What Is Causing Unusual Flooding in Back Bay?

THE ISSUE: Several Virginia Beach residents have expressed concern to the U.S. Fish and Wildlife Service (Service) that the weirs at Lake Tecumseh are responsible for flooding in the Ocean Lakes subdivision, Sandbridge Road, and Muddy Creek Road in the area of Beggars Bridge Creek. These residents were certain the weirs were increasing the duration and frequency of flooding while other residents replied this was normal flooding that had been observed before during their lifetime. The Service has not received any reports of flooding from homeowners living directly adjacent to the impounded waters behind the weirs where flooding effects, if caused by the weir, would be expected to be most pronounced. Other residents consider the flooding an act of nature due to variable weather patterns and the weather in 2011, which was characterized by extremes in many parts of the U.S. with record flooding, drought, tornados, earthquakes, and fires. In response to resident’s concerns we reviewed the 2004 flood study conducted for the proposed establishment of the weirs, consulted the Service’s regional hydrologist, analyzed weather data and pre and post weirs water level data collected in the lake, and requested an environmental statistician analyze multiple years of data to determine if a correlation exists between wind and water levels in Back Bay.

Service monitoring data indicates 112 days that water levels were at or above an elevation of 1.3 feet during 2011 (reference datum NAVD88). This represents an additional 91 days of flooding when compared to the annual average of 21 days per year recorded between 2008 and 2010. Elevation 1.3 was chosen because it is the approximate level at which water flows into the lake from Asheville Bridge Canal and at which the banks of the canal in Ocean Lakes subdivision begin overtopping. Water levels in Back Bay appear to rise and fall in response to wind speed and direction. Water levels usually rise when winds blow from the south and fall when winds shift around to the north. Thus, most high water events occur during the spring and summer months. Service monitoring data indicate the highest water levels in Back Bay occur between April and September.

PRE-SITE FLOOD STUDY: The 2004 flood study was conducted by the U.S. Geological Survey (USGS) using the City of Virginia Beach stormwater model. The City’s model has been used for over 20 years to predict changes in flooding due to development or other physical changes in the watershed. The model was revised in 2003 and is utilized in the permitting and site plans of most contemporary subdivisions and development in Virginia Beach. The model predicts flood elevations from rainfall, runoff, and hydraulic conditions that include free-surface and pressure flow, hydraulic structures, tidal conditions, and storage. The USGS 2004 study examined the effect on the 2, 10, 25, 50, 100, and 500 year storm peak water surface elevations as a result of placing a tide gate (weir) on Asheville Bridge canal or a weir on Lake Tecumseh. The canal location was examined to determine if flooding in neighborhoods north of the tide gate could be alleviated by excluding incoming wind tides while allowing drainage out to the south to continue. The study included three “runs” or scenarios of the model: a baseline or existing condition (no weir), a weir on the canal, and a weir on Lake Tecumseh. Based upon the results the USGS hydrologists concluded, “The proposed structures have little effect on modeled water-surface elevations because Lake Tecumseh, an adjacent pond, and the wetlands on the southeast side of the lake provide sufficient
storage for runoff. During runoff events, water flows into the lake from Canal 1 and from the system upstream of the lake. When the water level in the lake is high enough, the lake discharges into the pond and the wetlands, which keeps the water from backing up throughout much of the system. Storage in the lake, pond, and wetlands mitigates flooding throughout the system. The effect of the lake, pond, and wetlands is to store water during the runoff event, thereby preventing flooding that would likely occur without this storage capacity.”

Similar conclusions were made by the City of Virginia Beach in 2010 using the same model and a letter of support for the weirs issued by the City Manager. The study is available on this web site.

EXPECTED FLOOD LEVELS: Regulations and manuals contain no known references for flood frequency and duration in Back Bay but elevations in standard specifications for design and regulation exist. For example, section 8.2c of the City of Virginia Beach Specifications and Standards Manual states the normal water elevation of Back Bay and creeks is 1 foot above mean sea level. One foot is the elevation of the weir. Section 8.5 states that drainage systems discharging into major canals, ditches or impoundments shall use the peak design year water surface elevation for the receiving facility. The City stormwater model predicts peak water surface elevation of Asheville Bridge Creek between Lake Tecumseh and Ocean Lakes subdivision to be 2.73 feet for a 2-year storm during a tide level of 2.0 feet. For regulatory purposes the Army Corps of Engineers and Virginia Marine Resources Commission specify ordinary high water to be 1.5 feet. For comparison our monitoring data indicates the average water elevation in Back Bay, between 2000 and 2010, ranged from 1.1 to 1.6 feet. In 2011 the average was 1.75 feet for 1,722 continuous measurements between June and December and peak floods were normally 2.3 to 2.6 feet above mean sea level. In comparison the Lake Tecumseh weir elevations at 1.0 feet are below ordinary, average, and peak flood elevations for Back Bay.

FLOOD STORAGE: The Service discussed the possibility of the weir contributing to the 2011 increase in flooding with a regional Service hydrologist. Two possibilities were discussed based upon comments by the public. One, the loss of storage from the lake caused the bay level to rise and increase flooding. The other was the loss of storage redirected tidal surges moving up Asheville Bridge canal to the Ocean Lakes subdivision and caused increased flooding within the City’s flood easement.

The hydrologist stated that it was not possible for the weirs to cause flooding in the bay, especially in the area of Beggars Bridge Creek, an area approximately 7 miles from and downstream of the weirs. He stated there are too many other factors responsible for flooding in this area and too great a distance between the sites for the weirs to be considered a significant cause.

Additionally, on an area basis Lake Tecumseh occupies a relatively small 261 acres in comparison to the 25,600 acre (40 square mile) Back Bay estuary. The lake represents 0.5% of the bay’s flood storage on a volumetric basis. This amount is insufficient to account for the flooding experienced in 2011. Furthermore, once the weirs are overtopped water can access storage provided by adjacent wetlands, the lake, and canals as concluded in the USGS 2004 flood study.
In the area of Ocean Lakes the hydrologist stated it was conceivable that, due to the weirs holding the lake partially full, water levels in the canal would rise faster during an incoming tide and fall faster during an outgoing tide. Once the weir was overtopped and Lake Tecumseh began accepting incoming flow, water levels would rise more slowly. This occurs at approximately the same elevation that the canal banks begin overflowing in Ocean Lakes subdivision. Because the weir is normally overtopped and the lake allowed to absorb flood waters the maximum or ordinary high water mark is not changed or exceeded because of the weirs.

Some recipients considered the hydrologists statements to mean that all the water that once flowed into the lake during an incoming tide prior to the weirs now flowed directly to Ocean Lakes and was responsible for longer floods and higher flood levels. To test this the Service performed a simple calculation to determine flood levels if the excluded volume of lake storage resided in the Ocean Lakes drainage easement and stormwater ponds instead. We concluded this would cause up to a 6 foot rise in flood levels within Ocean Lakes. Because the storage of the easement is half that of the lake we calculated that flood levels would rise 2 feet in the easement for every 1 foot of lake water transferred. Because flood levels have not risen close to this magnitude since the weir was established this transfer of water from one place to another is not plausible. Note the hydrologist stated this water budget accounting oversimplified the hydraulics of the system. In fact, there must be more available storage than accounted for here and the controls on the system limit inflowing water to prevent these extreme high water levels from occurring.

TIDAL SURGES in OCEAN LAKES: How much faster do tides potentially rise in Ocean Lakes due to the weir? To answer this the Service examined how fast tides rose in the lake prior to the weir. Between 2008 and 2010 our water level monitoring device recorded on average 30 floods per year, 15 of these resulting in maximum or near maximum peak floods. One of the largest floods recorded had a total rise of 2.8 feet (from -0.2 feet to 2.6 feet) over a period of 10.1 days at the rate of 0.01 feet per hour. After rising for 3.75 days we estimate it overtopped the banks of the canal and began flooding the Ocean Lakes drainage easement and continued to do so for another 6.35 days until reaching maximum depth. The flood lasted an additional 13.6 days before the easement began draining for a total flood period of 20 days. The lake was absorbing flood water during the overbank period leaving the first 3.75 days of the flood or 37% of the time for the weir to potentially speed up the rise of the incoming tide.

Assuming the rise in tide in Ocean Lakes subdivision was doubled by the weir, an incoming tide would overtop banks in 1.9 days instead of 3.75. Multiplying 1.9 by the 10 incoming tidal floods recorded in 2011 after the weir was established results in an additional 19 days of flooding in 2011. What we actually recorded was an increase of 91 days of flooding in 2011. Eighteen of those days occurred by the end of May. Even if the incoming tide was increased to the maximum extent possible, that is the tide rose instantaneously rather than over a period of days, a 37.5 day increase in floods (3.75 days x 10 floods) could be expected which is far less than the 91 days actually recorded. Thus, it does not appear plausible the weir was responsible for the increase in flooding during 2011 when comparing the possible increase in flooding to the actual increase in the number of days flooded.
CONCLUSION: In the absence of other explanations, the Service considers increases in the frequency and duration of floods during the spring and fall of 2011 the result of extremely active weather that produced more rain and southerly winds than recent records. According to the National Weather Service, 2011 was the second wettest year on record in Hampton Roads since record keeping began in 1881 (rainfall recorded at Norfolk International Airport (NIA). However, Oceana Naval Air Station recorded less rainfall totals than NIA. Furthermore, between April and May of 2011 there were 22% more days that winds blew from the south than in 2010 and more days of southerly wind than in any of the past 4 years. Several local residents that have lived in the Back Bay area over the past 45 years report severe flooding does occur occasionally and flooding like that experienced in 2011 has happened before.

We recorded 112 days of flooding when the average for the previous three years had been 21 days per year. The weirs were submerged during these floods, sometimes under more than 1 foot of water. Hydrologists state that submerged weirs have no influence on flood level. We believe the flood studies were correct and the weirs have not raised flood elevations. We will continue to monitor the situation and appreciate comments and observations from residents living in the watershed.

All calculations used in these determinations are available upon request. A report from the environmental statistician is pending.