Differential Expression of Liver Regulatory Genes with Embryonic PCB Exposure

32nd Annual SETAC North America Meeting
Molecular Toxicology, Toxicogenomics, and Biomarkers
November 15th, 2011
Meredith Bohannon
University of Maryland

The opinions expressed in this presentation are those of the authors; the research does not represent the official position of the funding agency.
Background

- General Electric plants on Hudson River (HR)
- PCBs deposited into HR from 1940s until 1977 (PCBs banned) – 209K – 1.3M lbs dumped (EPA estimate)
- Superfund site
Background

- PCBs entered river as mixtures (Aroclors)
- Our study – mixture based on congener profile found in spotted sandpiper
- Interested in sublethal endpoints – gene expression
 - Looking for affected pathways
 - Looking for novel biomarkers
 - Whole-genome approach – Microarray
- Model animal – Japanese quail
- Liver as organ of interest
Japanese Quail

- Not as sensitive as chickens to toxic effects
 - LD50s (Head et al., 2008)
 - AhR Sequence (Head et al., 2008)
- Good model of endocrine system
- Conserved homology with chickens
Study Design and Methods

- Egg Collection, Injection, and Incubation
 - Incubated for 3 days prior to injection
- Tissue Collection
 - Livers collected at hatch
- RNA Extraction

<table>
<thead>
<tr>
<th>PCB Concentration (ng PCB/g)</th>
<th>TEQs (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6,000</td>
<td>0.79</td>
</tr>
<tr>
<td>12,000</td>
<td>1.6</td>
</tr>
<tr>
<td>49,000</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Study Design and Methods Cont’d

- Microarray Validation
 - Five species: Quail, American Kestrel, Tree Swallow, Domestic Turkey, and Domestic Duck

- Microarray Experiment
 - Quail females
 - N= 7 (Vehicle), 5 (Low), 2 (Medium), and 2 (High)
 - Statistics
 - Genes BLASTed against chicken genome
 - Cluster and Pathway Analyses

- qPCR
 - Males (n= 6 [untreated], 4, 2, 3, and 7)
 - Genes of interest from microarray experiment
Results - Microarray Validation

Del-Mar 14K Chicken Integrated System Microarray

- Neuroendocrine system: 5929
- Fat: 4800
- Liver: 2635
- Muscle: 2398
- Reproductive tract: 2008
- Quality control: 64

Data Generated by Tom E. Porter Lab, University of Maryland
Results - Microarray Validation

Species Comparison

Data Generated by Tom E. Porter Lab, University of Maryland
Results – Microarray Analysis

- SAS analysis of microarray data
 - One-way ANOVA for each spot
 - 285 spots on array were statistically significant
 - 159 spots had ≥ 8 samples represented – submitted to cluster analysis

- Cluster analysis (GeneCluster)
 - Finding similar expression profiles by allowing genes to cluster into self-organizing maps (SOMs)
Results – Cluster Analysis
Results – Pathway Analysis

- Biorag (www.biorag.org)
- 124 spots submitted
- 40 spots (i.e. genes) retained
- Many pathways returned with only a few genes in them, but several genes fell into a number of pathways, so...
Study 1 Results – Pathway analysis continued

- 7 broad categories of pathways were created

<table>
<thead>
<tr>
<th>Pathway Category</th>
<th># Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Damage/Repair and Tumor Regulation</td>
<td>4</td>
</tr>
<tr>
<td>Replication, Mitosis, Protein Synthesis, Gene Regulation, and Cell Cycle</td>
<td>12</td>
</tr>
<tr>
<td>Xenobiotic Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>Glycolysis, Gluconeogenesis, and Energy Balance</td>
<td>17</td>
</tr>
<tr>
<td>Protein Degradation and Proteosome Complex</td>
<td>7</td>
</tr>
<tr>
<td>Stress and Immunity</td>
<td>4</td>
</tr>
<tr>
<td>Cell Communication, Adhesion, Transport, and Signalling</td>
<td>13</td>
</tr>
</tbody>
</table>
Results – q PCR

Cytochrome P450 1A5

Normalized mRNA Levels

Untreated (n=5) Vehicle (n=4) Low (n=2) Medium (n=2) High (n=7)

PCB Treatment

A A AB AB B
Results - qPCR

Cytochrome B5

- Untreated (n=6)
- Vehicle (n=3)
- Low (n=2)
- Medium (n=2)
- High (n=5)

PCB Treatment

Normalized mRNA Levels

- A
- B
- C

(n=6) (n=3) (n=2) (n=2) (n=5)
Results - qPCR

Glutathione S Transferase

Normalized mRNA Levels

PCB Treatment

Untreated (n=5) Vehicle (n=3) Low (n=2) Medium (n=3) High (n=6)

A A ABC B C
Results - qPCR

GAPDH

<table>
<thead>
<tr>
<th>PCB Treatment</th>
<th>Normalized mRNA Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated (n=6)</td>
<td>AB</td>
</tr>
<tr>
<td>Vehicle (n=4)</td>
<td>A</td>
</tr>
<tr>
<td>Low (n=2)</td>
<td>AB</td>
</tr>
<tr>
<td>Medium (n=2)</td>
<td>AB</td>
</tr>
<tr>
<td>High (n=7)</td>
<td>B</td>
</tr>
</tbody>
</table>
Results - qPCR

Fructose Bisphosphate Aldolase B

Normalized mRNA Levels

PCB Treatment

Untreated (n=5)
Vehicle (n=4)
Low (n=2)
Medium (n=2)
High (n=7)
Results - qPCR

KDELR2

Normalized mRNA Levels

PCB Treatment

Untreated (n=5) Vehicle (n=4) Low (n=2) Medium (n=3) High (n=7)
Conclusions and Future Directions

- Genes can be detected by microarray and qPCR technologies
- Sex Difference?
- Many affected pathways
 - Can explore MOA and find new biomarkers
- Further studies:
 - Steroid metabolism and clearance
 - Other CYP450 genes
 - Endocrine disruption
 - Energy balance
Acknowledgements

- Mary Ann Ottinger Lab – Animal Sciences, UM
 - Emma Lavoie
- Tom Porter Lab – Animal Sciences, UM
- Larry Cogburn Lab – Animal Sciences, UD
- Doctoral Committee
- Funding Agency - USFWS

The opinions expressed in this presentation are those of the authors; the research does not represent the official position of the funding agency.