The Horseshoe Crab

Limulus polyphemus

A Living Fossil

A Primitive Ancient Creature
Horseshoe crabs are evolutionary survivors that have remained relatively unchanged in appearance for 350 million years. The horseshoe crab is not actually a true crab, but a member of an ancient group of arthropods, closely related to spiders and scorpions. There are four species of horseshoe crabs around the world and only one in North America. The species in North America is the most abundant in the world and ranges on the Atlantic coast from Maine to the Yucatan Peninsula.

Amazing Spectacle
In the late spring and early summer, horseshoe crabs arrive on the beaches en masse to lay their eggs. The peak of spawning on the Atlantic coast occurs in Delaware Bay where thousands of crabs will arrive on the sandy beaches in May and June. Delaware Bay provides an excellent spawning area for crabs because the sandy beaches are protected from harsh wave action. The beaches’ sand and pebble mixture is perfect for incubating horseshoe crab eggs.

Crabs arrive on the spawning beaches during the high tides of full and new moons when the water rises highest on the beach.

When the female is ready to lay her eggs, she crawls up to the high water line on the beach with a male attached to her. The male clasps onto the female’s shell with a modified pair of claws. The female drags him around during the spawning process. In addition to the attached male, several other males may also attempt to fertilize the female’s eggs by arranging themselves on and around the spawning couple during the egg-laying process. A female may have five or more males attempting to mate with her in a single egg-laying episode.

During spawning, the female crab partially buries herself in the sand while she deposits a cluster of about 4,000 tiny green eggs. In an evening of egg laying, a female crab can lay several egg clusters, and she may spawn repeatedly over several nights to lay 100,000 or more eggs.

New Life Beginning
The eggs will hatch within two to four weeks. The larvae will emerge from the sandy beaches and enter the water during a high tide nearly a month later. The larvae look like miniature adult horseshoe crabs without tails.

After hatching, horseshoe crabs spend their first few years of life on the tidal flats and move out farther from shore as they get older. Adults spend the winter in deep bay waters and off-shore areas. As spring approaches, the crabs move en masse toward the beaches to prepare for spawning.

Since horseshoe crabs have a hard shell, they must molt to grow. Horseshoe crabs will molt at least six times in their first year of life and about 18 times before they reach sexual maturity. Females are generally larger than males and may molt more than males to reach the larger size. Once crabs are sexually mature, which takes at least nine years, they won’t shed their shells again. When the male crab completes his final molt, his first set of claws becomes modified into a boxer-glove shape that he uses to clasp onto a female for spawning. Adult crabs may live another eight to 10 years, making the total lifespan of a horseshoe crab as long 20 years.

Physical Characteristics
The horseshoe crab has a unique and primitive body structure. The body is composed of three parts: the prosoma (head), opisthosoma (central area) and telson (tail). The horseshoe crab’s name is derived from the prosoma, resembling the shape of a horse’s shoe. The telson helps the crab to flip itself over if waves on the beach turn it over. As dangerous as the telson may look, it is not venomous or used as a weapon by the crab.

Horseshoe crabs have several pairs of eyes. Two large compound eyes on the prosoma are sensitive to polarized light and can magnify sunlight 10 times. A pair of simple eyes on the forward side of the prosoma can sense ultraviolet light from the moon. In addition, multiple eye spots are located under the prosoma, with more on the underside of the tail. Horseshoe crabs occasionally swim upside down and may once have used these eyes more than they do today.

Horseshoe crabs use book gills to get oxygen from the water. The parts of the gill are in small flaps resembling the pages of a book. If these primitive gills
can double its weight in less than two weeks by eating thousands of horseshoe crab eggs. Then they fly on to their spectacle in late May as these ravenously hungry birds start arriving. Each bird during mid to late May.

Horseshoe crab blood plays a vital role in human medicine. The straw-colored, copper-based blood turns blue when exposed to high concentrations of oxygen. Horseshoe crab blood contains primitive large blood cells called amoebocytes. A clotting agent called Limulus Amoebocyte Lysate is derived from the amoebocytes of the horseshoe crab. When the LAL comes in contact with bacterial toxins, a clotting reaction occurs. Pharmaceutical companies test the sterility of vaccines, drugs, prosthetics and other medical devices using LAL. Synthetic substitutes for the LAL test are being developed.

Horseshoe crab harvest and management

In the late 1800s and early 1900s, up to 4 million horseshoe crabs were harvested annually and used as fertilizer or animal food. Currently, crabs are harvested for bait in conch and American eel fisheries on the Atlantic Coast. Horseshoe crabs suffer a substantial increase in harvest in the 1990s that spurred the need for management on a coast-wide scale.

In 1998, the Atlantic States Marine Fisheries Commission, representing 15 states from Maine to Florida, developed a horseshoe crab management plan. The ASMFC plan and its subsequent addenda established mandatory state-by-state harvest quotas and created the 1,500-square-mile Carl N. Shuster Jr. Horseshoe Crab Sanctuary off the mouth of Delaware Bay.

Active management, as well as innovative bait conservation techniques have successfully reduced commercial horseshoe crab landings in recent years. Conch and eel fishermen have been using mesh bait bags in their traps, so they use only a portion of one crab per trap, compared to using a whole crab in each trap. The bait bags have reduced the demand for bait by 50 to 75 percent in recent years. Research is also being done to identify alternative baits for the conch and eel fisheries to further reduce the need for horseshoe crabs as bait.

Despite restrictive measures taken in recent years, populations are not showing immediate increases. Because horseshoe crabs do not breed until they reach nine or more years of age, it may take some time before the population measurably increases.

What the future holds

Unfortunately, we often learn the value of a species after its population is decimated. However, in the case of horseshoe crabs, we know their ecological role, importance to the biomedical industry and importance in the commercial fishery. We have the opportunity to manage and protect horseshoe crab populations at a sustainable level and also provide crabs for ecological and commercial uses now and in the future.

For additional information contact:
U.S. Fish & Wildlife Service
Delaware Bay Estuary Project
302/653 9152

U.S. Fish & Wildlife Service
Maryland Fishery Resources Office
410/263 2604
www.fws.gov/northeast/marylandfisheries

Federal Relay Service
for the deaf and hard-of-hearing
1 800/877 8339

U.S. Fish & Wildlife Service
1 800/344 WILD
http://www.fws.gov

September 2013