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Introduction ...outline

Global carbon cycle

Forest carbon
— Distribution and density

Climate uncertainty
— Sources
— Perspectives

Climate change and forests
— Benefits to forest productivity
— Deleterious effects on forest productivity
— Synthesis exercise (northern Wisconsin)



Global Carbon ...pools and cycles

Courtesy of NASA (modified)



Forest Carbon ...global density

Carbon density in live vegetation
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Forest Carbon ...global density
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Forest Carbon ...global trends

Regional carbon balance (MtCO,), 1855-2000.
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Forest Carbon ...US density

Average Carbon Density in the Forest Tree Pool in the Conterminous U.S. During 2005

Average Forest Tree
Carbon (1 G/ha)
1-45
N 46-71
B 72-99
N 100-289

Note: This graphic shows county-average carbon densities for live trees on forestland, including both above- and belowground biomass. These data
are based on the most recent forest inventory survey in each state.

EPA 2006




Forest Carbon ...US pools

FIGURE 6.
Forest Carbon Density by U.S. Region
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Forest Carbon ...Solls
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Forest Carbon ...Sseqguestration

US forests annually sequester the equivalent of 10% of US CO, emissions
from burning fossil fuels
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Climate uncertainty ...scenarios
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Climate uncertainty ...feedbacks

r Comprehensive Climate Model
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Climate uncertainty ...Ssimulations
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Climate uncertainty ...Ssimulations

Climate Model: CSIRO Emissions Scenario: B1
Percent Change in Precipitation
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Climate uncertainty ...Ssimulations
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Climate uncertainty ...Ssimulations

Climate Model: MIROC Emissions Scenario: A2

Change in Mean Seasonal Temperature
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Climate Change ...the positives

Increased forest productivity through:



Climate Change ...the positives

Increased forest productivity through:

* Longer growing seasons

McCarty 2001



Climate Change ...the positives

Increased forest productivity through:

* Longer growing seasons

— Evidence of phenological shifts
* Meta-analysis
* 677 species (>400 plant spp.)
« 87% shifted in direction expected by climate change

Parmesan and Yohe 2003




Climate Change ...the positives

Increased forest productivity through:

* Increased precipitation in some regions

IPCC 2007



Climate Change ...the positives

Increased forest productivity through:

* Increased precipitation in some regions

— Precipitation has increased in the 20t century
* Not a uniform increase!
* Wet areas have gotten wetter, and dry areas drier
* Increases in high latitudes
» Greater variability in equatorial regions

— Variabillity in future projections is very high

Dore 2005, IPCC 2007



Climate Change ...the positives

Increased forest productivity through:

* Increased precipitation in some regions

— Precipitation has increased in the 20t century
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Climate Change ...the positives

Increased forest productivity through:

» CO, fertilization



Climate Change ...the positives

CO, fertilization:

* Increased photosynthesis
oot e — More CO, in stomatal cavity
FTT_ ] — Greater RuBisCO activity
PR W e

» Increased carboxylation
|

» Decreased oxygenation

* Reduced stomatal conductance
— Increase in water use efficiency

« Potential increases in NPP
» Greater biomass (trees: 28%)
« Potential increases in soil inputs

H:0

glucose (CgH1208)

Ainsworth and Long 2005, Jones et al. 2005, Norby et al. 2005, Ainsworth and Rogers 2007




Climate Change ...the positives

Increased forest productivity through:

* Longer growing seasons
* Increased precipitation in some regions
» CO, fertilization



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization



Climate Change ...the negatives

Acclimation of CO, fertilization:

« Varies by species and site

* Nutrient deficiencies (especially N)

* Limited sink strength

« Sensitive to ozone pollution (mostly negative)

 Evidence increased NPP and biomass, but
limited evidence of long-term sequestration
— Old trees

— Wood growth and solil carbon - varies

Oren et al. 2001, Ainsworth and Long 2005, Jones et al. 2005, Norby et al. 2005, Ainsworth and Rogers 2007



Climate Change ...the negatives

Acclimation of CO, fertilization:

« Varies by species and site

* Nutrient deficiencies (especially N)

* Limited sink strength

« Sensitive to ozone pollution (mostly negative)

 Evidence increased NPP and biomass, but
limited evidence of long-term sequestration
— Old trees

— Wood growth and solil carbon - varies

- The fertilization effect may be transitory — photosynthesis
may not stay elevated, ecosystem carbon may not increase.

Oren et al. 2001, Ainsworth and Long 2005, Jones et al. 2005, Norby et al. 2005, Ainsworth and Rogers 2007



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization
 Extreme weather events



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

» Extreme weather events
— Wind storms and hurricanes
— |lce storms
— Heat waves and droughts
— Heavy precipitation
— “Events” are not well modeled

Ciais 2005, WMO 2007, IPCC 2007



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization
* Extreme weather events
* Longer growing seasons

IPCC 2007



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization
 Extreme weather events

* Longer growing seasons
— Altered timing of aquifer recharge

— Potential declines in summer seasonal stream
flow

— Increased drought stress in late summer

Dale et al. 2001, Huntington 2004



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization
* Extreme weather events

* Longer growing seasons

* Species range shifts



Climate Change

Species range shifts

Sugar maple (decline)
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Figures courtesy of Climate Change Atlas Lab



Climate Change ...the negatives

Species range shifts:

* Range shifts # instant catastrophic dieback

« Mature trees should fare better
— Developed root systems
— Greater carbohydrate reserves
« Stress factors will increase in severity

— Temperature
— Moisture
— Competition
* |Increased susceptibility to disturbance

Dale et al. 2001, Iverson et al. 2008



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

« Extreme weather events

* Longer growing seasons

» Species range shifts

 Expanded pest and disease ranges



Climate Change ...the negatives

Limits on forest productivity:

» Acclimation to CO, fertilization
« Extreme weather events

* Longer growing seasons

» Species range shifts

Expanded pest and disease ranges

— Pests migrating northward

— Accelerated lifecycles

— Decreased probability of lower lethal temperatures

Ayres and Lombardero 2000, Woods et al. 2005, Parmesan 2006




Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

* Extreme weather events

* Longer growing seasons

» Species range shifts

Expanded pest and disease ranges
Decreased snow pack and early thaw



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

« Extreme weather events

* Longer growing seasons

» Species range shifts

 Expanded pest and disease ranges

* Decreased snow pack and early thaw
— Early bud break and loss of cold hardening
— Frost damage during spring freezing

Ayres and Lombardero 2000, Hennon et al. 2006



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

* Extreme weather events

* Longer growing seasons

» Species range shifts

 Expanded pest and disease ranges

* Decreased snow pack and early thaw

* Increased frequency and intensity of fire



Climate Change ...the negatives

Increased frequency and intensity of fire:
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Figure 5-1. Ten-year averages of acres burned and number of fires (Source: Compiled from
National Interagency Fire Center 2007).

SAF 2008



Climate Change ...the negatives

Limits on forest productivity:

 Acclimation to CO, fertilization

« Extreme weather events

* Longer growing seasons

e Species range shifts

 Expanded pest and disease ranges

* Decreased snow pack and early thaw

* Increased frequency and intensity of fire
- Interactions between these limits are highly likely.




Climate Change, Forests, and Carbon

Climate is changing. Forests are adapting. What is our role?

Precipitation

Temperature Change — maybe.
CO, fertilization Stress — yes.
Extreme weather events

Longer growing seasons

Species range shifts

Expanded pest and disease ranges

Decreased snow pack and early thaw

Increased frequency and intensity of fire

Consider local species, trends, and landscape!



Synthesis exercise ...Wisconsin

Climate Change Response Framework Project

Northern Research Station Northern Institute of Applied Carbon Scier

Lead: Chris Swanston (also NIACS) Project Coordinator: Maria Janowiak
Collaborators: Rich Birdsey, Louis lverson, Sarah Collaborators: Leslie Brandt, Patricia Butler
Hines

University of Wisconsin-Madison

Cheguamegon-Nicolet National Forest Lead: David Mladenoff
Lead: Tony Erba (formerly Jeanne Higgins) .
Collaborators: Geoff Chandler, Linda Parker, Additional Collaborators
Matt St. Pierre, Suzanne Flory, Avery Dorland (Wisconsin Department of Nat. Res
Connie Chaney Wisconsin Initiative on Climate Change Impacts

. . . (WICCI)
Eastern Reqgion Reqgional Office

Lead: Tom Doane

Northeastern Area State and Private Forestry
Lead: Barbara Tormoehlen
Collaborators: Gina Childs, Sarah Hines




Synthesis exercise ...Wisconsin

« Risk will be greater in low diversity ecosystems
— Low species diversity

— Low functional diversity
» Reliance on saturated soils (e.g., lowland conifers)



Synthesis exercise ...Wisconsin

« Risk will be greater in low diversity ecosystems

« Disturbance will destabilize static ecosystems

— Low resilience
* Lowland conifers, lowland hardwoods, and hemlock



Synthesis exercise ...Wisconsin

« Risk will be greater in low diversity ecosystems
« Disturbance will destabilize static ecosystems

« Greater problems for species already in decline

— Mostly from reduced habitat suitability
* hemlock, white cedar, yellow birch, and white spruce



Synthesis exercise ...Wisconsin

* Risk will be greater in low diversity ecosystems
» Disturbance will destabilize static ecosystems
« Greater problems for species already in decline

* Resilience may be weakened in fragmented
ecosystems

— |Isolated fragments may not adapt as easily as continuous
areas

— Smaller patch sizes support less species and genetic
diversity
— Greater inhibition of dispersal



Synthesis exercise ...Wisconsin

« Risk will be greater in low diversity ecosystems
« Disturbance will destabilize static ecosystems
« Greater problems for species already in decline

* Resilience may be weakened in fragmented
ecosystems

* Further reductions in habitat will impact threatened,
endangered, and rare species

— Often rare due to specific habitat requirements or low
resilience



Synthesis exercise ...Wisconsin

* Risk will be greater in low diversity ecosystems
» Disturbance will destabilize static ecosystems
« Greater problems for species already in decline

* Resilience may be weakened in fragmented
ecosystems

* Further reductions in habitat will impact threatened,
endangered, and rare species

« Ecosystem changes will have significant effects on
wildlife

— Spruce grouse — dependent on black spruce, jack pine,
balsam fir



Synthesis exercise ...Wisconsin

« Risk will be greater in low diversity ecosystems
« Disturbance will destabilize static ecosystems
« Greater problems for species already in decline

* Resilience may be weakened in fragmented
ecosystems

* Further reductions in habitat will impact threatened,
endangered, and rare species

« Ecosystem changes will have significant effects on
wildlife

Key concept: Beware of generalities!

Consider local species, trends, and landscape!



Summary

Climate change and forests; the same old
stresses, but worse.

Future change is uncertain in severity, but
certainly coming.

We know enough to begin planning and
communicating...now.

Thank you!
RN, T s






