
Lorrie Flint and Alan Flint

U.S. Geological Survey
Sacramento, CA

Lorrie Flint and Alan Flint

U.S. Geological Survey
Sacramento, CA

Evaluating Future Hydrologic
and Ecologic Changes 
in Coastal Watersheds 

Evaluating Future Hydrologic
and Ecologic Changes 
in Coastal Watersheds 



Hydrology and Ecology in 
a Changing Climate

Hydrology and Ecology in 
a Changing Climate

• What do ecologists need for land 
management decisions?
– What processes are important?
– What environmental variables?
– What temporal and spatial scales?

• Tools and information available for 
projections of future ecological 
conditions
– Parameters available from global climate 

models: precipitation, maximum and 
minimum air temperature

– Predictive models: mathematical, 
statistical, numerical, physical

• What do ecologists need for land 
management decisions?
– What processes are important?
– What environmental variables?
– What temporal and spatial scales?

• Tools and information available for 
projections of future ecological 
conditions
– Parameters available from global climate 

models: precipitation, maximum and 
minimum air temperature

– Predictive models: mathematical, 
statistical, numerical, physical



Hydrology and Ecology in 
a Changing Climate

Hydrology and Ecology in 
a Changing Climate

• Distributions of water flow, snow accumulation 
and melt, soil conditions, and other 
environmental attributes under climate change 
scenarios are necessary, at relevant 
resolution, for resource management and can 
provide the framework for local detailed 
process models
– Streamflow

– Volume, timing, temperature, peaks
– Capacity to transport sediment

– Soil moisture
– Maximum and minimum air temperature
– Evapotranspiration
– Energy loading

• Distributions of water flow, snow accumulation 
and melt, soil conditions, and other 
environmental attributes under climate change 
scenarios are necessary, at relevant 
resolution, for resource management and can 
provide the framework for local detailed 
process models
– Streamflow

– Volume, timing, temperature, peaks
– Capacity to transport sediment

– Soil moisture
– Maximum and minimum air temperature
– Evapotranspiration
– Energy loading



California

Oregon

California

OregonRegional Hydrologic 
Modeling for Coastal 

Basins

Regional Hydrologic 
Modeling for Coastal 

Basins

Percent 
Decrease
Percent 
Decrease

< 10< 10
2020
3030
4040
5050
6060
7070
8080
9090
100100

• Provides a regional 
perspective for resource 
management

• Example of change in     
April 1st snowpack with     
+3 C air temperature

• Provides a regional 
perspective for resource 
management

• Example of change in     
April 1st snowpack with     
+3 C air temperature



CALIFORNIA

OREGON

KLAMATH RIVER BASIN

CALIFORNIA

OREGON

KLAMATH RIVER BASIN

Change in 
Snowfall

in Klamath River 
Basin with +3 C 
Air Temperature

Change in 
Snowfall

in Klamath River 
Basin with +3 C 
Air Temperature

Average Annual
Snowfall
Average Annual
Snowfall
(mm)(mm)

0 - 250 - 25

25 - 10025 - 100

100 - 150100 - 150

150 - 250150 - 250

250 - 350250 - 350

350 - 450350 - 450

450 - 600450 - 600

600 - 750600 - 750

750 - 900750 - 900

900 - 1,700900 - 1,700

Current
climate

+3C
climate



CALIFORNIA

OREGON

KLAMATH RIVER BASIN

CALIFORNIA

OREGON

KLAMATH RIVER BASIN

Change in April 1 
Snowpack

in Klamath River 
Basin

Change in April 1 
Snowpack

in Klamath River 
Basin

April 1
Snowpack
April 1
Snowpack
(mm)(mm)

0 - 250 - 25

25 - 10025 - 100

100 - 150100 - 150

150 - 250150 - 250

250 - 350250 - 350

350 - 450350 - 450

450 - 600450 - 600

600 - 750600 - 750

750 - 900750 - 900

900 - 1,700900 - 1,700

Current
climate

+3C
climate



0

10

20

30

40

50

60

70

80

90

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

First of each month

Sn
ow

fa
ll,

 m
m

Current climate
+3C

0

10

20

30

40

50

60

70

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

First of each month

Sn
ow

m
el

t, 
m

m

Current climate
+3C

Change in Snow: Klamath BasinChange in Snow: Klamath Basin

Snow fallSnow fall

SnowmeltSnowmelt



0

5

10

15

20

25

30

35

40

45

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

First of each month

R
ec

ha
rg

e,
 m

m

Current climate
+3C

0

10

20

30

40

50

60

70

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

First of each month

R
un

of
f, 

m
m

Current climate
+3C

RechargeRecharge

RunoffRunoff

Change in Water Availability: 
Klamath Basin

Change in Water Availability: 
Klamath Basin



Annual Potential Evapotranspiration Annual Potential Evapotranspiration 

California

Oregon

California

Oregon

California

Oregon

California

Oregon

(mm/yr)(mm/yr)
250 - 800250 - 800
800 - 900800 - 900
900 - 1,000900 - 1,000
1,000 - 1,1001,000 - 1,100
1,100 - 1,2001,100 - 1,200

1,200 - 1,3001,200 - 1,300
1,300 - 1,4001,300 - 1,400
1,400 - 1,5001,400 - 1,500
1,500 - 1,6001,500 - 1,600
1,600 - 1,9951,600 - 1,995

Percent increasePercent increase
13 - 1413 - 14
12 - 1312 - 13
11 - 1211 - 12
10 - 1110 - 11
9 - 109 - 10
8 - 98 - 9

7 - 87 - 8
6 - 76 - 7
5 - 65 - 6
4 - 54 - 5
3 - 43 - 4
2 - 32 - 3

Current
climate

+3C
climate



California

Oregon

California

Oregon

(mm/yr)(mm/yr)
< 0.01< 0.01
0.1 - 10.1 - 1
1 - 51 - 5
5 - 105 - 10
10 - 2010 - 20
20 - 3020 - 30
30 - 4030 - 40
40 - 5040 - 50
50 - 7550 - 75
75 - 10075 - 100
100 - 200100 - 200
200 - 300200 - 300
300 - 500300 - 500
500 - 750500 - 750
750 - 1,200750 - 1,200
> 1,200> 1,200

Generation of Annual RunoffGeneration of Annual Runoff

Current
climate

California

Oregon

California

Oregon

(mm/yr)(mm/yr)
690 - 250690 - 250

250 - 100250 - 100

100 - 25100 - 25

25 - -2525 - -25

-25 - -100-25 - -100

-100 - -250-100 - -250

-250 - -505-250 - -505

increaseincrease

decreasedecrease+3 C air
temp



OutlineOutline

• Regional model description
• Current climate in California 

coastal basins
• Application of downscaled future 

climate scenarios to California 
coastal basins

• Regional model description
• Current climate in California 

coastal basins
• Application of downscaled future 

climate scenarios to California 
coastal basins



Recharge and RunoffRecharge and Runoff
• Basin Characterization Model (BCM)

– run in FORTRAN
– uses grid-based data at any DEM resolution
– calculates in-place recharge or generated runoff

• Potential evapotranspiration (Priestley-Taylor)
– solar radiation modeled using topographic 

shading and cloudiness
– vegetation density

• Snow accumulation and melt based on NWS 
Snow-17 Model

• Soils (STATSGO): hydraulic properties and 
depth determine soil storage

• Geology (state maps) is used to estimate 
bedrock permeability
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Average Streamflow
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Change in Streamflow: Current to Future
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SummarySummary
• Climate change projections were 

downscaled to ecologically relevant 
scales and scenario GFDL-A2 was 
translated to hydrologic variables for 
gaged and ungaged basins for all 
California coastal basins

• Projected streamflow differed among 
northern and southern basins
– Northern basins generally had less average 

flow with increased variability later in the 
century

– Central basins generally had more average 
flow and variability early in the century and 
less average flow and variability late

– Southern basins had more average flow 
and more variability
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Potential Application of Regional 
Modeling to Ecologic Resources
Potential Application of Regional 
Modeling to Ecologic Resources

• Region-wide monthly distributions of
– natural streamflow and timing
– snowmelt and timing
– air temperature
– potential evapotranspiration
– soil moisture

• Changes in monthly flows along with soil type, 
conditions, and slope, could provide indications 
of vulnerability to sediment transport

• Timing of temperature and moisture conditions 
can be applied to potential changes in plant 
distributions, forest health, and vulnerability to 
wildfire

• Regional hydrologic conditions can be applied to 
ecological assessments such as ELOHA, 
describing the baseline conditions for the 
“hydrologic foundation” for environmental flows
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• Downscaling of additional climate 
projections

• Calibration of water-balance model to 190 
ungaged basins in California

• Application to various ground-water 
models throughout California and 
integration with Modflow

• Refinement of water-balance model
– daily time scale

• applicable to environmental flows
• applicable to sediment transport

– seasonality in vegetation density
• could also include temporal variation 

associated with regional distributions or 
wildfire

– variation in future potential evaporation
– solar radiation component to snow melt

• DWR model (Snow-17) is based on air 
temperature only and don’t reflect variation 
due to topographic shading from low sun 
angle when snow melt occurs earlier in the 
season due to warming

– refinement of input data such as SSURGO 
soil data and fine-scale geologic mapping
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Ongoing WorkOngoing Work




