\ (18.7) \end{gathered}$	-0.2\%	<. 001
All Non-Vegetated Wetlands	$\begin{gathered} 7,62 \\ (1.1) \end{gathered}$	$\begin{aligned} & 8,110 \\ & (.1 .0) \end{aligned}$	$\begin{aligned} & 488 \\ & (3.4) \end{aligned}$	6.4\%	<. 001
All Vegetated Wetlands	$\underset{(1.2)}{107,014}$	$\underset{(1.2)}{106,344}$	$\begin{gathered} -670 \\ (7.6) \\ \hline \end{gathered}$	-0.6\%	<. 001
All Wetlands	$\underset{(0.7)}{116,658}$	$\underset{(0.7)}{116,437}$	$\begin{gathered} -221 \\ (34.3) \end{gathered}$	-0.2\%	<. 001
Lacustrine	$\begin{aligned} & 17,068 \\ & (10.3) \end{aligned}$	$\begin{gathered} 17,227 \\ (10.1) \end{gathered}$	$\stackrel{159}{(63.2)}$	0.9\%	0.094
Riverine	$\begin{gathered} 7,435 \\ (8,4) \end{gathered}$	$\begin{gathered} 7,402 \\ (8.4) \end{gathered}$	$\stackrel{-33}{(155.1)}$	-0.4\%	0.653
Estuarine Subtidal	$\underset{(2,987}{19,98}$	$\begin{gathered} 20,043 \\ (2.2) \end{gathered}$	$\begin{gathered} 56 \\ (28.3) \end{gathered}$	0.3\%	<. 001
All Deepwater Habitats	$\begin{gathered} 44,490 \\ (2.3) \end{gathered}$	$\begin{gathered} 44,672 \\ (2.3) \end{gathered}$	$\begin{gathered} 182 \\ (34.7) \end{gathered}$	0.4\%	0.002

Note that only non-vegetated wetland categories increased in area, whereas all area decreases were associated with vegetated wetlands. Coefficient of variation (CV; [standard error/mean] * 100) for each entry expressed as percent is given in parentheses below area and
change values. P-value is provided for change. The estuarine intertidal vegetated category includes estuarine intertidal emergent and forested/shrub. The lacustrine category does not include the open water areas of the Great Lakes. Farmed wetlands are neither vegetated or non-vegetated by definition and therefore were not included in either group. Any apparent discrepancy between the area estimates and their reported difference is due to rounding.
was driven by the conversion of wetlands to upland and deepwater and cover types (Figure 4). conversion to upland was the ominant driver of net wetland oss resulting in a total wetland reduction of 194 K ac (79 K ha). Conversion to deepwater areas accounted for a loss of 27 K ac [11K ha].

The rate of net wetland loss (-21K ac/yr [-8.5K ha/yr]) accelerated by over 50% between this study period (2009-2019) and the previous period (2004-2009). This finding extends a long-term pattern of net wetland loss (Figure 5) that likely began hundreds of years ago with European colonization. This trend has already resulted in the
conterminous U.S. losing over half of its wetland area ${ }^{36}$.

In addition to net wetland loss, Status and Trends data for 2009-2019 indicate a fundamental alteration of wetland type at a national scale. While the area of all vegetated wetland categories decreased, all non-vegetated

Figure 4. Wetland gain and loss between 2009 and 2019 in the conterminous United States attributed to different change drivers.
wetland categories increased in area (Table 2). The net decrease in vegetated wetlands was 670 K ac. In contrast, non-vegetated wetlands and deepwater categories gained net area (488 K and 182 K ac 197K and 74K ha], respectively). When net change to all wetlands is considered $(-221 \mathrm{~K}$ ac $[-89 \mathrm{~K}$ ha]), the gains in non-vegetated wetlands obscure the magnitude of the vegetated wetland losses. Most importantly, the data show an overall increase in the proportion of non-vegetated wetlands at the expense of vegetated wetlands, trend consistent with previou Status and Trends studies.

Saltwater Wetland Trends

Saltwater wetlands within the conterminous U.S. experienced a net decrease of 2009 and 2019 (Table 3). Estuarine emergent marsh 3). Estuarine emergent marsh
i.e., salt marsh) experienced the largest net percent reduction of any wetland category (2% or -70 K ac [-28K ha]), while non-vegetated saltwater wetland area increased by 3% (33 K ac [13K ha]). There were small net increases in estuarine marsh in areas formerly occupied by freshwater wetlands (22 K ac 9 K ha]) and uplands (2 K ac [800 ha]; Figures 6). The pattern of decreasing estuarine marsh and

igure 5. Average annual net wetland gain or loss across Wetlands Status and Trends study periods. Width of bars represents length of study period.
increasing non-vegetated saltwate wetlands (estuarine intertida unconsolidated shore and marine intertidal) has been consistent for the past 70 years with the exceptio of a small amount of non-vegetated wetland loss between 1986 and 199 (Figure 7).
Net decrease in estuarine emergent marsh (i.e., salt marsh) was primarily associated with change
of marsh to non-vegetated habitats (Figure 6). In most cases, estuarine marsh was converted to marine and estuarine subtidal (deepwater; 61 K ac [25K ha]), but change to intertidal non-vegetated wetlands (e.g., beaches, mud flats, shoals, and sand bars) also occurred (24K ac [10K ha]). Dynamic exchange between land cover categories is common within the saltwate environment. However, it is

Table 3. Summary of 2019 area and 2009-2019 area change for saltwater wetlands.

Wetland Category	Area, In Thousands of Acres (\%CV)			Change (In Percent)	\% ofSaltwater Wetlands	Change P-Value
	Estimated Area, 2009	Estimated Area, 2019	$\begin{gathered} \text { Change, } \\ \text { 2009-2019 } \end{gathered}$			
Marine Intertidal	$\begin{gathered} 206 \\ (13.7) \end{gathered}$	$\begin{gathered} 209 \\ (13.5) \end{gathered}$	$\begin{gathered} 2.7 \\ (75.7) \end{gathered}$	1.3\%	3.4\%	0.187
Estuarine Intertidal Unconsolidated Shore	$\begin{aligned} & 1,005 \\ & (11.7) \end{aligned}$	$\begin{aligned} & 1,035 \\ & (11.3) \end{aligned}$	$\begin{gathered} 30.1 \\ (30.1) \end{gathered}$	2.9\%	17.1\%	0.016
Marine and Estuarine Intertidal NonVegetated	$\begin{aligned} & 1,211 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1,244 \\ & (6.7) \end{aligned}$	$\begin{gathered} 32.8 \\ (25.7) \end{gathered}$	2.6\%	20.5\%	<. 001
Estuarine Emergent	$\begin{aligned} & 4,070 \\ & (5.5) \end{aligned}$	$\begin{gathered} 4,000 \\ (5.5) \end{gathered}$	$\begin{aligned} & -69.5 \\ & (25.5) \end{aligned}$	-1.7\%	66.0\%	<. 001
Estuarine Forested/Shrub	$\begin{gathered} 810 \\ (12.1) \end{gathered}$	$\begin{gathered} 816 \\ (12.0) \end{gathered}$	$\stackrel{6.7}{(114.2)}$	0.8\%	13.5\%	0.381
Estuarine Intertidal Vegetated	$\begin{gathered} 4,880 \\ (3.5) \end{gathered}$	$\begin{aligned} & 4,817 \\ & (3.5) \end{aligned}$	$\begin{aligned} & -62.8 \\ & (17.8) \end{aligned}$	-1.3\%	79.5\%	<. 001
All Estuarine and Marine Intertidal	$\begin{aligned} & 6,091 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 6,066) \\ & (2.2) \end{aligned}$	$\begin{aligned} & -30.1 \\ & (24.4) \end{aligned}$	-0.5\%		<. 001

Marine and estuarine intertidal non-vegetated category includes estuarine intertidal unconsolidated shore and marine intertidal. Estuarine intertidal vegetated includes estuarine emergent and estuarine forested/shrub. Coefficient of variation (CV; / standard error/ nean] * 100) for each entry expressed as percent is listed in parentheses below area and change values. Any apparent discrepancy between the area estimates and their reported difference is due to rounding.

Figure 6. Salt marsh (estuarine intertidal emergent) area change between 2009 and 2019 in the conterminous United States attributed to different drivers. Note: Only categories associated with amounts of change that were large enough to be clearly visible were included in the graph
mportant to note that the net loss of estuarine marsh exhibits a highly significant ($\mathrm{p}<.001$), long-term, and disproportionately one-way pattern.

reshwater Wetland Trends

The conterminous U.S. is still losing large amounts of vegetated reshwater wetlands to deepwater and upland (Table 4). The net area decrease of all freshwater vegetated wetlands was -607 K ac
[-246K ha]). Freshwater forested wetlands experienced a larger net decrease in area (-426 K ac [-172K haj) than any other category during this study period. Approximately 288 K ac [117K ha] of this decrease was due to loss of forested wetland to uplands, and almost twice as much $(559 \mathrm{~K}$ ac [226 K ha]) forested wetland was changed to freshwater emergent wetland. Gross change (i.e., all increases and decreases)
between forested and emergent or scrub-shrub wetland types (3.7 M [1.5M ha]) was likely driven in large part by timber harvest. This wetland type change eclipsed gross gains and losses related to uplands (307K ac [124K ha])

The net decrease of vegetated wetlands co-occurred with a substantial net increase in openwater ponds of 455 K ac [184K ha].

Table 4. Summary of $\mathbf{2 0 1 9}$ area and 2009-2019 area change for freshwater wetlands.

Wetland Category	Area, In Thousands of Acres (\%CV)			Change (In Percent)	\% of Freshwater Wetlands	Change P-Value
	Estimated Area, 2009	Estimated Area, 2019	$\begin{gathered} \text { Change } \\ \text { 2009-2019 } \end{gathered}$			
Palustrine Emergent	$\begin{gathered} 30,092.4 \\ (7.8) \end{gathered}$	$\begin{gathered} 30,008.2 \\ (7.8) \end{gathered}$	$\begin{gathered} -84.2 \\ (160.2) \end{gathered}$	-0.3\%	27.2\%	0.9225
Palustrine Shrub	$\underset{(4.9)}{19,187.4}$	$\begin{gathered} 19,090.9 \\ (5.0) \end{gathered}$	$\begin{gathered} -96.5 \\ (206.8) \end{gathered}$	-0.5\%	17.3\%	0.6180
Palustrine Forested	$\begin{gathered} 52,854.2 \\ (2.7) \end{gathered}$	$\begin{gathered} 52,428.2 \\ (2.7) \end{gathered}$	$\begin{aligned} & -426.0 \\ & (42.1) \end{aligned}$	-0.8\%	47.5\%	0.0176
Freshwater Vegetated Wetlands	$\underset{(1.7)}{102,134.1}$	$\underset{(1.7)}{101,527.3}$	$\begin{aligned} & -606.8 \\ & (11.0) \end{aligned}$	-0.3\%	92.0\%	<. 001
Aquaculture Ponds	$\begin{aligned} & 159.0 \\ & (30.8) \end{aligned}$	$\begin{aligned} & 153.8 \\ & (30.7) \end{aligned}$	$\begin{gathered} -5.0 \\ (166.8) \end{gathered}$	-3.1\%	0.1\%	0.5489
Agriculture Ponds	$\begin{gathered} 3,057.0 \\ (3.9) \end{gathered}$	$\begin{gathered} 3,310.2 \\ (3.9) \end{gathered}$	$\begin{aligned} & 253.0 \\ & (12.9) \end{aligned}$	8.3\%	3.0\%	<. 001
Industrial Ponds	$\begin{aligned} & 367.6 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 435.1 \\ & (10.8) \end{aligned}$	$\begin{gathered} 68.0 \\ (24.6) \end{gathered}$	18.5\%	0.4\%	<. 001
Natural Ponds	$\underset{(6.3)}{1,838.7}$	$\stackrel{\substack{1,887.6 \\ \hline \\ \hline \\ \hline}}{ }$	$\begin{gathered} 49.0 \\ (49.1) \end{gathered}$	2.7\%	1.7\%	0.0416
Urban Ponds	$\begin{aligned} & 998.6 \\ & (6.8) \end{aligned}$	$\begin{gathered} 1,089.3 \\ (6.5) \end{gathered}$	$\begin{gathered} 91.0 \\ (13.5) \end{gathered}$	9.1\%	1.0\%	<. 001
Palustrine Ponds	$\begin{gathered} 6,420.9 \\ (1.3) \end{gathered}$	$\underset{(1.3)}{6,876.1}$	$\begin{aligned} & 455.2 \\ & (4.3) \end{aligned}$	7.1\%	6.2\%	<. 001
Palustrine Farmed	$\begin{aligned} & 2,012 \\ & (23.4) \end{aligned}$	$\begin{aligned} & 1,973 \\ & (24.0) \end{aligned}$	$\begin{aligned} & -39.6 \\ & (63.6) \end{aligned}$	-2.0\%	1.8\%	0.1160
All Freshwater Wetlands*	$\underset{(0.9)}{110,567.4}$	$\begin{gathered} 110,376.2 \\ (0.9) \end{gathered}$	$\begin{aligned} & -191.2 \\ & (18.7) \end{aligned}$	-0.2\%		0.0737

Freshwater vegetated wetlands include the palustrine emergent, shrub, and forested categories. Coefficient of variation (CV; [standard
error/mean]*100) for each entry expressed as percent is listed in parentheses below area and change values. Any apparent discrepancy between the area estimates and their reported difference is due to rounding.

igure 7. Net annual change in salt marsh and non-vegetated saltwater wetlands within the conterminous United States between the mid-1900s and 2019. Width of bars represents length of study period.

Pond area increased by over 7% during the study period (Table 4). These increases were primarily gains of agricultural ponds (253K ac [102K ha]) but also included urban (91 K ac [37K ha]), industrial 68 K ac [28 K ha]), and natural (49 K ac [20K ha]) ponds. The increase in agricultural ponds was likely associated with a combination of
excavation and diking to support farming practices (e.g., irrigation/ water supply and conservation weather and climate. In contrast, increases in urban and industrial ponds were primarily driven by development (e.g., stormwater management ponds). All upland categories experienced some
conversion to ponds, but most ponds were gained from upland agriculture and upland other, resulting in net gains of 184 K and 126 K ac (74 K and 51 K ha), respectively (Figure 8). Vegetated wetlands were also changed to ponds, resulting in a net pond area increase of 106 K ac (43 K ha) and a commensurate decrease in

Figure 8. Pond area change between 2009 and 2019 in the conterminous United States attributed to different drivers. Note: Only categories associated with amounts of change that were large enough to be clearly visible were included in the graph.

Figure 9. Net annual non-vegetated and vegetated freshwater wetland change within the conterminous United States between the mid-1900s and 2019. Width of bars represents length of study period. pattern of freshwater vegetated wetland decrease and pond increase that has persisted for about 70 years (Figure 9). This pattern has obscured vegetated wetland losses
The magnitude and dominant drivers of change varied depending on wetland type (e.g., vegetated versus non-vegetated). The largest driver of all freshwater wetland et loss ($-191 \mathrm{~K} \mathrm{ac} \mathrm{[-77K}$ ha]) wa n increase in upland forested
plantations (83 K ac [34K ha]), followed by increases in upland agriculture (78 K ac [$32 \mathrm{~K} \mathrm{ha]} \mathrm{]}$, upland urban (49 K ac [20K ha]), upland rural development (27 K ac [11K ha]), and lacustrine area (25 K ac [10K ha]). There was also a net gain of $39 \mathrm{~K} \mathrm{ac} \mathrm{(16K} \mathrm{ha)} \mathrm{in}$ freshwater wetlands from upland other (Figure 10). When only vegetated freshwater wetlands are considered, net loss to upland was substantially higher (-607 K ac [-246K ha]), including net losses to upland agriculture $(-211 \mathrm{~K}$ ac $[-85 \mathrm{~K}$
ha]), upland forested plantation (-107K ac [-43K ha]), upland othe (-86K ac [-35K ha]), upland urban (-64K ac [-26K ha]), and upland rural development (-51K ac [-21K ha]; Figure 10).

Right: Ghost forest at St. Marks Nationa Wildlife Refuge along the Gulf coast of Florida. Ghost forests form when salt water kills trees, often due to sea level rise. Photo by Megan Lang, USFWS.

Figure 10. Freshwater all wetland (top) and vegetated wetland (bottom) change between 2009 and 2019 in the conterminous United States attributed to different drivers. Note: Only categories associated with amounts of change that were large enough to be clearly visible were included in the graph.

in wetland area and wetlanddependent species are occurring
globally, including an 83% decline in freshwater wildlife species populations between 1970 and 2018, more than for any other wildlife type ${ }^{59}$. The impact of wetland loss on biodiversity and other ecosystem services may not be fully evident for several decades ${ }^{60,47}$.
Human and environmental impacts stem from not only the loss of with ons but their replacement with other land covers. Fo xample, replacent ant of wetland reduces wetland pollutant removal educes wetland pollutant remova inputs in the form of fertilizer, vaste, sediment, and toxins. Replacement of wetlands with development also increases the
mount of impervious surface in a watershed, which has been inked to degraded watershed heath . Additionally, replacement of wetlands with development ofte places people and infrastructure in locations that are more vulnerable to natural disasters, such as storm surge along the coasts and flooding near streams.

Vegetated

Wetland

Status and Trends reports indicat consistent and fundamental whowards more non-vegetated wetlands for at least the past 70 years. During the 2009-2019 study period, this pattern within freshwater systems was primarily driven by increases in agricultural urban, and industrial ponds paired
with vegetated wetland losses to upland (agriculture, development, and forested plantations) and lakes Change of wetlands to ponds also played a role (Figure 10). This is particularly notable because ponds do not naturally occur in many parts of the U.S.
Within saltwater systems, the pattern of increasing non-vegetated wetlands and decreasing vegetated wetlands was driven primarily byergent marsh (i iesth marsh) by non-vegetated wetlands accompanied by the loss of accompanied (Figures 6 ond marsh The loss of emergent vegetation saltwater wetlands may foreshadow future wetland loss. In saltwater wetlands, vegetation loss often precedes the transition from

Figure 11. Aerial imagery showing salt marsh (estuarine emergent marsh) loss between 2009 (left) and 2019 (right) in Louisiana.

Federally endangered whooping cranes at Quivira National Wildlife Refuge in Kansas.
(33K ac [13K ha]). Net freshwater vegetated wetland area decreased by $607 \mathrm{~K} \mathrm{ac} \mathrm{[} 246 \mathrm{~K}$ ha] during the study period. The majority of that decrease is attributable to declines in freshwater forested wetlands (-426K ac [-172K ha]). In contrast, pond area increase (455 K ac $[184 \mathrm{~K}$ ha] exceeded forested wetland decrease, resulting in a 7% gain of pond habitat.

Significance of Wetland Loss

 The substantial loss of wetlands documented by this study (Table 2) reduces the prosperity, health, increased susceptibility of people and infrastructure to natural lisasters like flo to natural disasters like flood, drought, and wildfire ${ }^{43,4,4,11,8,45,12,4,6,13}$, decreasedfood security food securer ${ }^{3,45,16,46}$, increased harmful algal blooms and related increases in toxins and oxygen depleted "dead toxins and oxygen depleted "dead
zones",1,7,48, greater vulnerability to sea level rise and storms ${ }^{3,11,4,41,12,9}$,
and reduced recreational opportunities ${ }^{3,7}$. The impacts of natural disasters, heightened by wetland loss, have been especially substantial ${ }^{44,12,13}$. Since 1980, 355 U.S. weather and climate related disasters with damages over $\$ 1 \mathrm{~B}$ have occurred at a total cost of $\$ 2.54 \mathrm{~T}$ and 15,955 related deaths ${ }^{49}$. Hurricane Sandy is estimated to have cost $\$ 4.4 \mathrm{~B}$ in lost ecosystem services through damage to New Jersey's wetlands alone ${ }^{41}$.

Wetland loss also leads to declines in fish, wildlife, and plant populations, including rare, commercially important and culturally valuable species ${ }^{50,51,5,52,55,54,5,5,23,3,3,1,5,56,57}$. For example, a five-county area supported about 300,000 dabblingduck breeding pairs could support less than 59,000 pairs after about half of its historical wetland area was lost ${ }^{58}$. Similar declines
estuarine marsh to deepwater due to relative sea level rise and oastal habitats are dynamic by nature due to waves, currents, and ther natural forces, this highly significant ($\mathrm{p}<.001$), long-term pattern of net estuarine marsh decrease and non-vegetated wetland and deepwater gain is consistent with the documented ffects of human modification ${ }^{62}$ and climate change ${ }^{10,41,63}$. Similarly, indings of freshwater wetland and upland change to saltwater wetland mostion the ith relative sea level rise ${ }^{9.56,63,64}$.

Vegetated wetland decreases primarily occurred in the Southeast and Great Lakes regions. Decreases were particularly prevalent within the Southeast, including the coastal watersheds of Texas, Louisiana, Florida, the Carolinas, and the Delmarva Peninsula, as well as near the Mississippi and Mobile River alluvial plains (Figure 12). In ddition to other drivers of wetland change, the Southeast experienced multiple hurricanes during the study period including Irma [2017], Harvey [2017], Michael [2018], Florence [2018], and Dorian [2019]. Wetland losses are predicted to ontinue in these areas due to the dual pressures of land use and limate change ${ }^{65}$.

Loss of wetland vegetation is an important driver of ecologic eterioration, partially because on-vegetated wetlands function ifferently than vegetated wetlands nd often provide fewer ecosyste ervices ${ }^{66,67,64,68}$. For example, in he Peconic Estuary, New York the marsh was found to be five times hat of intertidal mud flats ${ }^{69}$. Plants dissipate wave energy and trap sediment while their roots stabilize shorelines, building resilience o storms and sea level rise ${ }^{3,11,4}$ This benefit is substantial, saving infrastructure and lives. Salt marsh (i.e., estuarine emergent marsh) can reduce wave heights by $72 \%{ }^{70}$.

Figure 12. Map showing relative density of net vegetated wetland decrease (loss to upland and deepwater and change to non-vegetated wetlands) in the conterminous United States between 2009 and 2019.

Every year coastal wetlands are estimated to provide over $\$ 23$ B in storm protection ${ }^{71}$. Wetland plants are often used for construction and energy production ${ }^{2,40}$, including through the harvest of timber and thatch. Vegetation also enhances water quality by trapping sediment oxygenating the water column, and reducing the concentration of excess nutrients and other pollutants ${ }^{3,68}$.
Vegetated wetlands help to regulate the climate by capturing carbon dioxide from the atmosphere and storing it in plant material and sedurine and marine vegetated wetlands sequester this "blue carbon" is estimated to be more than ten times greater than the at which tropical forests sequester at which tropical forests sequeste vegetated wetlands have been found to store at least three to five times more carbon than tropical forests ${ }^{8}$. When wetland plants are lost, carbon is often released to the atmosphere, increasing carbon dioxide, a major greenhouse gas?. Pendelton et al. (2012) ${ }^{73}$ estimated
that the current global cost of carbon dioxide emissions associate with mangrove, salt marsh, and seagrass loss is between $\$ 6.1$ and \$42B annually.

Wetland plants provide vital food and habitat for imperiled species (e.g., saltmarsh sparrow and black rail) as well as commercially valuable species, including shrimp, crab, oyster, and salmon ${ }^{56,68}$. Vegetated wetlands make excellent nurseries because plants preven large predators from reaching young fish and shelf fisheries vegetated wetland is so strong that scientists have directly linked fishery yields to vegetated wetland area and yield declines to vegetated wetland area decreases (egetated shrimp and estuarine marsh ${ }^{75,76}$ In summary, the presence of vegetation enables a much wider range of important ecosystem functions relative to non-vegetated wetlands.

Although non-vegetated wetland do not provide the same type and number of functions as vegetated
wetlands, many provide important enefits. For example, ponds can mprove water quality and reduce water bodies, including many ponds, often differ from natural
features in ways that extend beyond the lack of vegetation. For example, artificial water bodies bodies in size, shape, distribution, depth, inundation pattern, and
other factors ${ }^{78,79}$. Some artificial water bodies have compacted soil, which deters groundwate exchange and reduces water quality benefits. In total, these differences lead to variations in function at the

Figure 13. Net change in saltwater wetland, deepwater, and upland categories between 2009 and 2019 and fluxes between categories. The relative size of each category is indicated by the size of the circle. Net acreage change for each category is included with in the circles and changes between categories are indicated by the size of the arrows and the nearby numbers. Values are acres rounded to the nearest hundreds. Note that the largest fluxes are from salt marsh to deepwater and non-vegetated wetlands.

individual and landscape scale that an reduce ecosystem services ${ }^{64,79}$ such as water quality benefits ${ }^{80,78}$ and habitat for waterbirds and other species ${ }^{81,7,8,82}$.

Because of the relationship between wetland type and ecosystem services, it is critical hat change between wetland types be considered along with wetland oss and gain when developing wetland policies and management one type of wetland would be mitigated with a replacement type of wetland; otherw of the ubstantial losses of ecosystem services may result even if total wetland area does not decrease. This is especially important when ong-term, highly significant shifts between fundamentally different wetland types are evident (e.g., Figures 7 and 9). Conservation and management approaches that are eared only to overall wetland los. will not provide long-term support or the full range of wetland functions and services.

mpacts to Animals and Plants

Substantial long-term net wetland oss paired with a fundamental shift from vegetated to non-vegetated wetlands has affected and is likely o cont and to substantialy affect plant and animal populations. This f the Birds report by the North the Biran Bird Conservation Initiative ${ }^{83}$ which documented rends in bird populations that are likely related to wetland and deepwater patterns described in this report (i.e., loss of vegetated wetlands and gain of ponds and lakes). For example, about a third of waterbirds are experiencing population declines, including several rail species (e.g., black ail and king rail) that rely almost exclusively on vegetated wetlands (e.g., marshes). In addition to these rail species, other "Tipping Point" pecies (i.e., cumulative population oss exceeded 70% since 1980) include the seaside and saltmarsh sparrow, which also rely heavily on
egetated wetlands and one third of f divirds. However, most species se both ve daborg tuans and open water habitats (e.g., ponds and lakes) have been generally stable or increasing. These recent findings illustrate the strong link between animals and their habitats and emphasize the importance of monitoring change among different wetland types ${ }^{1}$.
In addition to birds, species of amphibians, fish, mollusks, crustaceans, and turtles have and will likely continue to experience substantial declines partly due to wetland loss and degradation For example, 43% of amphibian species populations are declining and nearly a third of the world's amphibian species are threatened with extinction ${ }^{1}$. Within the U.S., 61% of amphibian species are declining ${ }^{84}$. Additionally, half of crayfish and two thirds of freshwater mollusks in the U.S. are at risk of extinction. About 10% of U.S. freshwater mollusks are likely to already be extinct ${ }^{1}$.
Wetland loss affects species through various mechanisms, including overall reduction of suitable habitat and habitat fragmentation. When fragmented, habitat can be too to maintain plant and animal populations Habitat fragmen affects a wide array of organisms, including some migratory species (e.g., anadromous fish) and species (e.g., anadromous fish) and species plants, aquatic insects, amphibians, and small mammals $)^{85,51}$. The reduction of small prey species can negatively affect wider-ranging species, like raptors ${ }^{86}$. Migratory birds can also be affected when reductions in wetland habitat force individuals into smaller areas, reducing the availability of food and nesting sites and sometimes leading to disease and death ${ }^{57}$. Wetland losses in the Prairie Pothole Region (i.e., a grassland ecoregion that extends across the central United States and Canada) are thought
to have reduced populations of wetland-dependent species by half and caused the complete removal of many species from that landscape ${ }^{47}$

Impacts of the wetland loss and change patterns highlighted by this study will likely be magnified by future climate change ${ }^{53,47,10,57}$. The combined effect could lead to extinction of additional wetland dependent species, especially those that cannot move through remaning wetland fragments to chance impacts are predicted to increase along the coast ${ }^{39,40}$ as well as in inland areas like the Prairie Pothole Region where wetlands support $50-80 \%$ of North America's support $50-80 \%$ of North America's often rapid reduction of wetland habitat and a shift towards more non-vegetated wetlands has already resulted in the decline of many wetland-dependent species and is predicted to continue to do so.

Effects of Disturbance

Status and Trends results indicate that the combined effects of wetland loss and disturbance on some ecosystem functions may be much larger than predicte based on wetland loss alone. Even wetlands that remain on the landscape can be substantially altered by disturbance, including harvesting or planting of comben suburban, Wetands near development are aften affected by pollutants, changes in water regime, alteration of hydrologic connectivity, changing salinity, and the introduction of invasive species These factors can lead to declines in important ecosystem services, such as filtering water, protecting people and infrastructure from natural disasters, and maintaining biodiversity ${ }^{1,32,55,78,9,88}$.

The magnitude of this disturbance can begin to be approximated by considering gross (instead of net) wetland change and by considering change to other wetland categories instead of solely net loss/gain to
upland or deepwater (Figures 13 and 14). For example, almost wice as much freshwater (i.e., palustrine) forested wetland was replaced by freshwater emergent wetland than was lost to upland (559K versus 288 K ac [226K
versus 117 K ha]). Furthermore, total gross wetland changes (e.g., increases and decreases to area caused by loss or gain to upland or deepwater and change to or from other wetland classes) affected 22% of the freshwater scrub/shrub
category even though net estimates of change for this category were extremely low (i.e., <1\%). These findings likely demonstrate that the magnitude of disturbance due to timber harvest is much higher than might be predicted solely based on

Figure 14. Net change in freshwater wetland, deepwater, and upland categories between 2009 and 2019 and fuxes between categories. changes between categories are indicated by the size of the arrows and the nearby numbers. Values are acres rounded to the nearest thousands. Note that the largest fluxes are between vegetated wetland categories and that there is net loss of these wetlands to upland.

In addition to direct disturbance (i.e., impacts to the wetland itself), wetland persistence and function over time can be affected by impacts to adjacent areas. These include the hardening of shorelines of incoming water 88,40 change in water levels due to levees, dams, dikes, and water control structures 62,41 , oroundwater and hydrocarbon withdrawal ${ }^{10}$, and reduction of sediment transporte by rivers and other waterways ${ }^{111,0,90}$

This mix of direct and indirect sturbance is likely to have culative and/or synergistic effects resulting in even greater Status and Trends reports can begin to approximate the effects of disturbance on wetland condition but were not intended specifically for this purpose. The U.S. Environmental Protection Agency documents the effects of human disturbance on wetlands, and recently reported that 80% of wetlands in the conterminous U.S. were in fair or poor condition due like vegetation removal or replacement obstruction flow soil compaction, and ditching

Accumulation of Impacts over Time

 The impacts of wetland loss, gain, and change on the functions and services provided by wetlands are cumulative over space and time and may be difficult to reverse. Recent studies indicate that declines in wetland function associated with loss may be punctuated by tipping points that lead to rapid, potentially difficult to reverse, declines in ecosystem services and the viability of wetland-dependent species ${ }^{92,1,14,4,5,57}$. Other studies have concluded that the full impact of wetland loss on ecosystem function may not be evident right away. It can take decades, centuries, or longer before restore wetlands function like natural wetlands ${ }^{93,9,4,47,95,78,96,97}$. In many cases,

Mallards take flight at Rainwater Basin Wetland Management District in Nebraska.
this equivalency may never be achieved. All these findings indicate that once wetland services are lost, they may never be completely regained.

The long-term cumulative effect of wetland impacts can be seen in studies concluding that certain types of wetlands may disappear from some regions within the next several decades. For example, under high sea level rise scenarios, all salt marsh is predicted to be lost in California and Oregon by 2100^{56}. Globally, between 20-90\% of coastal wetlands are predicted to be lost before 2100^{39}.

mportance of Long-Term Wetland

 MonitoringThe monitoring of land use and land cover change is an resourced part of effective resourced part of effective and managoment conservation and management size of a wetland largely and size of a wetland largely human and wildlife benefits, but
hese benefits and their connection to wetlands may only become pparent at the landscape scale ${ }^{79}$. Thus, by tracking wetland and deepwater area (status) and change (trends) at the landscape scale, Wetlands Status and Trends reports provide metrics by which policy and management actions can be evaluated. This information allows all Americans to plan for th ecosystem service needs of current and future generations, including needs related to changes in climate land cover, and population.
To be most effective, monitoring must occur at spatial and temporal scales relevant to policy development and should include the land cover and/or land use categories necessary to understand drivers and implications of change ${ }^{202}$. Wetland change most commonly occurs through small, incremental steps often affects small wetlands which play a disproportionally
large role in the delivery of ecosystem services, as wetlands ${ }^{79}$. Wetland management (e.g., restoration, cultivation, and drainage) often occurs at scale ${ }^{46,64}$. Therefore, implementing effective wetland policies requires a long-term monitoring approach (e.g., decades ${ }^{1}$; Figure 5) that is well suited for measuring small changes to specific wetland types. The Service's decadal Wetlands Status and Trends studies meet these requirements by measuring change to 17 different wetland and deepwater classes over a 70 -year period using 1 m (1.1 yd) imagery to detect very small changes (e.g. 0.1 ac [0.04 ha]) that could not be reliably detected using Landsat or similar moderate resolution (e.g., 30

Conclusions

Recommendation

Net wetland loss increased substantially (>50\%) since the last Wetlands Status and Trends study period (2004-2009), thereby extending a long-term pattern of wetland loss in the conterminous U.S. This loss was coupled with shift towards fewer vegetated wetlands and decreased woody iomass within remaining vegetated wetlands (e.g., remaining wetlands more likely to be emergent instead foreste have and will continue to patterns have and win consue to functions and services. The reduction of these benefits negatively affected human health safety, and prosperity, and, if this safety, and prosperity, and, if this so. Populations of fish, wildlife, nd plants will also continue to be negatively affected. Because Wetlands Status and Trends reports do not directly assess changes in wetland condition, the patterns of wetland loss, gain, and change documented in these reports are a conservative estimate of the effects of human, climate, and other change
drivers on ecosystem services ${ }^{100}$ When the effects of changes in wetland condition are taken into account, even greater losses of wetland functions and services are indicated. These negative impacts will likely be magnified by the effects of future climate change and increasing changes in land use and land cover ${ }^{38,42,65,39,107}$

Net wetland losses decreased substantially after the
implementation of a series of broad U.S. wetland policies in the 1970s and 80 s (Figure 5). However, the "No Net Loss" wetlands goal originally recommended in 1987^{31} and adopted by multiple federal administrations, as well as many states. This goal accounts for the inevitability of some wetland loss by focusing on net change (i.e., the balance of losses and gains) in both wetland area and function ${ }^{108}$. Failure to achieve this goal is documented by this Status and Trends report, as well as a wide assemblage of other studies ${ }^{109,53,110,111,10,64,112}$. Although the
"No Net Loss" goal was established over 35 years ago, the need to reverse wetland loss trends is even more critical today as society faces a growing number and/or intensity of natural disasters, sea level rise, and the increasing need for clean, abundant fresh water ${ }^{9,7,64,113}$.

Measuring the effectiveness of wetland policy and management actions requires the consideration type as well as broader trends in the environment and the needs of people ${ }^{25,13}$. These broader of people ${ }^{20,15}$. These broader populations, especially in wetlanddense and natural disastervulnerable locations like coastal watersheds, as well as the effects of climate and land use and land cover change ${ }^{47,114}$. The growing demand for wetland benefits paired with the decreased capacity of wetlands to provide them highlights the need for additional proactive solutions to reverse the persisten and accelerating national trend of wetland loss

o achieve no net loss of all vetlands, including vegetated wetlands, a strategic update is needed to America's approach to vetland conservation. This update should address foundational wetland policy and management gaps that have been identified by numerous researchers and rganizations ${ }^{25,115}$ including the need for: 1) more effective coordination and leveraging within and across governance levels and 2) enhanced cientific information that meets policy and management equirements. These gaps can trategies described below. trategies described below. Implementing these strategies 11990 (Protection of Wetlands) an nable the evidenced-based policy analysis and strategic
implementation necessary to conserve America's remaining wetlands.

Strategy 1: Achieve "No Net Loss" of

 wetlands and robust coordination with government and non-governmentalartners to achieve this goal.
Wetland conservation depends on an inter-related array of federal, , state, and local policies an managenent actions that re imple lands. Althougs public and private lands. Although past fed 1990) (e.g., Exed that individua agencies take action
agencies take action
to minimize wetland loss and degradation, and ad hoc groups, like Workgroup ${ }^{119}$, endeavor to reduc wetland losses in some geographies, holistic national coordination towards achieving no net loss is not currently mandated nor is it occurring. An important
first step towards enhanced coordination would be to establish the requirement to work effectivel across and within government level to achieve no net loss of wetlands, with an emphasis on vegetated wetlands. Establishing this requirement would facilitate the creation of related governance structures and dedication of requisite staff time, the lack of wich has hampered wetland conservation efforts in the past. However, meaningful progress will and mechanisms to share or pool resources once collaborative actio are identified Endter-Wada et al (2020 $)^{13}$ sugrest that creating a (2020) suggest that creating a wetland commission with the requisite autonomy, authority incentives, resources, and connections to existing stakeholder groups would facilitate more effective wetland conservation Enhanced coordination is needed not only across multiple agencies/ levels of government, but also with the private sector and individuals.
Coordination is often hampered not only by the challenge of working between and within levels of government but also by the complex uite of authorities and regulations hat influence wetland onservation ${ }^{101,113 .}$. Many authorities potlands and their benefits chich wetlands and their benefits can be conserved, but these authorities are (e. . water quality water supply (e.g., water quality, water supp (e.g., federal properties, states, or (e.g., federal properties, states, or Great Lakes Watersheds). The importance of fully understanding these disparate mechanisms (see Strategy 3 below) as well as
enhanced coordination will become even more critical as the drivers of wetland loss become increasingly more complex ${ }^{38}$.
Strategy 2: Produce a contemporary NWI Geospatial Dataset and spatially explicit information on wetland function.
Strategic planning and coordination are required to reverse longstanding wetland loss trend within the conterminous U.S. A prerequisite for this planning is contemporary wetlands geospatial dataset ${ }^{120,113}$. The strategic conservation decision-making that will be required to achieve no net loss of wetlands is dependent on knowing the location, abundance, and type of America's wetlands. This information is the foundation of national analyses and decisionsupport tools. The geospatial dataset should be interoperable with other components of the U.S. National Spatial Data Infrastructure (e.g., 3D Hydrography Program datasets) to enable effective modeling of wetland functions and services landscape and the needs of aeople. Information must ne provided people. spatial resolution that is relevant to national planning and funding efforts as well as to parcel scale implementation ${ }^{46,64,113}$.

The necessary information is provided by the Service's NW Geospatial Dataset, but to fully meet this need it should be updated in some geographies ${ }^{121}$. In addition to its operational spatial scale, the NWI dataset provides highly detailed information on wetland type, which is critical for assessing wetland functions and ecosystem services ${ }^{32,102,41,113}$. Information on
wetland functions and services is increasingly being sought by government and non-governmental organizations ${ }^{113}$ and the NWI Geospatial Dataset is routinely used to help provide this nformation ${ }^{122}$. However, national andscape scale functional assessment standards and the esources to enhance and host wetland functional data are needed before the information can be most effectively used. Standards provid onsistent workflows and
pecifications which help to ensure hat data meet the needs of a larger indable accessible intero ndable, accessible, interoperable, he Geospatial Data Act of 2018

Strategy 3: Develop and implement

 enhanced wetland conservation and management approaches based on holistic review of current and past ations.A key task for the coordination
group described in Strategy (above) will be to develop and implement more effective conservation and management pproaches to meet the goal of no loss of we understanding of the ffectiveness of current nd past authoritient
nd past authorities, regulations, programs, and other actions as well as future requirements Building understanding will require an unsparing evaluation of wetland conservation approaches, their outcomes, and why those outcomes occurred. This could be accomplished by bringing together experts from a wide range of disciplines and focus areas in a process similar to the way review are conducted by the National Academy of Science. In addition to driving strategic development of enhanced approaches, the formation would serve to more fully leverage the contemporary geospatial inventory of wetland ithin an adative mage 2 (above) within an adaptive management the development of landscape scale

The Sand Lake Wetlands Management District in South Dakota. This area includes the Sand Lake National Willdife Refuge and supports some of the highest concentrations of nesting waterfowl in North America.
decision-support tools. Only by understanding why the "No Net Loss" goal has not been met can new conservation approaches be developed that will achieve the goal

Strategy 4: Commit to long-term

 adaptive conservation, management, and monitoring.Addressing America's wetland conservation needs requires a long term commitment to adaptive conservation, management, and monitoring. The U.S. has been working to address net wetland loss for over half a century and yet the consequences of continuing wetland losses are increasingly affecting ou communities through increased susceptibility to natural disasters, poor water quality, and failing infrastructure. Current conservation policies have not met their goals, including no net loss, and predicted environmental change will make this even more difficult. These challenges highlight the need for not only long-term
improving our approaches over time through the adaptive management process ${ }^{25}$. Data provided by the Wetlands Status and Trends study are foundational to this process because they measure progress towards achieving conservation goals. It is recomp described in Straterdination group described in Strategy 1 and Trends studies along with other scientific findings to evaluate and reconsider policies and management approaches in light of current trends.

Looking Forward

New approaches are needed to conserve and restore our Nation's wetlands. Foundational strategies to develop these approaches are outlined in the preceding Recommendation Section. The need is especially urgent today because most wetlands in the been lost, wetland loss has recen accelerated, and future declines will likely be magnified by the effects of climate change as well as land use
and land cover change. Scientifi information, like this report, is foundational to the strategi implementation of all natural resource policy actions and will be critical to success. The Service wil continue to work with all partners to conserve and and Trends reports to Congress as mandated by the Congress Wetlands Resources Act (Public Law 99-645). Achieving no net
loss of all wetlands, especially vegetated wetlands, will require a collaborative approach that includes Tribal, state, local, and private partners to ensure the lasting health of America's people,
environment, and economy environment, and economy.

19. Flynn K. 1996. Understanding wetlands and endangered species: Definitions and
relationships. Alabama Cooperative Extension System.
20. Boylan KD, MacLean DR. 1997. Linking Species

Loss with Wetlands Loss Environmental Law Institute
21. LaRoe ET. 1995. Our Living Resources. A Report to the Abundance and Health of USA Plants, Animals and Ecosystems. U.S. Department of the Interior National Biological Service. Washington, D.C. p. 530
22. Environmental Protection Agency. 2002. Functions an Values of Wetlands. EPA 843-F-01-002c. p. 2.
23. Kusler J. 2006. Common Questions: Wetland Conservation and the Protection of Migratory Birds. Association of State Wetland Managers, Inc. and Thetland Science and Publi Policy
4. Lellis-Dibble KA, McGlynn KE, Bigford TE. 2008 Estuarine Fish and Shellfish Species in U.S. Commercial and Recreational Fisheries: Economic Value as an Estuarine Habitat. U.S. Department of Commerce. NOAA Technical Memo NMFSF/SPO-90 ed. p. 94.
25. Euliss NH, Smith LM Wilcox DA, Browne BA. 2008 Linking ecosystem processes with wetland management goals. Charting a course for a Ecology and Management. 28.553-562
26. Stedman S, Dahl TE. 2008. Status and Trends of Wetlands in the Coastal Watersheds of the Eastern United States 1998 to 2004. National Oceanic and Atmospheric Administration National Marine Fisheries Service and U.S. Department of the Interior Fish and Wildlife Service. p. 32.
27. Dahl TE, Stedman SM. 2013. Status and Trends of Wetland in the Coastal Watersheds of the Conterminous United States 2004 to 2009. U.S. Department of the Interior Fish and Wildlife Service and National Oceanic and Atmospheric Administration National Marine Fisheries Service. p. 46.
28. Dahl TE. 2014. Status and Trends of Prairie Wetlands in the United States 1997 to 2009. U.S. Department of the Interior Fish and Wildlife Service. Washington, D.C. p. 67.
29. Frayer WE, Monahan TJ, Bowden DC, Graybill FA. 1983 Status and Trends of Wetlands Conterminuous United States Conterminuous United States, Interior U.S. Fish and Wildlife Service p. 36 .
30. Vileisis A. 1999. Discovering the Unknown Landscape: A History of America's Wetlands Washington, D.C.: Island Press.
31. Kean TH. 1988. Protecting America's Wetlands: An Action Agenda: The Final Report of the National Wetlands Polic Forum. Washington, D.C. Conservation Foundation
32. Zedler JB, Kercher S. 2005 Wetland resources: Status, trends, ecosystem services, and restorability Annual Review of Environment and Resources 30:39-74.
33. Federal Geographic Data Committee. 2013. Classification of Wetlands and Deepwater Habitats of the United States Wetlands Subcommittee Federal Geographic Data Committee and U.S. Fish and Wildlife Service. FGDC STD-004-2013. Second Edition. Washington, D.C.
34. National Standards and Support Team. 2017. Technical Procedures for Conducting Tation's Wetlands (versio U U S. Fish and Wildlife Service Division of Budget Technical Support. Washingto echnical Support. Washington D.C. p. 76
35. Dahl TE. 2011. Status and Trends of Wetlands in the Conterminuous United States 004 to 2009. U.S. Department of the Interior Fish and Wildlife Service. Washington, D.C. p. 108.
36. Dahl TE. 1990. Wetlands Losses in the United States 780's to 1980's. U.S. Department of the Interior Washing Wi D.C. peric.
37. Dahl TE. 2000. Status and Trends of Wetlands in the Trends of Wetlands in the 1986 to 1997. U.S. Department of the Interior Fish and Wildlife Service. Washington, D.C. p. 82
38. Kirwan ML, Megonigal JP 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 504:5360.
39. IPCC. 2019. Summary for Policymakers. In: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate. In: Pörtner H-O, Roberts DC, MassonDelmotte V, Zhai P, Tignor M Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A et al., editors. New York, NY, USA: Cambridge University Press. p. 3-35.
40. Jordan P, Frohle P. 2022. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature based solutions for coastal protection. Journal of Coastal Conservation. 26(2).
41. Hauser S, Meixler MS, Laba M 2015. Quantification of impact and ecosystem services loss in New Jersey coastal wetlands due to Hurricane Sandy storm surge. Wetlands. 35(6):11371148.
42. Finlayson CM, Capon SJ, Rissik D, Pittock J, Fisk G Davidson NC, Bodmin KA Papas P, Robertson HA, Schallenberg M et al. 2017. managing wetlands under a changing climate Marine a changing climate. Marine 68(10):1803-1815.
3. Bullock A, Acreman M. 2003. The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences 7(3):358-389.
44. Brody SD, Highfield WE, Ry HC, Spanel-Weber L. 2007. Examining the relationship between wetland alteration and watershed flooding in Texas and Florida. Natural Hazards 40(2):413-428.
45. Jacob JS, Pandian K, Lopez RD, Biggs H. 2014. Houston Loss, 1992-2010. Texas A\&M University.
46. Tomscha SA, Deslippe JR, de Roiste M, Hartley S, Jackson B. 2019. Uncovering the ecosystem service legacies of wetland loss using highresolution models. Ecosphere 10(10).
47. Blann KL, Anderson JL, Sands GR, Vondracek B. 2009 Effects of agricultural drainage on aquatic ecosystems: A on aquatic ecosystems: A Environmental Science and Technology. 39(11):909-1001.
48. Carmichael WW, Boyer GL. 2016. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes Harmful Algae. 54:194-212.
49. NOAA National Centers for Environmental Information 2023. U.S. Billion-Dollar Weather and Climate Disaster https://www.ncei.noaa.gov/ stkw-7w73
50. Conway CJ, Eddleman WR, Anderson SH. 1994. Nesting success and survival of Virgini 106(3):466-473.
51. Lehtinen RM, Galatowitsch SM, Tester JR. 1999. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands. 19:1-12
52. Graff L, Middleton J. 2001 Wetlands and Fish: Catch Wetlands and Fish: Cat of Commerce Nationt Oceanic and Atmospher Administration.
53. Brinson MM, Malvarez AI 2002. Temperate freshwater wetlands: Types, status, and threats. Environmental Conservation. 29(2):115-133.
54. Niemuth ND, Solberg JW. 2003. Response of waterbirds to number of wetlands in the Prairie Pothole region of North Dakota, USA. Waterbirds
55. Ward MP, Semel B, Herkert JR. 2010. Identifying the JR. 2010. Identifying the declines of wetland-dependent birds in an urbanizing landscape. Biodiversity and Conservation. 19(11):3287-3300
56. Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K, Dugger B, Freeman C, Janousek C, Brown L, Rosencranz J et al. 2018. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Science Advances. 4(2).
57. Donnelly JP, Moore JN Casazza ML, Coons SP. 2022. unctional wetland loss drives merging risks to waterbird migration networks. Frontiers in Ecology and Evolution. 10:18.
58. Johnson RR, Oslund FT, Herte DR. 2008. The past, present, and future of Prairie Pothole in the United States. Journal of Soil and Water Conservation. 63(3):84A-87A.
59. WWF. 2022. Living Planet Report 2022 - Building a Nature Positive Society Almond REA, Grooten M, Juffe Bignoli D, Petersen T, editors Wildlife Foundation.
60. Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones A. 2005. Effects of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecological Applications. 15(6):1893-1905.
61. Arnold CL, Gibbons CJ. 1996. Impervious surface coverage: The emergence of key environmental indica Journal of the American A2(2):243258.
62. Kennish MJ. 2001. Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts. Journal of Coasta Research. 17(3):731-748.
63. Halls JN, Magolan JL. 2019. A methodology to assess land use development, flooding, and wetland change as indicators of coastal vulnerability. Remote Sensing. 11(19):23.
64. DNREC. 2022. Delawar Wetlands: Status and Trends from 2007 to 2017 . Delaw Pesoures and E Control Dover D.E.
5. Beckingham B, Callahan T Vulava V. 2019. Stormwater ponds in the southeastern U.S Coastal Plain: Hydrogeology contaminant fate, and the need for a social-ecological Environmental Science. 7
66. Gopal B. 2016. Should 'wetlands' cover all aquatic ecosystems and do macrophytes make a difference to their ecosystem services? Folia Geobotanica. 51(3):209
226
67. Birch WS, Drescher IM Pittman J, Rooney RC 2022. Trends and predictors of wetland conversion in urbanizing environments. Journal of Environmenta Management. 310:10.
68. Gaglio M, Bresciani M, Ghirardi N, Muresan AN Lanzoni M, Vincenzi F, Castaldelli G, Fano EA. 2022. Aquatic vegetation loss and regulation in on cotected freshwater wetland of Po River Delta Park (Italy). Water. 14(1).
69. Johnston RJ, Grigalunas TA, Opaluch JJ, Mazzotta M Diamantedes J. 2002. Valuing estuarine resource services using economic and ecological models: The Peconic Estuary system. Coastal Management. 30:47-65.
70. Narayan S, Beck MW, Reguero BG, Losada IJ, Van Wesenbeeck B, Pontee N, Sanchirico JN, Ingram JC, Lange GM, Burks-Copes KA. 2016. The effectiveness, costs and coastal protection benefits of natural and natur 11(5):E0154735.
71. Costanza R, Péérez-Maqueo O, Martinez ML, Sutton P Anderson SJ, Mulder K. 2008. The value of coastal wetlands for hurricane protection. AMBIO: A Journal of the Human Environment. 37:241248.
72. Mcleod E, Chmura GL Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastar Frots in Eequestering CO2. Frontiers in 9(10):552-560
73. Pendleton L, Donato DC Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P. 2012. Estimating global blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE. 7(9):e43542.
74. Boesch DF, Turner RE. 1984 Dependency of fishery species on salt marshes: The role of ood and refuge. Estuaries and Coasts. 7:460-468
75. Turner RE. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. ransactions of the American Fish.
416.
76. Turner RE. 1992. Coastal Wetlands and Penaeid Shrimp Habitat. In: Shroud RH, editor Stemming the Tide of Coastal Fish Habitat Loss, Savannah, GA. National Coalition for Marine Conservation. p. 97 04.
77. Hassall C. 2014. The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Reviews-Water. 1(2):187-206.
78. Rooney RC, Foote L, Krogman N, Pattison JK, Wilson MJ, Bayley SE. 2015. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values. Water Research. 73:17-28.
79. Rains M, Schmidt K, Landry S, Kleindl W, Rains K. 2023. Reorganizing the waterscape: Asymetric loss of wetlands and ain of artificial water feature Wetlands 43(7):91
80. Mayer PM, Reynolds SK Jr, McCutchen MD, Canfield TJ. 2007. Meta analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality. 36(4):1172-1180.
81. Bancroft GT, Gawlik DE, Rutchey K. 2002. Distribution of wading birds relative to vegetation and water depths in the northern Everglades of (3):205-277. 25(3):265-277.
82. Binkley EE, Dorn NJ, Cook MI. 2019. Feeding on the edge Foraging White Ibis target inter habitat prey fluxes. Journal of Field Ornithology. 90(3):235-247.
83. North American Bird Conservation Initiative. 2022. The State of the Birds, United States of America, 2022.
84. Muths E, Adams MJ, Grant EHC, Miller D, Corn PS, Ball LC. 2012. The State of Amphibians in the United gical Survey 2012-3092. P 4
85. Semlitsch RD, Bodie JR. 1998 Are small, isolated wetlands expendable? Conservation Biology. 12(5):1129-1133.
86. Murphy RK. 1997. Importance of Prairie Wetlands and Avian Prey to Breeding Great Horned Owls (Bubo Virginianus) in Northwestern North Dakota. In: Duncan JR, Johnson DH, Nicholls H, editors. Biology and Conservation of Owls of the Northern Hemisphere. p. 286-298
87. Johnson WC, Millett BV, Gilmanov T, Voldseth RA Guntenspergen GR, Naugle northern Prairie wetlands climate change BioScience 55(10):863-872.
88. Hess KM, sinclair JS Reisinger AJ, Bean EZ, Iannone III BV. 2022. Are stormwater detention ponds protecting urban aquatic ecosystems? A case study using depressional wetlands. Urban Ecosystems. 25(4):1155-1168.
89. Douglas SH, Bernier JC, Smith KEL. 2018. Analysis of multidecadal wetland changes, and cumulative impact of multiple storms - 1984 to 2017. Wetlan 26(6):1121-1142.
90. Couvillion BR, Steyer GD, Wang HQ, Beck HJ, Rybczyk JM. 2013. Forecasting the effects of coastal protection and restoration projects on wetland morphology in coasta Louisiana under multiple environmental uncertainty scenarios. Journal of Coastal Research. 67:29-50.
91. U.S. Environmental Protection Agency. 2023. National Wetlan Condition Assessment: The Second Collaborative Survey States U S Environment States. U.S. Environmental Protection Agency Office of and Development.
92. Boyer T, Polasky S. 2004. Valuing urban wetlands: review of non-market valuatio studies. Wetlands. 24(4):744755.
93. Malakoff D. 1998. Ecology - restored wetlands flunk real-world test. Science. 280(5362):371-372
94. Brooks RP, Wardrop DH, Cole CA, Campbell DA. 2005 Are we purveyors of wetlan homogeneity. A model of degradation and restoration performance Enlosical Engineering. 24(4):231-340.
95. Moreno-Mateos D, Power ME, (omin FA, Yockteng R. 2012 restored wetland ecosystems. PLOS Biology. 10(1).
96. Anderson DL, Rooney RC. 2019. Differences exist in bird communities using restored and natural wetlands in th Parkland region, Alberta, Canada. Restoration Ecology
97. Tillman SC, Spyreas G, Olna A, Matthews JW. 2022. Plant A, Mmunities in wetland mitigation banks surpass the quality of those in the most degraded, naturally occurring wetlands, but fall short of high quality wetlands. Ecological Engineering. 176:13.
98. Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F. 2008. Ethnobiology, socioconomics and management of mangrove forests: A review. Aquatic Botany. 89(2):220-236.
99. Lackey LG, Stein ED. 2015. Evaluating alternative temporal survey designs for emporal survey designs for detecting changes over time in California. Journal of the American Water Resources Association. 51(2):388-399.
100.Gittman RK, Baillie CJ, Arkema KK, Bennett RO, Benoit J, Blitch S, Brun J, Chatwin A, Colden A, Dausman A et al. 2019. Voluntary restoration: Mitigation's silent partner in the quest to reverse coastal wetland loss in the USA. Frontiers in Marine Science. 6:15.
101. Karasik R, Pickle A, O'Shea M, Reilly K, Bruce M, Earnhardt Reilly K, Bruce M, Earnhardt R, Ahmed 1. 2022. State of the Management Policies for Si States. NI R 22-07. Durham, N.C. Duke University.
02.Troy A, Wilson MA. 2006 Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecological Economics. 60(2):435-449.
103. Brady SJ, Flather CH 1994. Changes in wetlands on nonfederal rural land of the conterminous United States from 1982 to 1987. Environent. Management. 18(5):693-705.
104.Biggs J, von Fumetti S, Kelly Quinn M. 2017. The importance of small waterbodies for of small waterbodies for
biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia. 793(1):3-39.
105. Cheng FY, Basu NB. 2017. Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing. Water Resources Research. 53(6):5038-5056.
106. Lang M, Stedman SM, Nettles J, Griffin R. 2020. Coastal watershed forested wetland change and opportunities for forestry community Wetlands. 40:7-19.
07.Oppenheimer M, Glavovic BC, Hinkel J, van de Wal R Magnan AK, Abd-Elgawad A, Cai R, Cifuentes-Jara M, DeConto RM, Ghosh T et al. 2019. Sea Level Rise and Implications for LowLying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate New York, NY:
Cambridge University Press. p. 321-445.
108. Fennessy SM, Stein ED, Ambrose R, Craft CB, Herlihy At, Kentula ME, Kihslinge R, Mack JJ, Novitski R,
Vepraskas MJ et al. 2013. Towards a National Evaluation of Compensatory Mitigation Sites: A Proposed Study Methodology. Environmental Law Institute. Washington, D.C.
109. Kelly NM. 2001. Changes to the landscape pattern of coasta the Clean Water Act 1984-1992 Landscape Ecology 16(1):3-16
110.Zedler JB. 2004. Compensating for wetland losses in the United States. Ibis. 146:92-100
111.Goldberg N, Reiss KC. 2016 Accounting for wetland loss Wetland mitigation trends in northeast Florida 2006-2013 Wetlands. 36(2):373-384.
112. Theis S, Poesch MS. 2022. Assessing conservation and mitigation banking practice and associated gains and Sustainability. 14(11):24.
113.Biddle M, Fowler D, Robertson A, Schwalls D, Shader E, Stelk M. 2023. Strategies and an Action Plan for Protecting \& Restoring Wetland and Floodplain Functions. Portland M.E. National Association of Wetland Managers.
114. USGCRP. 2017. Climate Science Special Report: Fourth National Climate Assessment U.S. Global Change Research Program. Washington, DC, USA. p. 470
115.Gardner RC. 2011. Lawyers Swamps, and Money: U.S. Wetland Law, Policy and Island Press.
116.Gutzwiller KJ, Flather CH 2011. Wetland features and andscape context predict oss. Ecological Applications 21(3):968-982.
117. Clare S, Creed IF. 2014 Tracking wetland loss to mprove evidence-based wetland policy learning and decision making. Wetlands 22(3):235-245.

- M ,

118. Strand M, Rothschild L.
119. Wetlands Deskbook. Washington, D.C. Environmental Law Institute.
119.U.S. Enviromental Protection Agency. 2017. Interagency Coastal Wetlands Workgroup: Coastal Wetlands Workgroup:
Statement of Purpose and Goals. Washington, D.C.
120.Oslund FT, Johnson RR, Herte DR. 2010. Assessing wetland changes in the Prairie Pothole region of Vinnesota from 1980 Wildlife Management. 1(2):131Wild
120.

121.Mayer AL, Lopez RD. 2011 Use of remote sensing to support forest and wetlands Sensing. 3(6):1211-1233
122. Christensen JR, Golden HE Alexander LC, Pickard BR, Fritz KM, Lane CR, Weber MH, Kwok RM, Keefer MN. 022. Headwater streams an nland wetlands: Status and advancements of geospatial datasets and maps across the United States. Earth-Science Reviews. 235. ns.

 US. Envirom Pertion

Goals. Washing D.C. egion of Minnesota from 1980 policies in the USA. Remote

116 Cutrvillan KI Flothan CH正

Appendix A: Data Matrix

Rows identify the 2019 classifcation. Columns identiyy the 2009 classifcation. Percent coefficients of variation for estimates appear below the acreage entr
An example of how to interpret this matrix is as follows: 88,757 acres of estuarine emergent wetland in 2009 are estimated to have changed to estuarine
subtidal wetland in 2019.

U.S. Fish \& Wildlife Service www.fws.gov/wetlands

March 2024

[^0]: On the cover: View of wetlands at Canaan Valley National Wildlife Refuge in West Virginia © Kent Mason.

[^1]: * wetland categories
 ** deepwater categories

[^2]: Bald cypress trees at Great Dismal wamp National Wildlife Refuge in Virginia. Photo by R. Winn, USFWS

