Life History and Ecology

Spotted owls are territorial and usually monogamous. Home-range sizes vary geographically, generally increasing from south to north (USFWS 1990b). Estimates of median size of their annual home range vary from 2,955 acres in the Oregon Cascades (Thomas et al. 1990) to 14,211 acres on the Olympic Peninsula (USFWS 1994a). Zabel et al. (1995) showed that spotted owl home ranges are larger where flying squirrels are the predominant prey and smaller where wood rats are the predominant prey. Home ranges of adjacent pairs overlap (Forsman et al. 1984; Solis and Gutiérrez 1990), suggesting that the defended area is smaller than the area used for foraging. The Service uses a circle of 0.7-mile radius (984 acres) from the activity center to delineate the most heavily used area during the nesting season. The portion of the home range used during the breeding season is smaller than that used in the remainder of the year (Forsman et al. 1984; Sisco 1990).

The spotted owl is relatively long-lived, has a long reproductive life span, invests significantly in parental care, and exhibits high adult survivorship relative to other North American owls (Forsman et al. 1984; Gutiérrez et al. 1995). Spotted owls are sexually mature at 1 year of age, but rarely breed until they are 2 to 5 years of age (Miller et al. 1985; Franklin 1992; Forsman et al. 2002). Breeding females lay one to four eggs per clutch, with the average clutch size being two eggs; however, most spotted owl pairs do not nest every year, nor are nesting pairs successful every year (USFWS 1990b; Forsman et al. 1984; Anthony et al. 2006). The small clutch size, temporal variability in nesting success, and delayed onset of breeding all contribute to the relatively low fecundity of this species (Gutiérrez 1996).

Courtship behavior usually begins in February or March, and females typically lay eggs in late March or April. The timing of nesting and fledging varies with latitude and elevation (Forsman et al. 1984). After they leave the nest in late May or June, juvenile spotted owls depend on their parents until they are able to fly and hunt on their own. Parental care continues after fledging into September (USFWS 1990b; Forsman et al. 1984). During the first few weeks after the young leave the nest, the adults often roost with them during the day. By late summer, the adults are rarely found roosting with their young and usually only visit the juveniles to feed them at night (Forsman et al. 1984).

Natal dispersal of spotted owls typically begins in September and October with a few individuals dispersing in November and December (Miller et al. 1997; Forsman et al. 2002). Natal dispersal occurs in stages, with juveniles settling in temporary locations between periods of more pronounced movement (Forsman et al. 2002; Miller et al. 1997). The median natal dispersal distance is about 10 miles for males and 15.5 miles for females (Forsman et al. 2002). Dispersing juvenile spotted owls experience high mortality rates, exceeding 70 percent in some studies. Known or suspected causes of mortality during dispersal include starvation, predation, and accidents.
experience high mortality rates, exceeding 70 percent in some studies (USFWS 1990b; Miller 1989). Known or suspected causes of mortality during dispersal include starvation, predation, and accidents (Miller 1989; USFWS 1990b; Forsman et al. 2002). Parasitic infection may contribute to these causes of mortality, but the relationship between parasite loads and survival is poorly understood (Hoberg et al. 1989; Gutiérrez 1989; Forsman et al. 2002).

Analysis of the genetic structure of spotted owl populations suggests that gene flow may have been adequate between the Olympic Mountains and the Washington Cascades, and between the Olympic Mountains and the Oregon Coast Range (Haig et al. 2001). Although telemetry and genetic studies indicate that close inbreeding between siblings or parents and their offspring is rare (Haig et al. 2001; Forsman et al. 2002), inbreeding between more distant relatives is fairly common (E. Forsman 2006 pers. comm.).

Spotted owls are mostly nocturnal, although they also forage opportunistically during the day (Forsman et al. 1984; Sovern et al. 1994). The composition of the spotted owl’s diet varies geographically and by forest type. Generally, flying squirrels are the most prominent prey for spotted owls in Douglas-fir and western hemlock forests (Forsman et al. 1984) in Washington and Oregon, while dusky-footed wood rats are a major part of the diet in the Oregon Klamath, California Klamath, and California Coastal Provinces (Forsman et al. 1984, 2001, 2004; Ward et al. 1998; Hamer et al. 2001). Depending on location, other important prey include deer mice, tree voles, red-backed voles, gophers, snowshoe hare, bushy-tailed wood rats, birds, and insects, although these species comprise a small portion of the spotted owl diet (Forsman et al. 1984, 2004; Ward et al. 1998; Hamer et al. 2001).

Effects to spotted owls from barred owls are described above in Listing Factor E.

Habitat Characteristics

Forsman et al. (1984) reported that spotted owls have been observed in the following forest types: Douglas-fir, western hemlock, grand fir, white fir, ponderosa pine, Shasta red fir, mixed evergreen, mixed conifer hardwood (Klamath montane, Marin County), and redwood. In addition, spotted owls in Marin County, California use Bishop pine forests and mixed evergreen-deciduous hardwood forests. The upper elevation limit at which spotted owls occur corresponds to the transition to subalpine forest, which is characterized by relatively simple structure and severe winter weather (Forsman 1975; Forsman et al. 1984).

Spotted owls generally rely on older forested habitats (Carroll and Johnson In Press) because such forests contain the structures and characteristics required for nesting, roosting, and foraging. Features that support nesting and roosting typically include a moderate to high canopy closure (60 to 90 percent); a multi-layered, multi-species canopy with large overstory trees (with diameter at breast height [dbh] of greater than 30 inches); a high incidence of large trees with various deformities (large cavities, broken tops, mistletoe infections, and other evidence of decadence); large snags; large accumulations of fallen trees and other woody debris on the ground; and sufficient open space below the canopy for spotted owls to fly (Thomas et al. 1990). Forested stands with
high canopy closure also provide thermal cover (Weathers et al. 2001) and protection from predators.

Foraging habitat generally has attributes similar to those of nesting and roosting habitat, but such habitat may not always support successfully nesting pairs (USFWS 1992b). Dispersal habitat, at a minimum, consists of stands with adequate tree size and canopy closure to provide protection from avian predators and at least minimal foraging opportunities (USFWS 1992b). Forsman et al. (2002) found that spotted owls could disperse through highly fragmented forest landscapes, yet the stand-level and landscape-level attributes of forests needed to facilitate successful dispersal have not been thoroughly evaluated (Buchanan 2004). Therefore, a more complete description of dispersal habitat may be determined in the future. There is little evidence that small openings in forest habitat influence the dispersal of spotted owls, but large, non-forested valleys such as the Willamette Valley apparently are barriers to both natal and breeding dispersal (Forsman et al. 2002). The degree to which water bodies, such as the Columbia River and Puget Sound, function as barriers to dispersal is unclear, although radio telemetry data indicate that spotted owls move around large water bodies rather than cross them (Forsman et al. 2002).

Recent landscape-level analyses in portions of Oregon Coast and California Klamath Provinces suggest that a mosaic of late-successional habitat interspersed with other seral conditions may benefit spotted owls more than large, homogeneous expanses of older forests (Zabel et al. 2003; Franklin et al. 2000; Meyer et al. 1998). In Oregon Klamath and Western Oregon Cascade Provinces, Dugger et al. (2005) found that apparent survival and reproduction was positively associated with the proportion of older forest near the territory center (within 730 meters) (2,395 feet). Survival decreased dramatically when the amount of non-habitat (non-forest areas, sapling stands, etc.) exceeded approximately 50 percent of the home range (Dugger et al. 2005). The authors concluded they found no support for either a positive or negative direct effect of intermediate-aged forest—that is, all forest stages between sapling and mature, with total canopy cover greater than 40 percent—on either the survival or reproduction of spotted owls. It is unknown how these results were affected by the low habitat fitness potential in their study area, which Dugger et al. (2005) stated was generally much lower than those in Franklin et al. (2000) and Olson et al. (2004), and the low reproductive rate and survival in their study area, which they reported were generally lower than those studied by Anthony et al. (2006). Olson et al. (2004) found that reproductive rates fluctuated biennially and were positively related to the amount of edge between late-seral and mid-seral forests and other habitat classes in the central Oregon Coast Range. Olson et al. (2004) concluded that their results indicate that while mid-seral and late-seral forests are important to spotted owls, a mixture of these forest types with younger forest and non-forest may be best for spotted owl survival and reproduction in certain parts of the range.
While the effects of wildfire on spotted owls and their habitat vary, in the fire-adapted portions of the spotted owl’s range, low- to moderate-severity fires may contribute to this mixture of habitats. Bond et al. (2002) examined the demography of the three spotted owl subspecies after wildfires, in which wildfire burned through spotted owl nest and roost sites in varying degrees of severity. Post-fire demography parameters for the three subspecies were similar or better than long-term demographic parameters for each of the three subspecies in those same areas (Bond et al. 2002). In a preliminary study conducted by Anthony and Andrews (2004) in the Oregon Klamath Province, their sample of spotted owls appeared to be using a variety of habitats within area of the Timbered Rock fire, including areas where burning had been moderate. In 1994, the Hatchery Complex fire burned 17,603 hectares in the Wenatchee National Forest in Washington’s eastern Cascades, affecting six spotted owl activity centers (Gaines et al. 1997). Spotted owl habitat within a 2.9 1.8 mile of the activity centers was reduced by 8 to 45 percent (mean = 31 percent) as a result of the direct effects of the fire and by 10 to 85 percent (mean = 55 percent) as a result of delayed mortality of fire-damaged trees and insects. Direct mortality of spotted owls was assumed to have occurred at one site, and spotted owls were present at only one of the six sites 1 year after the fire. In 1994, two wildfires burned in the Yakama Indian Reservation in Washington’s eastern Cascades, affecting the home ranges of two radio-tagged spotted owls (King et al. 1997). Although the amount of home ranges burned was not quantified, spotted owls were observed using areas that burned at low and medium intensities. No direct mortality of spotted owls was observed, even though thick smoke covered several spotted owl site-centers for a week. It appears that, at least in the short term, spotted owls may be resilient to the effects of wildfire—a process they have evolved with. More research is needed to further understand the relationship between fire and spotted owl habitat use.

Spotted owls may be found in younger forest stands that have the structural characteristics of older forests or retained structural elements from the previous forest. In redwood forests and mixed conifer-hardwood forests along the coast of northwestern California, considerable numbers of spotted owls also occur in younger forest stands, particularly in areas where hardwoods provide a multi-layered structure at an early age (Thomas et al. 1990; Diller and Thome 1999). In mixed conifer forests in the eastern Cascades in Washington, 27 percent of nest sites were in old-growth forests, 57 percent were in the understory reinitiation phase of stand development, and 17 percent were in the stem exclusion phase (Buchanan et al. 1995). In the western Cascades of Oregon, 50 percent of spotted owl nests were in late-seral/old-growth stands (greater than 80 years old), and none were found in stands of less than 40 years old (Irwin et al. 2000).

In the Western Washington Cascades, spotted owls roosted in mature forests dominated by trees greater than 50 centimeters (19.7 inches) dbh with greater than 60 percent canopy closure more often than expected for roosting during the non-breeding season. Spotted owls also used young forest (trees of 20 to 50 centimeters (7.9 inches to 19.7

1 Fire severity is defined in several ways. See the individual studies cited for further information on the definitions of fire severity.
inches) dbh with greater than 60 percent canopy closure) less often than expected based on this habitat’s availability (Herter et al. 2002). In the Coast Ranges, Western Oregon Cascades and the Olympic Peninsula, radio-marked spotted owls selected for old-growth and mature forests for foraging and roosting and used young forests less than predicted based on availability (Forsman et al. 1984; Carey et al. 1990; 1992; Thomas et al. 1990). Glenn et al. (2004) studied spotted owls in young forests in western Oregon and found little preference among age classes of young forest.

Habitat use also is influenced by prey availability. Ward (1990) found that spotted owls foraged in areas with lower variance in prey densities (that is, where the occurrence of prey was more predictable) within older forests and near ecotones of old forest and brush seral stages. Zabel et al. (1995) showed that spotted owl home ranges are larger and smaller where flying squirrels and wood rats, respectively, are the predominant prey.