Ocean Acidification: The Other CO₂ Problem

Richard A. Feely
NOAA/Pacific Marine Environmental Laboratory
January 30, 2009

With special thanks to: James Orr, Victoria Fabry, Carol Turley, Chris Sabine, Joanie Kleypas, Kitack Lee, and Simone Alin
What we know about the ocean chemistry of ...saturation state

\[CO_2 + CO_3^{2-} + H_2O \Leftrightarrow 2HCO_3^- \]

Saturation State

\[\Omega_{\text{phase}} = \frac{[Ca^{2+}][CO_3^{2-}]}{K_{sp,\text{phase}}} \]

\[Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \]

calcium carbonate calcium carbonate

\(\Omega > 1 = \text{precipitation} \)
\(\Omega = 1 = \text{equilibrium} \)
\(\Omega < 1 = \text{dissolution} \)
What we know about ocean CO$_2$ chemistry ... from field observations

WOCE/JGOFS/OACES Global CO$_2$ Survey

~72,000 sample locations collected in the 1990s
DIC ± 2 µmol kg$^{-1}$
TA ± 4 µmol kg$^{-1}$

What we know about ocean CO$_2$ chemistry... from observed shoaling saturation horizons

The aragonite and calcite saturation horizons have shoaled towards the surface of the oceans due to the penetration of anthropogenic CO$_2$ into the oceans.

Feely et al. (2004)
What we know about ocean CO$_2$ chemistry...from observed aragonite and calcite saturation depths
Natural processes that could accelerate the ocean acidification of coastal waters

- Coastal Upwelling
NACP West Coast Survey Cruise: 11 May - 14 June 2007
and mooring locations
The ‘ocean acidified’ corrosive water was upwelled from depths of 150-200 m onto the shelf and outcropped at the surface near the coast.

Vertical sections from Line 5 (Pt. St. George, California)

Feely et al. (2008)
Mesocosm experiment, Bergen
Pelagic Ecosystem CO₂ Enrichment Study

Three pCO₂ treatments representing:
Glacial, Present, and Year 2100

Large Scale Mesocosm Facility, University of Bergen, Norway

from U. Riebesell & B. Rost
Coccolithophore (single-celled algae)

Manipulation of CO$_2$ system by addition of HCl or NaOH

Emiliania huxleyi

pCO_2 280-380 ppmv

pCO_2 780-850 ppmv

Calcification decreased
- 9 to 18%
- 45%

Malformed liths at high CO$_2$

Riebesell et al.(2000); Zondervan et al.(2001)

Gephyrocapsa oceanica
Shelled Pteropods
(planktonic snails)

Respiratory CO_2 forced $\Omega_A < 1$
Shells of live animals start to dissolve within 48 hours

- Whole shell: $\textit{Clio pyramidata}$
- Arag. rods exposed
- Prismatic layer (1 μm) peels back

Aperture (~7 μm): advanced dissolution
Normal shell: no dissolution

Orr et al. (2005)
Response of mussels & oysters to elevated CO\textsubscript{2}

Decrease in calcification rates for the 2 species:

\textit{Mytilus edulis}
\textit{Crassostrea gigas}

\begin{itemize}
 \item Significant with pCO_2 increase and $[CO_3^{2-}]$ decrease
 \item At pCO_2 740 ppmv:
 \begin{itemize}
 \item 25% decrease in calcification for mussels
 \item 10% decrease in calcification for oysters
 \end{itemize}
\end{itemize}

Gazeau et al., 2007
Ecologically and economically important organisms with planktonic larval stages

- **Bivalves**: clams, scallops, mussels, oysters
 - Valuable commercial fisheries
 - Mussels & oysters: ecosystem engineers

- **Echinoderms**: sea urchins, sea stars, sea cucumbers
 - Commercial fisheries: sea urchins & sea cukes
 - Sea stars: keystone species

- **Crustaceans**: shrimp, crabs, lobsters, copepods
 - Valuable commercial fisheries
 - Copepods: central role in marine food webs

Annual $2 Billion Dollar Industry
Potential Effects on Open Ocean Food Webs

Coccolithophores → Copepods → Pacific Salmon

Copepods

Pteropods

Vicki Fabry

ARCOD@ims.uaf.edu
What we know about the biological impacts of ocean acidification on marine fish

Research on Impacts of OA on Pacific Salmon

Predicted effect of climate change on pink salmon growth:

- 10% increase in water temperature leads to 3% drop in mature salmon body weight (physiological effect).
- 10% decrease in pteropod production leads to 20% drop in mature salmon body weight (prey limitation).

(Aydin et al. 2005)
Scorecard of Biological Impacts

<table>
<thead>
<tr>
<th>Physiological process</th>
<th>Major group</th>
<th># species studied</th>
<th>Response to increasing CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coccolithophores</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Planktonic Foraminifera</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Molluscs</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Echinoderms</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tropical Corals</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Coralline Red Algae</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>Coccolithophores²</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Prokaryotes</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Seagrasses</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen Fixation</td>
<td>Cyanobacteria</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Reproduction</td>
<td>Molluscs</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Echinoderms</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1) Strong interactive effects with nutrient and trace metals availability, light, and temperature
2) Under nutrient replete conditions

Figure from Doney et al. (2009)
Conclusions

- Impacts of ocean acidification on ecosystems are largely unknown.
- Calcification in many planktonic organisms is reduced at elevated CO$_2$, but the response is not uniform.
- Possible responses of ecosystems are speculative but could involve changes in species composition & abundances - could affect food webs, biogeochemical cycles.
- Baseline data with sufficient resolution are lacking in regions where CaCO$_3$ saturation states are expected to decrease <1 over in next 50-100 years.