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What this document is 
 
◄ Back to contents 
 
  
 This document explains proposed 
methods for monitoring the Greater 
Yellowstone Ecosystem (GYE) grizzly bear 
population, and methods used to establish and 
monitor mortality limits. It is intended for land 
and wildlife managers, biologists, and members 
of the public who wish to understand both 
deliberations and proposals regarding past, 
present, and future monitoring of GYE grizzly 
bears. This document is a product of the 
Interagency Grizzly Bear Study team (Study 
team, hereafter). Funding for its production 
came from the USFWS, Grizzly Bear Recovery 
Office. 
 
Why this document exists 
 

In 2001, funding was obtained by the 
Study team to re-examine data and assumptions 
underlying existing protocols for i) estimating 
population size and trend for grizzly bears in the 
GYE, and ii) determining a sustainable 
mortality limit that federal and state agencies 
cannot exceed. This initiative resulted in a group 
of closely-related studies, and many have 
already been published in the peer-reviewed 
literature (e.g., Schwartz et al. 2006a), while 
others are ongoing as of this writing.   

The Study team did not, however, 
publish recommendations for revision of 
specific management protocols, because the 

process required both documentation and 
consideration by agency managers, politicians, 
and the general public. Instead, a group of 
biologists involved with data analysis and 
familiar with the requests from managing 
agencies for data and rule-sets, embarked on 
additional, post-publication analyses and 
discussions. The result of these considerations, 
which occupied various times during 2004 and 
2005, was a public document entitled 
“Reassessing methods to estimate population 
size and sustainable mortality limits for the 
Yellowstone grizzly bear” which was completed 
on August 31, 2005 (“Reassessing” hereafter). 
Public comments were requested on this 
“Reassessing” document.  In response to public 
comments on this document and to comments 
on the proposal to delist the Yellowstone grizzly 
population from protections under the 
Endangered Species Act in November, 2005, 
which in part relied on this “Reassessing” 
document, a Supplement to the “Reassessing” 
document was completed in December 2006.  
 A number of comments, from agencies, 
from scientists, and from the general public, 
were received that were related to the 
“Reassessing” document. Among those most 
relevant here is 
 

The highly complex scientific nature of 
the Reassessing Methods Document frustrates 
public comment and masks the significance of 
the proposed changes. If an agency seeks 
meaningful public comment, it must produce a 
document that the average person can 
understand. 
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The  “ ” document and its Reassessing
Supplement were written to be scientifically 
precise; in order to avoid excessive length, they 
were written assuming some background in 
wildlife ecology (and population dynamics and 
accompanying biometric methods in particular). 
The Study team believed (and continues to 
believe) that this was appropriate. However, we 
acknowledge that both documents contain highly 
technical language and can be difficult to follow. 
We would like to improve the understanding of 
our considerations and recommendations as much 
as possible. Thus, we believe the concern 
expressed above is legitimate and deserves some 
effort to resolve. Acknowledging that it may be 
difficult to know exactly what an “average 
person” can understand, this document is an 
attempt to provide a more easily read and 
understood document that still provides the 
important information. 
 
How this document works 
  There is a danger that as soon as one 
begins to simplify science or complex 
considerations, something will be lost (or worse 
yet, mis-stated). If the concern is that the 
significance of changes be masked, that would 
pale in significance to the potential that an overly 
simplified version might, inadvertently or not, 
focus on some aspects to the exclusion of others, 
and thus mislead rather than edify.  
 Our solution to that dilemma is to provide 
as objective as possible an overview of the 
various components of the “Reassessing” report 
in simple prose that assumes an intelligent and 
educated reader  — but not necessarily one with a 
recent graduate education in wildlife population 
dynamics. To enhance readability, we’ve 
attempted to keep this part of the document 
simple and flowing. Necessarily then, details are 

omitted. To rectify that, we provide additional 
details in various sections which are accessible 
via links. Clicking on a link will move you 
directly to the part of the document with more 
detail. To move back to the original place in the 
main document, click on the ◄ Back icon (if  
the link is to another location within the 
document), or on the  icon in your web browser
or use View-GoTo-Previous View (if the link is to a 
separate pdf document) in Reader 7.0 . Some sections 
are, in turn, provided with additional links which, 
when clicked, move the reader directly to source 
documentation (at which point, the reader is faced 
again with “highly complex scientific” writing). 
Terms defined in the glossary appear in green. Of 
course, you can also scroll back and forth as 
needed, or dispense with all the clicking and 
linking entirely and simply read the entire 
document. If really desperate, you can even print 
it out and read it the old-fashioned way, on paper!  
 It is also important to note that, while 
every attempt has been made here to include and 
reference the latest publications and thinking in 
regard to the important issue of monitoring the 
GYE grizzly bear populations and providing 
management recommendations regarding 
acceptable mortality, some research work is 
ongoing. The point is not to create an ever-
receding target, but rather to continually respond 
to deficiencies in data and analysis when that is 
possible, and to provide the best analyses and 
documentation we can.  
————————————————— 

While we recognize that most readers of 
this document will be doing so in the context of 
the proposal by USFWS in November 2005 to 
classify grizzly bears in the GYE as a distinct 
population segment and remove them from 
protection under the US Endangered Species Act, 
we emphasize that the monitoring protocols 
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we’ve considered and propose here are 
independent of that effort. Analyses and 
recommendations herein are relevant regardless 
of the administrative status of the grizzly bear in 
the GYE.  

 4. However, our new recommended 
protocols differ from that outlined in the 1993 
Recovery Plan in a number of ways that reflect 
increased understanding, new data, better 
analyses, and criticisms and suggestions from 
other scientists and the general public. Although 
we acknowledge that they contain weaknesses 
and cannot be equipped with a guarantee, we 
believe these new protocols are built on better 
science and represent a substantial improvement 
over the older ones. 

 
 

Summary and Management 
Recommendations 
 
◄ Back to contents 
 
 1. There is no single best way to estimate 
the population size of grizzly bears in the Greater 
Yellowstone Ecosystem (GYE), and certainly no 
inexpensive way to produce precise estimates. 
There will thus be some uncertainty attending any 
population monitoring and any attempt to develop 
mortality limits.  

 
 5. Principal changes from the older 
protocols to the new ones are: 
 a. They use a well-explored frequency-of-
capture model to estimate the total number of 
females with cubs present in the GYE each year, 
rather than simply using an unadjusted 
“minimum” count.  
 b. Rather than the ad-hoc method of 
summing these values over a 3-year period (to 
emulate the roughly 3-year cycle of reproduction 
in GYE grizzly bears), they use each year’s 
estimate of females with cubs. However, they use 
historical as well as current data as well as several 
statistical approaches (regression, information-
theoretic techniques, and model averaging) to 
refine the estimate of the number of females with 
cubs present in each year. 

 
 2. Our proposals here assume that 
continued demographic study of the GYE grizzly 
population (employing a sample of radio-collared 
animals) will continue. These studies provide 
crucial background and support for the 
monitoring protocols we recommend. 
  
 3. Much of the basis for our new protocols 
for estimating the number of grizzly bears in the 
GYE, and how much mortality they can absorb 
before declining, remains as identified in the 
1993 Grizzly Bear Recovery Plan. In particular, 
field observations of females with cubs of the 
year, subjected to objective criteria to best 
estimate how many unique individuals those 
observation represent, remain a core data 
requirement. In addition, demographic modeling 
provides the basis for estimates of sustainable 
mortality. 

 c. They use unbiased data from marked 
Yellowstone females to estimate the mean 
probability that an adult female will have cubs in 
any given year, and thus a new multiplier to 
estimate the total number of adult females. 
 d. They use newer demographic data to 
project the total number of bears of both sexes 
and all age-classes from these estimates of adult 
females. 
 e. Rather than mortality limits being 
applied only to human-caused mortality (which  
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often required determination of the cause of 
death), new mortality limits apply to all 
mortalities. 
 f. Like the older protocols, they assume 
that not all dead bears become known to agency 
personnel. However, rather than an ad-hoc, 
assumed number of unknown mortalities, the new 
protocols use Bayesian methods and data from 
radio-marked grizzly bears in the GYE to 
estimate the number of unknown and reported 
mortalities that occur yearly. 
 g. Mortality limits are based on newer, 
published demographic modeling which used 
GYE-specific data, and which avoided making 
critical assumptions that the previous model did. 
 h. A new protocol for interpreting trends 
and fluctuations in the resultant population 
estimations is provided, which uses information-
theoretic methods to distinguish between short-
term, inconsequential fluctuations, and a true 
change in the underlying population trajectory. 
 i. All values used in the new protocols 
have some type of standard error or confidence 
interval, allowing users some sense of their 
precision and reliability. 
 
◄ Back to contents 
 
Background 
 
◄ Back to contents 

 
This project began in 2000, following a 

review of the current methods used to estimate 
sustainable mortality and issues facing 
management of the GYE grizzly bear.  The Study 
team, in cooperation with the USFWS, prepared a 
series of proposals soliciting funding to address 
the following objectives:  (1) evaluate the 
unduplicated female rule set established by 

Knight et al. (1995), (2) explore and evaluate 
techniques to generate an annual estimate of adult 
females (>3 years of age) incorporating 
uncertainty, (3) explore and evaluate techniques 
to generate an annual estimate of total population 
size incorporating uncertainty, and (4) establish 
sustainable mortality limits based on recent 
demographic information from the GYE. 

Funding was obtained in fiscal year 2001.  
We established a demographics working group 
and began to address these issues.  Much of the 
demographics work identified was completed in 
2003 and published as Schwartz et al. 2006a. 
Further discussions were held February 1-4, 2005 
in Fort Collins, Colorado, March 23-25 and May 
11, 2005 in Bozeman, Montana, and June 19-21, 
2006 in Grand Teton National Park.  

 
———————————————————— 
 

The original Grizzly Bear Recovery Plan 
of 1982 recommended the development of 
population monitoring methods and the 
establishment of mortality thresholds for all bears 
in all “ecosystems” (USFWS 1982). The 1993 
revision of the Recovery Plan (USFWS 1993) 
adopted specific monitoring methods and 
population criteria specifically for the GYE: 

• A central repository for all 
observations of females with cubs of 
the year (Fcubs, hereafter) would be 
established, and standardized methods 
would be developed for distinguishing 
unique Fcubs from duplicate 
observations of a Fcubs already 
observed and recorded. The Recovery 
Plan then required that a minimum of 
15 Fcubs be documented over a running 
6-year average from the area including 
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the Recovery Zone and a buffer of 10-
miles immediately surrounding it; 

• To ensure adequate geographic 
distribution of the population (that is, 
to prevent a situation in which 15 Fcubs 
could be documented — and thus the 
criterion seemingly met — while large 
sections of the GYE were without 
reproductive females), 16 of the 18 
bear management units (BMUs, 
geographical units that had earlier 
been delineated) within the GYE had 
to be occupied by females with young 
(cubs, yearlings, or 2-year-olds) over a 
running 6-year sum of observations, 
and no 2 adjacent BMUs could be 
unoccupied;  

• A “minimum population estimate” 
would be developed, based on the 
most recent 3-year sum of 
unduplicated Fcubs. Known human-
caused mortality could not exceed 4% 
of this minimum population estimate. 
(This rule was amended in 2000 to 
include probable human-caused 

mortalities, and cubs accompanying 
both known and probable human-
caused female deaths as part of the 
tally of mortalities); 

• No more than 30% of these deaths (i.e., 
the 4% above) could be females;   

• These mortality limits could not be 
exceeded during any 2 consecutive 
years.   

Although formalized in the 1993 
Recovery Plan revision, science and knowledge 
continued to move along. There are points in time 
where it is appropriate to use newer data and 
analytical techniques to re-assess what had earlier 
been agreed, and by the early 2000s, it seemed 
that such a point had indeed been reached. Thus, 
the Study team began reviewing all the available 
demographic data, with the intent of determining 
if these criteria remained the best that could be 
produced, or if alternatively, there were better 
ones. The “Reassessing” document, Schwartz et 
al. 2006, and this document, are products of that 
effort. 
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The original (1993) protocols: a closer look 
 

◄ Back to contents 
 

 
 

Sum over 3 years because litters 
produced only ~ once/3 years 

Fcubs, estimated using 
rule set of Knight et 
al. 1995 

Multiply by 3.65 because adult 
females ~ 27.4% all bears 

Estimated total 
population size

Assumed 1 unknown 
death for each 2 
known 

Model indicated 
maximum human 
mortality for 
stability ~ 6% Mortality limit = 4% of 

estimated population 
size 

Illustration 1. Flow chart of the original (1993) protocol for estimating the number of grizzly bears in the 
GYE and limits to mortality. Fcubs = females with cubs of the year. 

 
 
◄ Back to contents 
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Counting females with cubs of the 
year (Fcubs) 
 
◄ Back to   
 
 It has long been recognized that any kind 
of population estimation for grizzly bears is very 
difficult to obtain. In earlier years of the 
Yellowstone research and monitoring effort, it 
had, however, been noted that bears were 
occasionally observed, and that by careful parsing 
of some of these observations, it might be 
possible to estimate which observations 
represented the same individuals and which not. 
Bears are not individually recognizable in general, 
but adult females possess one characteristic that 
other bears do not: they sometimes have cubs, 
sometimes yearlings, sometimes older offspring, 
and sometimes no offspring at all. Further, litter 
sizes vary from 1 to 3. These characteristics, 
combined with dates and locations, allowed the 
beginnings of a rule set to differentiate duplicate 
observations of a particular animal from 
observations of unique animals. From this 
protocol, an estimate of the number of females 
with cubs of the year (Fcubs) could be generated 
each year.  

The rule set ultimately developed 
acknowledged that there could be two kinds of 
error in categorizing such observations: 1) 
observations that were really of the same animal 
could erroneously be considered those of 2 or 
more animals, and 2) observations of 2 or more 
animals could erroneously be considered the 
same animal. The rule set developed was 
designed to make errors of the 1st kind rare, even 
if it made errors of the 2nd kind more common. It 
is in this sense that members of the Study team 
considered it “conservative” (i.e., more likely to 

undercount than to overcount; it is probably not 
accurate, however, to call it a “minimum”). More 
details on how this was ultimately formalized can 
be found by clicking here. Note that it was never 
claimed or believed that every single female with 
cubs in that year would be observed or reported.  

Adult female grizzly bears do not produce 
cubs every year; in fact, in the GYE, most 
females give birth to a new litter about every 3 
years. Thus, counting only Fcubs was not a count 
of all the adult females. (The technique was not 
used to estimate females with yearlings and 2-
year olds, because it is more difficult to determine 
the age of larger offspring.  Some yearlings that 
grow quickly can be as large as 2-year-olds that 
grow slowly.  Lone females cannot be 
distinguished from young males because both are 
about the same size.  Consequently, the only 
easily distinguished group of bears is females 
with cubs of the year.)  Thus a simple rule of 
summing all the Fcubs seen over a 3-year period 
was developed. Since on average adult females 
give birth about every 3 years, this 3-year sum 
was assumed to represent the adult female 
segment of the population. (Summing over 3 
years also has the effect of dampening yearly 
fluctuations). 
  
 
From Fcubs to total population 
 
◄ Back to contents 
 
 How to move from an estimate of the 
number of adult females to an estimate of the 
total population? Direct observations from the 
field would never be useful for this task. Instead, 
models of how the population likely operates 
were developed in the mid 1980s (by Lee 
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Eberhardt, among others) that suggested that, on 
balance, a population with birth and death rates as 
the GYE seemed to have at the time would 
consist of approximately 27.4% adult females 
(“adult” was defined as age 5 and older). Thus, 
dividing by the proportion 0.274 (or equivalently, 
multiplying by (1/0.274 = 3.65) provided an 
estimate of the total number of bears. Further if 
any adult females were known to have died, these 
first would be subtracted from the total before the 
total population size was estimated. 
 So, in a nutshell, this method of 
estimating population size was: 
 1) Use the Knight et al. 1995 rule set to 
separate all observations of Fcubs seen in any given 
year into unique Fcubs or repeat observations of 
the same Fcubs , subtract any known deaths; 
 2) Add the minimum counts from for the 
2 previous years to the current year (i.e., for 3 
consecutive years), on the assumption that this 
total is a reasonable estimate of adult females in 
the population in any given year (because females 
only produce cubs, on average, once every 3 
years); and  
 3) Multiply that number by 3.65, on the 
assumption that adult females are only 27.4% of 
all bears. 
 
◄ Back to contents 
 
Mortality limits 
 
 Having some kind of population estimate 
is good, but it is also necessary to know if too 
many bears are being killed to maintain a healthy 
population. Here, the 1993 protocol used two, 
complementary figures: 1) It set a criteria that 
known and probable human-caused mortalities be 
no more than 4% of the total estimated population, 
and 2) It set an additional criteria that of this 4%, 

no more than 30% could be females (i.e., female 
deaths could not exceed [30% x 4% = 1.2%] of 
the total number of bears, as estimated using the 
Fcub protocol summarized above. 
 How was the 4% limit derived? And 
where did the 30% of that 4% come from? They 
were derived using a population model from 1985 
that compared birth rates to death rates (Harris 
1986).  By comparing births to deaths, it is 
possible to estimate how many bears can die each 
year yet maintain a healthy population.  It is 
difficult to know precisely how any given grizzly 
bear population responds to any given number of 
human-caused deaths.  But we can say with 
certainty that grizzlies reproduce much more 
slowly than do most other mammal species. 
Consequently, mortality thresholds are low when 
compared to deer, elk, or even black bears. We 
also know that once grizzly bears are independent 
of their mother, nearly all deaths are directly or 
indirectly caused by humans.  Unfortunately, 
back in 1985 when Harris constructed these 
models and established mortality thresholds, 
detailed information on reproduction and survival 
for the GYE were not available, so Harris used 
general estimates from grizzly bear populations 
elsewhere. 
 That model, which incorporated as much 
information and state-of-the-art theory as was 
available at the time, estimated that, to be 90% 
confident that human-caused mortality would not 
be more than a grizzly bear population could 
handle, such deaths could not exceed about 6% of 
the total number of live bears. In this model, 
human-caused deaths were allotted among sex 
and ages such that 70% of dead bears were males 
and 30% were females. The 6% “maximum 
sustainable harvest” from this model population 
was then reduced to 4%, on the assumption that 
not all dead bears would become known to 
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managers, and that roughly 1 additional bear died 
for every 2 that were known to have died. Thus, 
the “4% + 30%” rules came from the assumptions 
that: 
 1) The model of Harris (1986) was a 
reasonable caricature of real grizzly bear 
populations;  
 2) That the specific algorithms used to 
estimate sustainable mortality were reasonable; 
 3) That 1 unknown bear died for each 2 
that could be accounted for (thus lowering the 6% 
from the model to 4%); and 
 4) That because the model assumed that 
human-caused mortality was strongly male-
biased (such that 70% of deaths were males), the 
above protocol would also require that female 
deaths be limited to 30%. 
 For more information on this model, click 
here. 
 
◄ Back to contents 
 
Advantages of the original (1993) 
protocols 
 • While one can never be sure, all 
indications are that population estimates produced 
by the protocol outlined above are lower than true 
population sizes (i.e., are conservative). There are 
two primary reasons for this: 1) the rule-set for 
identifying individual Fcubs tends to lump rather 
than split (see above), and 2) it moves forward on 
the rather naïve assumption that all Fcubs in any 
given year are actually seen and recorded (the 
notion that a survey can detect 100% of animals 
is almost never true; wildlife population 
estimation is largely an exercise in various ways 
to figure out what was never seen). 
 • Similarly, while the “4% and 30% rule” 
is based on some very coarse approximations, 
living within those mortality limitations seems to 

have had some benefits. At the least, it has not 
prevented the GYE grizzly bear population from 
increasing during the time it’s been in place. 

• Given the difficulties of estimating 
population size and of developing mortality limits, 
it is relatively simple. 

 
◄ Back to contents 

 
Weaknesses/limitations of the 
original (1993) protocols 
 • The estimate of the number of unique 
Fcubs does not deal with the likelihood that not all 
females with cubs actually present are likely to be 
documented in any given year. In the parlance of 
quantitative biology, it is not an estimate at all, 
but rather an index. Although it no doubt bears 
some relationship to the true number, it’s 
impossible to know what that relationship is. 
Although the index is almost certainly lower than 
the true number (because we almost never 
observe 100% of any animal population), it’s 
impossible to know how much lower.   
 • The calculations to produce an estimate 
of the total population from the estimate of Fcubs 
are approximate, and may have biases:  
 1) First, summing over a 3-year interval is 
only an approximate way to move from “females 
with cubs in any given year” to “total number of 
adult females” (defined here as females aged 5 
and above). In fact, updated calculations have 
suggested that the mean interval between 
successive litters of adult females is 3.2, not 3.0 
as assumed by summing over 3 years. Further, the 
true interval between successive litters varies 
yearly, and ignoring this variability can result in 
underestimating the number of adult females in 
some years and overestimating in others. In fact, 
the variability in the number of Fcubs observed 
yearly – a variability which persists under any 
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reasonable alternative way of generating this 
number – is a problem that bedevils all of the 
possible protocols considered.  
 2) The denominator 0.274, used to project 
from the number of adult females to total 
population size (i.e., including younger females 
and all males) is not only approximate and 
unaccompanied by confidence limits, but, strictly 
speaking, refers only to age-classes. But recall 
that the data going into this calculation are 
number of reproductive females, which is close to, 
but not exactly that same as, the number of 
females aged 5 and above.  
 • The model underlying estimates of 
sustainable mortality was an approximation, and 
did not use information specifically from the 
GYE.  
 • The protocol for estimating the total 
number of bears killed by people from the 
number that were known to have been killed (i.e., 
assuming 1 unknown death for every 2 known 
deaths) was approximate, not based on GYE-
specific data, and not accompanied by an 
indication of its precision. 
 • Values used in the protocol were not 
accompanied by error terms (e.g., standard errors). 
Thus there was no way to know how reliable or 
precise they were. 
 
◄ Back to contents 
 
New protocols 
 
◄ Back to contents 
 

Here we outline what we believe are 
superior protocols for monitoring GYE grizzly 
bears. We divide this into 4 sections: 1) 
estimating population size, 2) developing 
mortality limits, 3) estimating how many bears 

die, and 4) monitoring. Here is a step-down 
listing of the entire protocol: 

 
1. Raw observations of sightings of females 

with cubs of the year are separated into 
observations of unique females and repeat 
observations of the same female using the 
methods of Knight et al. (1995). 

2. The Chao2 estimator is applied to sighting 
frequencies of unique females to obtain an 
estimate of the total number of females 
with cubs of the year in the population. 

3. The number of unique females obtained 
from the Chao2 estimator each year is 
added to the existing dataset, and a model 
averaging process applied.   

4. The predicted number of females with 
cubs obtained from the model fit is then 
used as the best estimate of the total 
number of independent females in the 
population accompanied by cubs of the 
year for that year.   

5. Recognizing that with each iteration, 
some change in number of females 
predicted for earlier years is expected, we 
recommend against retrospectively 
adjusting estimates from previous years. 

6. The predicted number of females with 
cubs is then divided by the proportion of 
females ≥ 4 years old estimated to be 
accompanied by cubs of the year 
(transition probability = 0.289) to estimate 
the total number of females in the 
population ≥ 4 years old. 

7. The number of females ≥ 4 years old is 
then divided by the estimated proportion 
of females ≥ 4 years old in the population 
of females ≥ 2 years old (0.77699) to 
estimate the number of independent 
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females (≥ 2 years old) in the population 
that year. 

8. The sustainable mortality limit for 
independent females is 9% of the 
population estimate of independent 
females. This includes all sources of 
mortality – natural, human-caused, and 
unknown and unreported deaths. We 
define sustainability as a mortality level 
low enough that there is a 5% or lower 
chance that it would lead to a population 
decline.   

9. Unknown and unreported mortality is 
estimated based on the methods of Cherry 
et al. (2002) as described in the 
Reassessing Methods Document. 

10. The number of independent males in the 
population is based on the estimated ratio 
of independent males:independent females 
(0.63513) to estimate the number of 
independent males that year.  

11. The sustainable mortality limit for 
independent males is set at 15% of the 
population estimate of independent males. 
This includes all sources of mortality – 
natural, human-caused, and unknown and 
unreported deaths. 

12. The number of cubs in the annual 
population estimate is calculated directly 
from the model-predicted estimate of 
females with cubs of the year by 
multiplying by the mean litter size (2.04) 
observed from 1983–2002. 

13. The number of yearlings is estimated by 
multiplying the estimated number of cubs 
from the previous year by the mean 
survival rate for cubs (0.638) observed 
from 1983–2001. 

14. The sustainable mortality limit for 
dependent young (cubs and yearlings) is 

set at 9% of the annual estimate of 
dependent young.  Only human-caused 
deaths (reported known and probable) are 
tallied against this threshold. 

15. Natural, and unknown and unreported 
mortalities are not estimated for 
dependent young.   

16. Because this protocol smoothes variability, 
we not longer base annual limits on a 3–
year running average as originally 
proposed in the Reassessing Methods 
Document (Interagency Grizzly Bear 
Study Team 2005).  Rather, we 
recommend annual mortality limits based 
on data and calculations from the current 
year only. 

17. All values have estimates of uncertainty. 
18. We recommend the demographic 

objective originally proposed in the 
Reassessing Methods Document 
(Interagency Grizzly Bear Study Team 
2005:44–45) of 48 FCubChao2 remains the 
same, however we recommend using the 
predicted number based on model 
averaging.   

19. We recommend a biology and monitoring 
review should this predicted estimate of 
Fcub decline below 48 for any 2 
consecutive years.   

20. We also recommend the management 
agencies direct management action to 
limit female mortality if the model 
predicted estimate of Chao2 drops below 
48 in any given year. 

21. We recommend a biological and 
monitoring review as per the Yellowstone 
Conservation Strategy if independent 
female mortality exceeds the 9% limit in 
any 2 consecutive years. 

 14 



 15 

22. We recommend a biological and 
monitoring review if independent male 
mortality exceeds the 15% limit in any 3 
consecutive years. 

23. We recommend a biological and 
monitoring review if dependent young 
mortality exceeds the 9% limit in any 3 
consecutive years. 

24. We recommend that if the AICc weight 
favors the quadratic term (i.e., > 0.5) in 
modeling the rate of change of females 
with cubs, a full review of the 
population’s demographics be undertaken 

to better understand its status. (See below 
for descriptions of what this means). 

25. We recommend that dead bears reported 
in years subsequent to actual year of 
mortality be tallied against year of death 
and mortality total be recalculated.  If 
mortality exceeds the threshold for that 
year, the difference (total mortality minus 
threshold) be counted against the current 
year’s threshold. 
 

 
Below is a diagram illustrating the important 
components of the new protocols: 
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Accounting for those 
never seen via Chao2 

Each year’s 
estimate added to 
previous data, 
linear and quadratic 
models fit, and 
model average 
taken as most 
parsimonious 
estimate of this 
year’s Fcubs 

Fcubs, estimated 
using rule set of 
Knight et al. 1995 

Transition probabilities applied 
to estimate number of females 
age 4 and above (Fcubs/0.289) Fcubs 

F4+ 

Stable age-distribution provides estimate 
of 2 and 3 year-old females 
(F4+ / 0.777) F2+ 

Model indicated 
maximum total 
mortality for 
stability ~ 9% 

Cherry et al. 2002 used to estimate 
mortalities never reported 

Total mortality 
limit for 
females age 2+ 
= 0.09 of F2+  

Human -caused 
morality limit 
for cubs/yrlgs = 
0.09  of each 

Cubs Yearlings 

Litter 
size Cubs(t-1) * 0.638 (2.04) 

Stable age-distribution 
provides estimate 2+males 

Total mortality 
limit for males 
age 2+ = 0.15 of 
M2+  

M2+ 

 
Illustration 2. Flow chart of the proposed protocol for estimating the number of grizzly bears in the GYE 
and limits to mortality. N  = estimated number of females with cubs in year i using the Chao2 
estimator; F2+ = females aged 2 and older F4+ = females aged 4 and older; M2+ = males aged 2 and older 
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◄ Back to contents 
 

 16 



 17 

 
Method for estimating 
population size 
 
◄ Back to contents 
 
 Motivation 
 
 Despite all the work that has gone into 
understanding the GYE grizzly bear population, 
figuring out how many bears there are is, alas, not 
much easier than it has ever been. Although 
cognizant of its problems and limitations (click 
here for information on alternative methods to 
estimate population size that have been 
considered but are not recommended), we 
recommend that population estimates – needed so 
that mortality limits can be set in context – be 
based on estimates of the number of adult females, 
which, in turn, are derived from estimates of the 
number of Fcubs observed yearly. However, a 
number of changes from the original 1993 
protocol are recommended, all of which have the 
effect of minimizing bias and considering and 
disclosing uncertainty. 
 Both the current and proposed protocols 
for estimating Fcubs depend on the same rule set 
for identifying individual Fcubs from the totality of 
observations (many of which represent duplicate 
observations of the same animals) each year. But 
whereas the original 1993 protocol does nothing 
about Fcubs present but never documented, the 
new protocol uses mark-resighting theory to 
estimate that number. Rather than Fcubs being 
some poorly understood “index” of the true 
number of females with cubs in the GYE during 
that year (a number that is probably lower than 
the true number, but for which there is no way to 
determine by how much), the proposed Fcubs is an 
actual statistical estimate, premised on well-

understood statistical theory, and accompanied by 
an indication of its level of precision.  
 Next, the proposed protocol deals with the 
variability in the yearly estimates of Fcubs and the 
fact that females don’t produce litters each year in 
a different (and we believe, better) way than the 
original 1993 protocol. We use all the yearly 
estimates of Fcubs, up to and including the current 
year’s, to derive a regression equation that best 
fits all the data (and even accounts for uncertainty 
about the shape of the regression slope) to model 
the number of Fcubs in the current year. And rather 
than using a proportion from a modeled age-
structure to estimate the number of adult females 
from the number of reproductive females, we 
estimated a series of transition probabilities 
directly from GYE grizzly bear data (1983-2001), 
that can be used to answer the question “Given 
that there is a female aged 4 or older, what is the 
probability that she will have cubs in any given 
year?” 
 Rather than use the old “4% and 30% 
rule” from a generic model, this new protocol 
makes use of estimates of mortality that produce 
a non-declining population based directly on 
Yellowstone grizzly bear data. The newer 
modeling (Harris et al. 2006) makes fewer and 
milder assumptions than the earlier modeling 
effort (Harris 1986). We also use more formal 
methods to incorporate the number of grizzly bear 
mortalities that are never discovered or reported 
(Cherry et al. 2002). A higher mortality threshold 
is allowed for males.  
 Finally, we make more explicit 
recommendations for interpreting trends from 
these population estimates, and of initiating more 
formal demographic analyses (using information 
from radio-marked bears). 
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◄ Back to contents 
 
New estimate of yearly Fcubs  

 Keating et al. (2002) explored a number 
of ways to use the frequency with which 
individual animals were observed to estimate the 
number of animals never observed. On the basis 
of a number of simulations, they concluded that 
an estimator that they termed the “second-order 
sample coverage” (  in their paper; the “hat” 
over the N signifying that it’s an estimate, not 
necessarily the true number) estimator performed 
best. However, subsequent to that work, it was 
discovered that the simulations conducted for that 
paper were not as representative of the GYE 
observational data as originally believed. Thus, a 
new series of simulations were conducted that 
better captured the variability and sample sizes of 
field observations. As a result of this 
reconsideration, the best method for using the 
observations to estimate Fcubs was concluded to be 
one of the estimators that Keating et al (2002) 
termed (after Dr. Elaine Chao, a 
Taiwanese biometrician who developed it). For 
example, in 2004 a total of 48 unique Fcubs were 
identified using the Knight et al. (1995) protocol 
(from some 202 accumulated observations), and 
the  procedure estimated that true number 
present was 57.55.  For more details on these 
considerations, click 
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here.  We recommend using 
this mark-resight estimator as the best available 
way to move from a non-statistical index of the 
number of Fcubs to an actual estimate of the 
number of Fcubs.   
◄ Back to contents 
 
 Using all data to estimate yearly Fcubs 

 

 Although the Chao2 estimator does a 
good job of accounting for Fcubs never seen, there 

will remain considerable fluctuations in the 
estimated number of Fcubs under any conceivable 
observation system. Some of this fluctuation 
reflects true variation in the population (for 
example, in a very poor food year, females may 
fail to breed or later resorb their fetuses; if this 
occurs, there tends to be a surge in litters 
produced the following year). Some of this 
fluctuation reflects sampling variation (i.e., 
despite using the Chao2 estimator, we are still 
sampling, and thus the data are noisy). Any 
estimation of the total population based on such 
fluctuating numbers will fluctuate accordingly. 
Thus the population will seemingly lurch up and 
down, but this will be a reflection more of our 
sampling limitations than anything biologically 
meaningful. In turn, mortality limits based on this 
fluctuating population estimate would have to 
change dramatically from year to year, causing 
confusion and making planning difficult (all 
while failing to make management any better). 
Thus, some sort of smoothing of yearly 
population estimates is desirable.  
 In the original protocol, this smoothing 
was accomplished via summing the Fcubs 
estimates over 3 years, but this method has 
problems. The new protocol takes advantage of 
the fact that we not only have a Fcubs estimate for 
the current year, but in fact have a series of such 
estimates from previous years. We can 
incorporate this historical data with the data for 
the present year to improve the estimate of the 
present year’s Fcubs. The easiest way to do this is 
to derive a linear regression using all the data 
(including the present year’s), and “predict” the 
current year’s Fcubs (Fig. 1).  
 However, using only a linear regression 
would unduly (and possibly erroneously) 
constrain the current year’s estimate to conform 
to recent trends. What if the trend has truly  
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Figure 1 Linear regression of Fcubs 

Quadratic model
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Figure 2 Quadratic regression of Fcubs 

changed? If so, we need a smoothing technique 
with the flexibility to reflect that fact. One option 
is to model the entire data series using a quadratic 
(i.e., squared) term, which allows the fitted line to 
curve (Fig 2).  

 But now we have 2 possible ways to 
smooth the fluctuations in population estimates, 
and although both use all the data, they produce 
slightly differing estimates of the current 
population size. How do we decide between them? 
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Here, we can use recent advances in the field of 
information-theory to avoid deciding entirely, but 
instead to quantify the evidence for both models, 
and then calculate a weighted average. This 
provides the best possible combination of using 
all the available data, smoothing erratic swings in 
estimation that result from factors unrelated to 

true population changes, while still preserving the 
flexibility needed to capture true changes. For 
example, from the N estimate of 57.55 for 
year 2004, the model-averaging procedure used 
the accumulated data to predict 49.48 females 
with cubs. Estimates from 1984-2005 are shown 
in Fig. 3. 
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Figure 3. Trend of the Fcub index as predicted using the Chao2 estimator (red line) and predicted fit using 
the weighted model average of the linear and quadratic models (solid blue line). Dashed blue lines above 
and below the fitted line represent 95% confidence intervals of the model average fitted line; dotted lines 
above and below represent 95% prediction intervals for any given year’s index. In contrast to Figures 1 
and 2, this figure plots counts on an arithmetic scale. 
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◄ Back to contents 
 
 Estimating number of adult females from 
Fcubs  
 
 Even with this smoothing, there is still the 
problem that what one is estimating is merely the 
number of females accompanied by cubs in any 
given year; we know that most adult females 
don’t have cubs at any given time (because some 
have no offspring, others are accompanied by 
yearlings, yet others by 2-year offspring). What 
we really wish to know is how many adult 
females are in the population, not merely how 
many females have cubs in any given year. In 
contrast to the rather ugly “summing over 3-year” 
solution in the original protocol, the new protocol 
uses 1983-2001 data from captured females in the 
GYE to estimate the proportion of females aged 
4+ that can be expected to be accompanied by 
cubs in any given year, and divides the yearly Fcub 
estimate by this proportion to yield the total 
number of 4-year old and older females.  
 A naïve way to do this would simply be to 
tally the number of marked adult females in the 
various categories (e.g., with cubs, with yearlings, 
etc.). If animals were marked exactly in 
proportion to their presence in the population, this 
would produce an unbiased estimate of the 
proportion of adult females expected to have cubs. 

However, our analyses strongly suggested that 
capture and marking of females was not 
independent of their reproductive status at the 
time: females without offspring were more likely 
than expected to be captured, whereas females 
with cubs were less likely than expected to be 
captured. With collars only lasting a few years, 
this meant that the proportion of marked females 
with cubs was not a representative picture of the 
true proportion of females with cubs.  
 Instead, we developed an analysis that 
used only females already captured and marked, 
and asked: “Given that an adult female was in a 
specified reproductive state (e.g., without 
offspring), what was the probability she would be 
in another reproductive state (e.g., with cubs) the 
next year?” We called this a “multi-state” model, 
and the object was to use GYE grizzly bear data 
to estimate “transition probabilities” from one 
reproductive state to another (including the same 
state). Of course, some of these transition 
probabilities must be zero because they are 
logical impossibilities (e.g., from being 
unaccompanied in one year to having yearlings 
the next, or having yearlings in 2 consecutive 
years). Here, below, is the total array of possible 
states and transitions (the analysis was used to fill 
in those labeled “estimated”):  
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 Transfer to state 
Current State No offspring Cubs Yearlings 2-year olds 

No offspring Subtraction Estimated Zero Zero 
Cubs Subtraction Estimated Estimated Zero 

Yearlings Subtraction Estimated Zero Estimated 
2-year olds Subtraction Estimated Zero Zero 

 
 
 
 
 
 

(Note that it is possible for a female to transition from having cubs in one year to again having cubs the next year, if she loses 
her entire litter sometime after she is observed but mates again and produces a new litter the next year. It is also possible to 
transition from having no offspring in one year to the same state the next year, if the female simply fails to breed or cubs are lost 
so early that they are never observed). 
 
 Our analysis of these transition 
probabilities showed that 0.289 (SE = 0.023) 
females aged 4 and older were in the “with cubs” 
state each year. Thus, this inverse of 0.289 (i.e., 
3.46) became the multiplier we use to estimate 
adult (age 4+) females from yearly Fcubs. For 
example, from the year 2004 estimate of 49.48 
Fcubs, we estimate (49.48/0.289) = 171.2 females 
age 4 and above. For more details on the 
transition probabilities, click here.   
 
◄ Back to contents 
 
 Estimating number of sub-adult females 
(aged 2 and 3) from adult females 
 
 We had no analogous way to estimate the 
number of females aged 2 and 3 in the population. 
Thus, we used our existing data on survival and 
reproductive rates in the GYE during 1983-2001 
to estimate the number of 2- and 3-year olds that 
would be expected to occur. This was a simple 
modeling exercise using what wildlife 
demographers call the “stable age distribution”. 
These calculations showed that, on average, 0.777 
of female bears aged 2 and above would be aged 
4 and above (the number we already had to this 
point). Thus, multiplying the number of 4+ 

females by (1/0.777) = 1.294 provides an estimate 
of the number of 2+ year olds. For example, from 
our 2004 estimate of 171.2 females age 4+, we 
calculate (171.2/0.777) = 220 (95% confidence 
interval = 182-258) females age 2+. For more 
detail on the calculations of the stable age 
distribution underlying this, click here. 
 
◄ Back to contents 
 
 Estimating number of cubs and yearlings 
 
 To fill out the age-structure, we still need 
to estimate the number of cubs and yearlings each 
year. Here, we simply use the mean litter size 
documented in the GYE during 1983-2001 (i.e., 
2.04) and apply it to our yearly Fcub number. For 
example, from the 49.48 Fcubs estimated present in 
2004, we estimate (49.48 * 2.04) ≈ 100 cubs 
present.  
 To estimate the number of yearlings 
present, we apply the 1983-2001 GYE estimate of 
mean cub survival (0.638). However, since we 
are estimating how many cubs survived to 
become yearlings, we use the estimate of cubs 
alive in 2003 and estimate their survival to 2004. 
Thus, for our 2003 estimate of 96.6 cubs, we 
would estimate an additional (96.6 * 0.638) ≈ 62 
yearlings in 2004. Of these 162 (95% confidence 
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interval = 145-181) offspring, half are assumed to 
be females and half males. (Data from marked 
animals since 1983 provided no reason to assume 
otherwise). 
 
◄ Back to contents 
 
 Estimating number of subadult and adult 
males 
 
 All our demographic analyses confirmed 
that females really control the population growth 
and trajectory of grizzly bears. But that doesn’t 
mean the males are unimportant, for obvious 
reasons. We still need a mortality limit for males, 
which means we need to estimate the number of 
males in the standing population as well. Unlike 
females which provide some basis for 
differentiating among individuals (by virtue of 
having cubs), unmarked males all basically look 
alike. Thus, we have no option but to again use 
our estimates of the stable age distribution, in this 
case by applying our estimates of the mortality 
rates among males and females. This then 
suggests how many males would be expected to 
exist, given an estimate of the number of females. 
Our calculations indicated that the number of 2+ 
year old males is expected to be 63.6% the 
number of 2+ year old females. (Once past the 
yearling age, male mortality rates are higher than 
females, thus there are fewer of them). Thus, for 
example, from our estimate of 220 2+ old females 
in year 2004, we estimate an additional 140 males 
(95% confidence interval 108-172). 
 
◄ Back to contents 
 
 
New guidelines for limiting 
mortality 

 
◄ Back to contents 
 
Motivation 
 
 The “4% and 30%” rule was based on an 
unpublished, generic model, which made some 
important assumptions in order to produce an 
estimate of sustainable mortality. New data and 
techniques had become available since the time 
this “old rule” was established. It was time to 
update this method, and base sustainable 
mortality limits on Yellowstone-specific data. 
This modeling effort is detailed in Harris et al. 
(2006).  
 
Sustainable mortality for females 
 
 In short, these analyses suggested that, 
given prevailing reproductive rates and the level 
of yearly variation in all survival and 
reproductive rates we can expect from 
Yellowstone grizzly bears, mortality from all 
causes of 9% of females aged 2 and older 
produces a negligible probability (~5%) of a 
population decline. That is to say, if one knew for 
sure that one had 100 females aged 2 and older, 
and one could account for all the deaths, then the 
overall population would almost certainly stay 
stable or increase if 9 or fewer of them died 
annually. Note that this differs importantly from 
the earlier “4% and 30% rule”: 
 • It considers all mortality, not just 
mortality resulting from humans 
 • It is restricted to females, thus there is no 
need for a both a total limit of bears and a sub-
limit for females.   
 • It is higher than the previous limit 
because the previous limit only included human 
caused deaths. 
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 The last difference (that is, 9% instead of 
4%) would appear to be most surprising.  
However, our analyses have shown that this 
difference implies nothing dramatic about grizzly 
bear populations or, for that matter, about the 2 
models. Rather, the difference stems largely from 
the earlier assumption that many females would 
die of natural causes even in the presence of 
human-caused mortality. However, GYE data 
from 1983-2005 showed that very few females 2+ 
years old are likely to die of natural causes thus 
making that assumptions a tenuous one at best. 
For the 323 bears radio-tagged during 1983-2001, 
the Study team documented the cause of death for 
64 of the 69 mortalities that occurred while the 
bears were being monitored (causes for 5 deaths 
could not be determined). Only 5 of the 64 were 
not human caused, and none of the 26 deaths of 
171 females were from natural causes; Haroldson 
et al. 2006:35.  Whereas Harris (1986) 
considered natural and human-caused mortality 
separate processes, the Harris et al. (2006) work 
did not separate the two. In both cases, total 
mortality of about 9% of adult females was 
unlikely to cause population decline.  For more 
on this difference between the “9% rule” and the 
“4% + 30% rule”, click here. 
 
“Sustainable mortality” for males 
 
 There really are no quantitative methods 
for estimating a “sustainable mortality rate” for 
males. We use quotation marks here, because the 
very meaning of “sustainable mortality” must be 
specified in the case of males: it is the female side 
of things that controls the growth rate of the 
population. Unless the presence of males in some 
way affects the survival or reproductive rate of 
females, or there is a chance that too few males 
will be present to mate with all available females, 

the mortality rate for males is immaterial to the 
overall population trend. Instead, the mortality 
rate for males affects the ratio of females to 
males in the adult segment, which in turn affects 
mating structure, genetics, and long-term viability. 
So males are important, but there simply is not a 
clear analytical (or simulation-based) way of 
estimating a “sustainable” mortality rate for them.  
 Given this, we recommend that limits for 
male mortality be set at approximately our 
estimate of the rate that pertained during 1983-
2001, a time period during which the GYE 
grizzly bear population increased. Haroldson et al. 
(2006) estimated survival of males age 2+ to be 
0.823 or 0.874 (depending on assumptions about 
bears whose fate was unresolved). A mid-point 
between these 2 estimates is about 0.85, thus 
suggesting that about 15% of males aged 2+ were 
dying yearly during this period. 
  
◄ Back to contents 
 
 
Estimating unknown and/or 
unreported mortality 
 

We know that it is impossible to find and 
record all dead bears across the thousands of 
square miles of wild county in the Yellowstone 
Ecosystem. The original (1993) protocol simply 
assumed that 1 additional bear died for every 2 
deaths that became known. More recent work by 
Cherry et al. (2002) used GYE grizzly bear data 
to estimate the probability of there being 
unknown deaths given some number of known 
deaths, as well as to provide error terms on these 
probabilities. The point estimate of the ratio of 
reported to unreported deaths was 0.37:0.63.  
This method assumes that all deaths associated 
with management removals (sanctioned agency 
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euthanasia or removal to zoos) and deaths of 
radiomarked bears are known.  It calculates the 
number of reported and unreported mortalities 
based on counts of reported deaths from all other 
causes.  For example, in the year 2004, 5 deaths 
of unmarked grizzly bears from other causes than 
management removals became known to the 
Study team, but Cherry et al. (2002), estimated 
that 13 actually died (the 5 reported deaths plus 8 
unknown and unreported).  So for 2004, we add 
to this estimate bears that died as a result of 
agency removal (4) and deaths of radiomarked 
bears that were not sanctioned removals (0), to 
estimate total mortality from all causes = 17 (4 + 
0 + 13 = 17).  Details of the method and 
application can be found in Cherry et al. (2002).  

 
Advantages of the new 
protocols over the original 
(1993) protocol 
 

• It is based on empirical data from the 
GYE grizzly bear population, whereas 
some components of the 1993 protocol 
were not. 

• To the best of our knowledge, it 
provides an unbiased way to estimate 
population size;  

• It employs a rigorous method to help 
interpret the resulting trend 

 
◄ Back to contents 
 
 Limitations/disadvantages of 
the new protocol  
 

• It is more complex than the original 
1993 protocol; 

• It depends on the system for 
identifying unique females with cubs 
originally developed by Knight et al. 
(1995); although considerable work 
has gone into standardizing this 
system, it is not possible to guarantee 
that errors are not made. However, as 
stated earlier, most errors result from 
classifying sightings of different bears 
as the same bear rather than splitting 
multiple sightings of the same bear 
into different bears (it thus tends to 
produce conservative population 
estimates); 

• As in the original 1993 protocol, it 
uses a constant term to project from 
the number of Fcubs in any given year 
to the total number of adult females. 
Using a constant means that if 
reproductive rate changes with time 
(e.g., goes progressively down, or 
progressively up from the assumed 
value), the estimate of the total 
number of females will be biased. If 
such a change takes place, the estimate 
of the number of adult females (and, 
for that matter, all other sex/age 
classes) would be biased. To deal with 
such a possibility, we recommend that 
these numbers be updated every 8-10 
years using recent information from a 
sample of radio collared females; 

• It uses values from a stable age 
distribution to project from the 
number of adult females to other 
segments of the population; to the 
degree that age-structures vary, some 
inaccuracy in the projection will result; 

• As with any plausible sampling 
regime, it is subject to sampling error, 
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and as a result, cannot provide 
managers or the public with an 
unambiguous determination of the 
population trend right up to the 
moment; a few years must pass before 
one can be confident that a change in 
trend has occurred.  

 
◄ Back to contents 

 
The next page shows an example of the 

entire set of protocols, worked out for the year 
2004.
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An example worked out: data from 2004 
 

.  

57.55ˆ
2 =ChaoiN

 
Illustration 3.  An example, applying the proposed protocol for estimating the number of grizzly bears in 
the GYE and limits to mortality for year 2004. The total population size is estimated as (220 + 140 + 62 + 
100 = 522). Abbreviations as in Illustration 2. 
◄ Back to contents 

Fcubs =  49.48

Fcubs, estimated 
using  Knight et al. 
1995 = 48 

Model indicated 
maximum total 
mortality for stability 
~ 9% 

Accounting for those 
never seen via Chao2 

Each year’s 
estimate 
added to 
previous 
data, linear 
and quadratic 
models fit, 
and model 
average 
taken as 
most 
parsimonious 
estimate of 
this years 
Fcubs 

Transition probabilities applied 
to estimate number of females 
age 4 and above (Fcubs/0.289) F4+ = 

171.2 

F2+ = 
220 

Stable age-distribution provides estimate 
of 2 and 3 year-old females 
(F4+ / 0.777) 

Cherry et al. (2002) used to estimate 
mortalities unknown/unreported (8) 

Man-caused 
morality limit for 
cubs/yrlgs = 0.09  
of each (8.9 and 
5.7)

Cubs = 
100 

Litter 
size 
(2.04) 

Yearlings = 
62 

Cubs(t-1) * 0.638 

Total morality 
limit for females 
age 2+ = 0.09 of 
F2+  = 19.8 

M2+ = 
140 

Stable age-distribution 
provides estimate of 2+ males 

Total morality limit 
for males age 2+ = 
0.15 of M2+ = 21 

 27 



 28 

Population trend monitoring 
◄ Back to contents 
 Our recommendation is that the field and 
analytical procedures detailed here be conducted 
yearly. In one sense then, trend monitoring is 
automatic: one simply looks at each year’s data 
and has a “trend”. However, there remains the 
issue of interpreting the inevitable ups and downs. 
Clearly we cannot banish sampling variation, so 
there will be noise in our data caused by our own 
sampling limitations. There may also be true, 
short-term, and minor fluctuations in population 
size that don’t necessarily indicate a fundamental 
shift in trajectory. We know that a population 
whose fundamental trajectory is an increase can 
display short-term, small-scale declines (because 
of temporary food shortages, for example), just as 
one whose fundamental trajectory is decline can 
display short-term, small-scale increases (say, 
because of an unexpected nutritional bonanza). 
We recommend that management aim to keep 
these short-term, ultimately inconsequential 
fluctuations in perspective. At the same time, 
managers need to know if and when a true change 
in the trajectory has occurred, so that they can 
take appropriate actions. A monitoring system 
that has too much inertia by calculating trajectory 
change over a long period of years will fail to 
detect a true change unless it is dramatic (or, with 
such a time lag that dramatic changes in 
management would be then needed). 
 How do we find the best balance between 
correctly detecting real changes in trend, on the 
one hand, and avoiding responding to every small 
fluctuation (“…the population is growing this 
year”, “well, in this next year, it seem to be 
declining…”, “never mind, in the 3rd year it’s 
going back up again…”) on the other? 
 Without doubt, the trend of the Fcub counts 
has been up for the past 2 decades or so. Now in 

all of our writing we have steadfastly refused to 
predict the future trend of  the GYE grizzly bear 
population (although some readers have naively 
interpreted population projections — which 
necessarily move things forward in time based on 
conditions that exist at the moment of projection 
— as predictions). That said, it seems likely to us 
that the GYE grizzly bear population will, at 
some point, stop growing. The critical issue, it 
seems to us, is determining when that has 
occurred, and how dramatic the slow-down (or 
cessation, or even reversal) of population growth 
has been.  
 We have considered the possibility of 
measuring trend along some sort of moving time-
frame, but concluded 1) that there is no objective 
method for deciding what the time-frame should 
be, and 2) that evaluating trend over short time 
spans would inevitably yield estimates with such 
high variability (because of the small number of 
data points included) that they would encompass 
all the possibilities from serious decline to 
dramatic increase.  
 Instead, our recommended protocol for 
interpreting the series of counts is to: 
 1) Fit both linear and quadratic 
regressions to the entire series of Fcub estimates 
(as generated by the Chao2 estimator); 
 2) Calculate 

 for both models; 
Akaike’s Information 

Criterion (AICc)
 3) Evaluate the  weights of both 
models.  

AICc

Weight favoring the quadratic term is 
evidence that population growth has slowed or 
reversed, but we caution that lack of such 
evidence is not necessarily proof that change 
hasn’t yet taken place. Gradually increasing 
evidence for the quadratic model over a few years 
(assuming a negative quadratic slope, i.e., that 
growth appears to be slowing) should serve to 
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keep biologists and managers alert to a possible 
change in system state. If the AICc weight favors 
the quadratic term (i.e., > 0.5) in modeling the 
rate of change of females with cubs, we 
recommend that a full review of the population’s 
demographics be undertaken by the Study team to 
better understand its status. Under the best of 
circumstances, this monitoring protocol leaves 
uncertainty about the system state during the most 
recent few years. We find this a compelling 
reason to couple the model fitting described 
above with continued monitoring of demographic 
rates from a sample of radio-marked females (as 
well as their unmarked offspring). Although also 
characterized by variability and time-lags, such 
monitoring provides an independent measure of 
population vigor, and is likely to be helpful in 
explaining any observed changes in numbers of 
females with cubs. Thus, we re-emphasize that 
continued demographic studies (i.e., capturing 
animals and fitting them with radio collars to 
monitor reproduction and survival) is critical. 
 Our investigation into the power of this 
model fitting to correctly detect a leveling-off or 
a  modest (e.g., 5%) decline, given the variability 
that has thus far characterized the system, 
suggests that there will be an inevitable delay 
before one can be certain of a change in system 
state from its recent increase. For example, if the 
population were to suddenly begin declining at 
5% yearly, it would require roughly 5 years 
before one would be confident that a decline 
observed in the Fcub estimates reflected a true 
decline and not merely short-term fluctuations or 
sampling error (Fig. 4).  
  Unfortunately, the number of females 
with cubs can only be estimated, and even our 
best field and analytic procedures can only do so 
much to reduce variation in yearly estimates 
(although any improvements in sampling efforts 

that would limit influence of sampling variance 
would increase statistical power to detect trends). 
We do not doubt that these estimates track true 
population change generally, but they have 
limited statistical power to reliably detect subtle 
(yet potentially important) changes in λ within the 
time-frame of a few years. Although our 
suggestion of fitting linear and quadratic models 
to the time series and using AICc weights to 
evaluate their relative appropriateness remains 
sound, we caution that, given realistic projections 
under variability, a delay of some years is 
inevitable before one can be reasonably confident 
that an apparent change is a real change. 
(Needless to add, a more dramatic change would 
be more easily detected).  This degree of 
uncertainty reflects not so much a poor choice of 
index or analytical technique, as it does the 
inevitable characteristics of field work on grizzly 
bears and the mathematically (if not biologically) 
subtle distinction between growth at roughly 5% 
annually and no (or slightly negative) growth. 
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Figure 4. Power of the index to detect a true 
change in system state when the population begins 
to decline at 5% yearly in year 0. 
 

For more details on trend monitoring 
using the Fcub estimates, click here.  
 
◄ Back to contents 
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How might methods, analyses, 
or data err? 
 
◄ Back to contents 
 
 Wildlife conservation and management is 
an imprecise science; decisions are always made 
under some level of uncertainty. If perfect 
knowledge was required before decisions could 
be made, the result would be complete paralysis. 
To deal with ever-present uncertainty, wildlife 
managers typically adopt one or both of the 
following general strategies: a) developing and 
monitoring on numerous indicators of population 
status, which — acknowledging that all are 
imprecise — together allow for information 
feedback, and b) managing conservatively, so that 
any errors not detected until later can be corrected 
before undesired consequences are irreversible.  
 In obtaining and analyzing data, and 
proposing protocols for monitoring and limiting 
mortality of Yellowstone grizzly bears, the Study 
team has focused primarily on objective and 
unbiased estimates, and on understanding our 
level of uncertainty around those estimates. 
However, in some cases, limitations of data or the 
lack of clearly preferred direction required 
“filling-in” gaps with assumptions. To the degree 
that any of these are not true, they may cause 
biases, either positive or negative, in estimates of 
how much mortality the population can absorb 
before declining, and/or how a future population 
responds to such mortality. If our estimate of how 
the population responds to mortality is biased low, 
or of how much mortality actually occurs is 
biased high, our estimates of population response 
will be “conservative” (i.e., the population will be 
doing better than we think). Conversely, if our 
estimates of how the population responds to 
mortality is biased high, or of how much 

mortality actually occurs is biased low, our 
estimates of population response will be “risky” 
(i.e., the population will be doing worse than we 
think).  
 
 Here we lay out all of those places where 
data, analyses, or other factors limited our ability 
to use hard data to map out every step of the way 
(and thus where such biases might have crept in), 
and our best estimates of the direction and 
magnitude of such biases. 
 
I. Field data  
 
 Geographic sampling – large scale. 
Sampling of bears for radio-collaring may have 
lagged behind an expanding geographic front 
(Schwartz et al. 2002, 2006e), thus over-sampling 
bears in relatively high survival areas and under-
sampling bears in low survival areas. Our 
analysis (Schwartz et al. 2006d) strongly 
suggested that demographic vigor was strongest 
within the Recovery Zone where security is high 
and private land low. At the same time, other 
analyses suggested that the geographic area 
occupied by the population has expanded to 
include an increasing proportion on and near 
private lands and public lands outside the 
Recovery Zone. On the other hand, some large 
wilderness areas in the periphery of the 
geographic distribution where grizzly survival is 
high may have been under-sampled. There is 
reasonable information suggesting our sample 
was representative of the population at large— 
Schwartz et al. (2006a:12) — but if biased it may 
have resulted in either a “conservative” or a 
“risky” outcome; one we cannot quantify either 
one.  
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 Non-random sampling on a smaller 
scale. Within each identified area of relative risk, 
there may be smaller-scale lack of randomness in 
the radio-collared sample (despite the efforts of 
field staff to obtain a random sample). For 
example, it may have been more difficult to 
capture bears in remote settings than close to 
roads. There may also be bears that, for 
behavioral reasons, are less likely to respond to 
baits or are more cautious around traps. By their 
nature, these possible biases are impossible to 
quantify. That said, all of the likely reasons for a 
non-random sample within the area trapped 
generally suggest that sampled bears would have 
lower survival than unsampled bears. Bears 
evading research capture because of remoteness, 
wariness, or cautious behavior are likely to live 
longer than bears that are easily captured. Thus, 
we believe any biases here would lead to 
conservative management.  
 
II. Analyses and Modeling 
 
 Reproductive rate. The reproductive 
rate used for modeling population trajectory 
(Harris et al. 2006) was probably a little lower 
than was truly the case. In estimating survival of 
cubs during their first non-denning season, daily 
survival was calculated for all cubs assuming a 
beginning date of April 22 (Schwartz et al. 
2006b:20). However, some litters were not 
observed until after this date; on April 22, litter 
size may have been larger than ever observed (or 
some litters may have been lost entirely). 
Assuming constant survival during the period, 
Schwartz et al. (2006b: 20) estimated cub 
recruitment could have been underestimated by 
about 13% (i.e., if cubs died prior to being 
observed, true reproductive rate (female 
cubs/adult female/year) would have been 0.362 

rather than the 0.318 used in population 
projections). However in demographic models, 
we declined to use the higher reproductive rate 
figure because doing so would have required us 
to “assume” bears into existence that were never 
documented. Given that other analyses we 
conducted suggested that reproductive rate 
(termed “mx” in Harris et al. 2006) contributes 
roughly 9% to population growth rate (Harris et 
al. 2006:48), our use of 0.318 could have biased 
population growth rate (and thus our estimate of 
sustainable mortality) downward (i.e., been 
“conservative”) by up to 1%.  
 
 Survival of orphaned yearlings. The 
survival rate of yearlings used for modeling 
population trajectory could have been biased low. 
In the field, yearlings were not marked; instead, 
they were assumed to have died if observations of 
the family group suggested they were no longer 
associated with their mother. According to 
Schwartz et al. (2006:26c), “This assumption … 
[a decline in litter size denoting death of 
offspring]…may not have been correct 
for…yearlings. We know that some females wean 
offspring as yearlings…but we do not know the 
fate of these weaned individuals. We lack data to 
make any objective decision on the proportion 
that might survive. Hence, we assumed all 
yearlings that disappeared from their mother 
died”. This assumption was carried though all 
subsequent demographic modeling, such that if 
we projected a future with decreased survival of 
adult females, yearling survival was assumed to 
decrease in tandem. We do not know the 
percentage of weaned or orphaned yearlings that 
survive to become 2-year olds, but if it was truly 
higher than zero, our projections were biased low 
(i.e., “conservative”). Because yearling survival 
also contributed about 9% to population growth 
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rate, the conservative bias would be roughly an 
order of magnitude less than the percentage of 
yearlings that actually survived (e.g., a 
conservative bias of 1.8% if 20% of yearlings 
actually survived). 
 Correlation of vital rates within 
years. In “stochastic” modeling of population 
growth rates, our objective was to capture the full 
magnitude of yearly variation in vital rates. (By 
definition, variation is ignored in Deterministic 
estimates of the yearly growth rate, which we 
typically symbolize using “λ”). However, because 
we had no way to directly estimate correlation 
among yearly rates, and because we believed that 
modeling yearly rates from our temporal 
covariates would fail to encompass the full range 
of variability, Harris et al. (2006) assumed 
independence among yearly rates. In fact, any 
positive correlation among yearly vital rates 
would tend to push the resultant population 
trajectory downward. Thus, we biased population 
projections upward (i.e., ‘risky’) by ignoring such 
correlation structure. 
 In a subsequent analysis, we have 
estimated that yearly survival rates of juveniles 
(cubs and yearlings) and adults were positively 
correlated (r = 0.16 to 0.68, depending on models 
used), but that reproductive rate was weakly 
negatively correlated with adult survival (r = -
0.15) and its correlation with juvenile survival 
ambiguous (r varied from -0.20 to 0.57, 
depending on models used). In a Monte Carlo re-
sampling exercise, we determined that estimates 
of mean λ during 1983-2002 were essentially 
unaffected by ignoring the yearly correlation 
structure implied by our best models, but that the 
confidence intervals we estimated would attend 
any λ generated using our estimated level of 
yearly variation were insufficiently broad to 
account for yearly correlation. Given a fixed level 

of yearly variation but our best estimate of the 
magnitude of yearly covariance, we estimate that 
the lower bounds (but not the means) reported by 
Harris et al. (2006) were biased high by roughly 
1-2%. For example, whereas Harris (2006:50, 
Table 20, 5th row) estimated that a population 
with mean adult female survival of 0.91 would 
have a 5% probability of having λ 1.015 or lower, 
this estimate assumed complete independence 
among yearly rates. Using our best estimate of the 
underlying correlation structure observed during 
1983-2002, this lower 5% tail of the distribution 
would lie at approximately λ = 1.005 (the mean, 
[i.e., expected λ would remain at 1.029 in either 
case]). For more details on this, click here.  
  
III. Protocol for ensuring that 
mortality is sustainable 
  

Fcubs. In estimating population size, a 
number of parameters are estimated from field 
data of females with cubs of the year. The best 
estimate of females with cubs of the year may be 
biased in at least 3 ways: 
 a)  The number determined to be “unique” 
is very likely lower than the true number, due to 
inherent limitations of the observational 
technique. This underestimation is minor when 
there are few animals (and many observations), 
but becomes larger — perhaps up to 50% — 
when population size is larger (regardless of the 
effort made in observing them). This is because 
there are only a small number of ways that 2 
similar-looking bears can be known to be unique; 
the more similar bears the live in any given area, 
the more likely that it will be impossible to reject 
the possibility that all observations came from a 
single bear. The burden of proof within the 
protocol used to decide how many bears actually 
exist in any given year rests with the argument 
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that multiple sightings represented multiple bears; 
lacking strong evidence, the “default” decision is 
always that a single bear was seen multiple times.  
 b) Because not all females with cubs are 
observed in any given year, the protocol uses a 
statistical method (Chao2) to estimate the actual 
number of females with cubs in each year. 
(Perfect detection of anything is very rare in 
wildlife work). There is, of course, no way to be 
absolutely certain how many females with cubs 
went undetected in any given year, and 
considerable work went into selecting the most 
unbiased and robust statistical method available. 
However, even the best method was shown by 
Cherry et al. (2007) to underestimate the true 
number under a number of plausible scenarios, 
from 5% to as much as 25%  (it produced no 
overestimations, and had negligible bias when 
sampling effort was high).   
 c) The statistical method to estimate the 
number of undetected females with cubs is also 
influenced by sampling effort. As pointed out by 
some commentators on the draft protocol, the 
estimate tends to rise when sampling effort is 
higher and fall when it is lower. In recent years, 
effort has generally been higher than earlier; thus, 
the population increase suggested by this 
statistical model may be an overestimate of the 
true population increase. Similarly, reduced effort 
would tend to suggest a population decline even 
if none had actually occurred; however, as noted 

above, the Chao2 estimator did not overestimate 
the true population in any simulations conducted. 
 

Sustainable mortality. In proposing a 
limit for sustainable mortality, we chose that level 
that our best models suggested would lead to a 
declining population less than 5% of the time. We 
deliberately avoiding choosing a mortality level 
at which, on average, the population would be 
exactly stable, because this would have meant 
roughly a 50% chance that the population would 
actually decline. If our proposed total limits of 
9% total mortality (i.e., from all causes) of adult 
females yearly are not exceeded, we believe it 
highly unlikely that the greater Yellowstone 
grizzly bear population would decline. In one 
sense, however, this limit is biased low, because 
our best expectation (i.e., the mean of population 
growth rates given this mortality rates and other 
parameters as observed during 1982-2002) is that 
the population would increase at almost 3% 
yearly under 9% yearly mortality. We believe that 
this type of “conservative bias” is appropriate 
management; even if mortality assumed to keep 
the population stationary results in a 3% (or even 
greater) yearly increase, this is acceptable (or, 
from the perspective of increased assurance of 
ultimate population persistence, welcome) as part 
and parcel of keeping the probability of decline 
acceptably low. 
 
◄ Back to contents 
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Glossary 

 
AIC – Akaike’s Information Criterion 
ESA – Endangered Species Act 
Deterministic – fixed, certain. In a Deterministic 

population model, the result (e.g., growth 
rate) is fixed once the model structure and 
parameters (e.g., birth and death rates) are 
fixed. 

Fcubs – Female grizzly bear accompanied by cubs 
born that year 

FY – Fiscal year 
mx – mean reproductive rate; formally: number of 

female cubs/adult females/year, measured 
as soon as possible after birth pulse (for 
bears, early spring) 

GYE – Greater Yellowstone Ecosystem 
Stochastic – uncertain, containing an element of 

randomness. A stochastic population 
model is one in which birth and death 
rates are allowed to vary around some 
mean value with each animal, each year, 

or each iteration (or some combination of 
these), and thus each run produces a 
different outcome. By running numerous 
iterations, a mean population growth rate 
can be estimated, as can the probability 
that a population will grow at a slower or 
faster rate than the mean. 

Study team – Interagency Grizzly Bear Study 
team 

λ – the yearly growth rate of a population in 
multiplicative terms (e.g., 1.0 = no change, 
0.9 = 10% decline yearly) 

USFWS – U.S. Fish and Wildlife Service 
WBP – whitebark pine (Pinus albicaulis), the 

seeds of which form an important dietary 
component for Yellowstone grizzly bears 

WSI – a winter severity index incorporating 
minimum daily temperature, snowpack, 
and precipitation the previous summer 

 
 
◄ Back to contents 
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Options for estimating 
population size considered but 
not recommended 
 
◄ Back to estimating population size 

 
Perhaps no class of methods for 

estimating the population size of animal 
populations has more history than “mark-
recapture”. The basic idea is simple: first, capture 
and mark a sample of animals in the population. 
Later on, capture another sample from the same 
population. Some of the animals in this later 
sample will have marks from the earlier capture, 
some not. The proportion having marks provides 
an estimate of the probability of capture during 
the marking phase (e.g., if half the captured 
animals have marks, this suggests that roughly 
half  the population was captured during the 
initial marking period and thus the probability of 
capture was about 0.5). Now, equipped with an 
estimate of the probability of capture ( ) and the 
number of animals captured in the subsequent 
sampling (r for “recapture”), one automatically 
has an estimate of the population ( ), that is, 

p̂

N̂
pr ˆ/ =  N̂

That’s the basic idea, but needless to add, it gets a 
lot more complex than that, particularly if you’d 
rather avoid making restrictive assumptions. 
Many, many technical articles and books have 
been written on this subject, and even an 
introduction to it is well beyond the scope of this 
report. However, two applications of this basic 
technique have recently been used on grizzly 
bears in other situations, and were considered by 
the Study team: mark-resight using radio-collars 
as marks, and mark-recapture using each 
individual bear’s DNA as the “mark”. 
 
Mark-resight using aircraft 

  Population size can be estimated by 
treating radio-collars as the marks in a mark-
recapture experiment, and then conducting 
observation flights in which marks are 
“recaptured” via sighting (and then by confirming 
the marked status of these animals by checking 
all the radio-frequencies to confirm that the 
observed animal is or isn’t marked). One 
complication in the case of bears is that because 
they move about so much (but, for logistical and 
analytical reasons, survey areas need to be fixed), 
the number of marked animals available for 
recapture can vary from session to session 
(standard “closed-population” mark-recapture 
experiments assume that the number of marked 
animals is known with certainty). Thus, in these 
types of surveys, after observations are conducted, 
the number of marked animals that could 
potentially have been found must be determined 
(because assuming that all marks are within the 
survey area could well be wrong). A number of 
surveys in Alaska have used this method, with 
reasonably precise results.  
 The Study team conducted experiments 
with this method during 1998-2000. 
Unfortunately, the low recapture rate of marked 
bears resulted in high variability in estimates. 
Thus, this method was deemed inappropriate for 
further application in the greater Yellowstone 
ecosystem, at least given samples sizes of marked 
animals similar to those existing at the time. For 
more information on these experiments in the 
Greater Yellowstone Ecosystem, a summary of 
results, and the reasons they’ve not been pursued 
further, click here. 
 
◄ Back to estimating population size 
 
Mark-recapture using DNA as the mark 
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 In recent years, wildlife researchers have 
increasingly been using genetic techniques to 
obtain data that are difficult to get in other ways. 
Although the majority of the DNA in each 
individual animal is identical, molecular 
ecologists have been increasingly successful in 
isolating and amplifying small bits of DNA that 
contain much more inter-individual variability 
than does most of the DNA molecule, even from 
such body parts as hair, sloughed skin cells, and 
feces. These bits of DNA, called hypervariable 
micro-satellites, are probably not terribly 
important in producing proteins for the animal, 
and as such, are more susceptible to random 
mutation than portions of DNA that contain the 
instructions for making proteins that actually 
function in the animal’s daily life. Thus, if one 
compares enough of these DNA bits (which are 
often abbreviated as “genetic markers”) – usually 
7 to 9 will suffice – it is possible, through various 
numeric algorithms, to separate individuals from 
one another. Thus, each animal already carries its 
own individual “mark”, and if some bit of its 
tissue can be physically obtained, mark-recapture 
procedures can be employed without the need for 
further physical marking. 
 Now, the concept of “identifying 
individuals from their DNA” (in human 
applications, referred to as “genetic 
fingerprinting”) needs to be understood for what 
it can and cannot do. If one merely has DNA 
from, say the hair of bear, one can say, usually 
with high statistical confidence, that that bear was 
not the same bear as another one that also left hair 
for analysis. But that’s not quite the same thing as 
saying that we know exactly who each bear is. 
Other, relatively simple genetic techniques can 
distinguish the sex of the bear (and of course, yet 
other genetic analyses are first performed to 
ensure that the hair indeed came from a grizzly 

bear and not some other species). And yet more 
sophisticated analyses can classify each 
individual as more likely to have come from one 
group of bears than another, and can provide 
quantitative evidence of the relative closeness of 
relatedness among individually identified bears. 
But only in the case of extremely intensive field 
studies can one use these data on genetic 
relatedness to create an entire pedigree (i.e., 
identify each animal in its relation to the others). 
One important reason for this is that DNA 
contains no information whatsoever on an 
animal’s age. Thus, for example, although it is 
quite possible to identify hair from a particular 
site as coming from 2 unique, closely-related 
females, it’s impossible to tell, from DNA 
information alone, whether they are sisters or a 
mother-daughter group (and if the latter, which is 
the mother and which the daughter). 
 Given the sophistication with which 
genetics laboratories have progressed in this field, 
it is easy to assume that identifying individuals 
through DNA analysis has become easy. But 
errors in identification still occur. In the mark-
recapture setting, those of concern are 
erroneously lumping two different individuals 
together and calling them a single one, and, even 
more insidiously, “creating” non-existent animals 
by observing unique genetic markers that result 
from subtle errors in the lab procedures rather 
than subtle differences in the real animals. 
Geneticists are well aware of these potential 
problems, and have been active in developing 
protocols to minimize them. And indeed, most 
good labs can reduce these errors to 
inconsequential levels --- but not without more 
work, and hence greater cost.  
 Similarly, given the aura and mystique 
involved when we analyze DNA, the very 
blueprints for our lives, there is a tendency to 
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view population estimates based on them as 
perfect or complete in ways that are unattainable 
through traditional methods of marking. But 
tissue must still be obtained from the animals, and 
to date, nobody has invented a method to 
guarantee that every single individual in a 
population will make the requisite donation. Thus, 
just as in every other method one can imagine, 
investigators must make do with a sample of 
animals. That means that even if laboratory 
procedures identify individuals with no error at 
all, one still has the problem of estimating the 
number of animals that were never captured. 
Fortunately, we have powerful statistical 
procedures – alluded to above – to make such 
estimates. Alas, the end result is just that: an 
estimate, and even the best of these estimates will 
contain uncertainty (called “sampling error” in 
statistical jargon). The oft-heard term “DNA 
census” is a misnomer; identification of genetic 
markers from techniques that have come to be 
called “non-invasive” presents a novel and oft-
times useful way to obtain samples of marked 
animals. But from there, mark-recapture estimates 
proceed no differently than if animals were 
marked by people putting things on them. There 
will be imprecision (in the newspapers, often 
called “margin of error”). 
 Just as in traditional mark-recapture 
experiments, large samples and high recapture 
rates are critical if the resultant numbers are to be 
precise. Theoretically, the fact that all animals 
already have marks, and the fact that investigators 
can obtain samples through such means as 
plucking hairs from baited stations surrounded by 
barbed wire (or simply from trees or power-poles 
which bears rub upon) means that large sample 
sizes are a definite possibility. But there is still a 
substantial field effort involved in obtaining these 
samples, and there is also a considerable effort 

required in the lab to accurately identify the 
thousands of samples that result from large-scale 
surveys. So while the expense of physically 
capturing bears is avoided, conducting a large-
scale mark-recapture survey using DNA from 
hair is hardly cheap.  
 A number of DNA-based mark-recapture 
surveys have recently been conducted in Alberta 
and  British Columbia, but they have generally 
been on a smaller scale than would be required 
were a Greater Yellowstone grizzly bear estimate 
to be attempted. The most applicable model from 
which to estimate the cost of a Yellowstone 
survey is that effort currently underway in 
northwestern Montana (the Northern Continental 
Divide Grizzly Bear Ecosystem). Field work is 
completed, and much  raw data has been analyzed 
as of this writing, and statistical results are not yet 
available from this study. However, based on the 
budgets from this study, the Study team estimated 
that it would require approximately $4.5 million 
and at least 3 years to conduct a GYE-wide 
survey with yielding sufficient data to produce a 
population estimate whose 95% confidence limits 
were ± 20% of the point estimate (e.g., if the 
estimate was 600, that one could be confident that 
the population was no fewer than 480 or more 
than 720). Needless to add, were this survey to be 
conducted multiple times, the cost would raise 
proportionally. 
 The Study team recognized potential 
value in pursuing a mark-recapture population 
estimate using this method, and it was included 
on a number of “unfunded tasks” lists at various 
government committee meetings. However, 
funding was never found for such a task. For 
more detail on DNA-based mark-recapture 
populations, click here. 
 
 ◄ Back to options considered 
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(yet more…) estimating 
population size by mark-resight 
methods 
 
◄ Back to mark-resight 
 
 In the case of estimating bear populations, 
this basic formula has been used most often in a 
slightly different guise, called “mark-resight” (as 
opposed to “mark-recapture”). In mark-resight, 
animals must be captured and marked once, but 
then subsequent “recaptures” are not physical 
recaptures of the animal, but rather some sort of 
observation in which marks can be identified (and 
of course, animals without marks can be correctly 
categorized as not having been marked). In mark-
resight, the sample size of marked animals is 
fixed by the number of animals marked initially, 
but because it is so much cheaper and easier to 
observe animals than to capture them physically, 
the sample size of “recapture” events can be 
fairly high. There are a few different 
mathematical models that are well explored and 
can be used in “mark-resight” estimations of this 
sort (White 1996), and a radio-collar can be used 
as the “mark” in addition to a physical mark (so 
that there is very little chance of mistaking a 
marked animal for an unmarked one). This 
method has been used with some success on 
grizzly and black bears in Alaska (Schwartz and 
Franzmann 1991, Miller et al. 1997).  
 During summer 1998, the Study team 
began to experiment with using this technique to 
estimate the total number of grizzly bears in the 
greater Yellowstone ecosystem. A series of fixed-
wing aircraft surveys were conducted from July 
15 through August 6, 1998, in which pilots and 
observers in the plane looked for bears, and when 

one was found, checked all the radio-frequencies 
to determine whether or not it was marked. In 
addition, after each day’s search, all the bears’ 
frequencies were checked to determine which 
marked bears were present within the search area, 
and thus capable of being observed. (Simple 
mark-resight assumes that all marks can be 
observed at any time, but the large distances 
grizzlies can move requires that this extra step be 
taken).  
 But there were two problems. The first 
was that very few marked (i.e., radioed) animals 
were re-sighted. In almost 141 hours of flight 
time, 113 groups of bears were observed, but only 
5 bears wore radio-collars. (The number of 
radioed bears within the survey areas during the 
period varied from 20 to 27). This resulted in the 
population estimation having very poor precision 
(e.g., the confidence limits were very broad). 
Secondly, many bears were observed at moth-
feeding sites in alpine areas in the southeast 
portion of the ecosystem, where they were 
relatively easily observed. This was a problem 
because it was known that bears in this area had 
been under-sampled for marking. (Generally, the 
method assumes that marks are distributed 
randomly among all population members, and 
that the probability of re-sighting an animal is the 
same as capturing it to begin with). The 
combination of high “sightability” of these moth-
eating bears with their low likelihood of having 
been captured and marked, meant that population 
estimates from these surveys were likely to be 
inflated (Schwartz 1999).  
 Only slightly deterred, the research team 
tried the method again in 1999, this time 
conducting the aerial flights earlier during the 
summer, before any bears traveled to the alpine 
areas in the southeast part of the ecosystem to 
feed on moths. This allowed the Study team to 
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avoid the problem of having a segment of the 
population that was difficult to mark but easy to 
see. In fact, with the additional complexity of 
having to determine which marked animals were 
actually present in any given survey area taken 
care of, this survey came about as close to 
meeting the assumptions of mark-resight 
estimation as any field survey can be expected to. 
 But the first problem encountered during 
the 1998 survey remained: although pilots and 
aerial observers found grizzly bears, they still 
found very few marked grizzly bears. As in any 
mark-recapture effort, if the proportion of 
captured (or sighted, in this case) animals 
wearing marks is low, not only will the resultant 
population estimate be high, it will also be 
uncertain. Precision is improved by having many 
animals marked, and by having the probability of 
capture (i.e., marks as a proportion of all those 
resighted) be high. In 1999, in some 154 hours of 
flying time, pilots and observers found 85 bears 
(in 50 bear groups; some bears were in family 
groups). But of these, only a single bear wore a 
radio-collar (despite there being 29 and 31 
available to be observed during the 2 observation 
periods). After correcting for the fact that not all 
collared bears were available for re-sighting (due 
to movement out of the survey area), the resultant 
estimate was that there were from 369 to 26,377 
bear groups in the overall survey area! 
Considering that groups consisted of, an average, 
1.7 bears, this equated to 95% confidence limits 
of from 627 to (gulp…) an astounding 44,841 
grizzly bears! (Schwartz 2000 didn’t actually 
report this latter figure, probably because it is so 
outlandish, but it follows directly from the math).  
 During the year 2000, the Study team 
continued to monitor the number of radio-
collared bears seen during aerial flights (Schwartz 
and Haroldson 2001). But despite an almost 

doubling of the rate at which bears were observed 
per flight hour over that in 1999, the percentage 
of marked bears seen remained abysmally low: 3 
of 84 bears (3.6%).     
  Now, it is not terribly useful to know only 
that if one were one to somehow be able to 
replicate this survey many times under the same 
conditions, 95% of such surveys would return an 
estimate of between 627 and 44,841 bears! The 
difference between the lower and upper bounds is, 
to put it charitably, rather large.  

Why were the results of this survey so 
imprecise? Why were so few radio-collared bears 
observed? The answer to that question remains a 
mystery, but not because members of the Study 
team haven’t thought about it quite a bit. The 
most obvious concern would be that, for some 
reason, radio-collared bears were harder to find or 
to see, perhaps because of some differential 
habitat preference or perhaps because they hid 
from fixed-wing aircraft. But there is no evidence 
supporting either of these possibilities. Marked 
and unmarked bears showed no obvious 
difference in habitat preference (marked bears 
were found after the observation flights, during 
the radio-relocation portion of the effort). Marked 
bears did have a history of being handled 
(whereas unmarked bears did not), but they were 
not captured from aircraft. If anything, bears with 
radio-collars would probably have had more 
experience with low-flying aircraft that posed no 
threat to them, and thus would have been more 
likely to ignore airplanes than those naïve about 
such machines.  
 Regardless of the reason, with such a low 
“recapture” rate, there appeared to be no way to 
provide an estimate with a usefully narrow 
confidence bound short of capturing many more 
animals to begin with (which was beyond the 
budget capability of the study). Thus, although 
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fundamental assumptions of the method were 
tolerably met, low “recapture” rates doomed these 
estimates to such a low level of precision that 
they were simply useless. The full reports can be 
seen by clicking on Schwartz 1999, 2000, 2001.  
◄ Back 
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(yet more..) estimating 
population size mark-recapture 
using DNA 
 
◄ Back to DNA estimates 
 For more technical literature on estimating 
population size of grizzly bears using DNA from 
hair, the reader is referred to the following: 
 
Boulanger, J., M. Proctor, S. Himmer, G. 

Stenhouse, D. Paetkau, and J. Cranston. 
2006. An empirical test of DNA mark-
recapture sampling strategies for grizzly 
bears Ursus 17: 149-158. Boulanger, J., B. 
N. McLellan, J. G. Woods, M. F. Proctor,  
and C. Strobeck. 2004a. Sampling design 
and bias in DNA-based capture-mark-
recapture population and density estimates 
of grizzly bears. Journal of Wildlife 
Management 68:457-469. 

Boulanger, J., G. Stenhouse,  and R. Munro. 
2004b. Sources of heterogeneity bias 
when DNA mark-recapture sampling 
methods are applied to grizzly bear (Ursus 
arctos) populations. Journal of 
Mammalogy 85:618-624. 

Boulanger, J., G. C. White, B. N. McLellan, J. G. 
Woods, M. F. Proctor,  and S. Himmer. 
2002. A meta-analysis of grizzly bear 
DNA mark-recapture projects in British 
Columbia. Ursus 13:137-152. 

Mowat, G., D. C. Heard, D. R. Seip, K. G. Poole, 
G. Stenhouse,  and D. Paetkau. 2005. 
Grizzly Ursus Arctos and black bear U. 
americanus densities in the interior 
mountains of North America. Wildlife 
Biology 11:31-48. 

Mowat, G.,  and C. Strobeck. 2000. Estimating 
population size of grizzly bears using hair 

capture, DNA profiling, and mark-
recapture analysis. Journal of Wildlife 
Management 64( 1):183-193. 

Poole, K. G., G. Mowat,  and D. A. Fear. 2001. 
DNA-based population estimate for 
grizzly bears Ursus Arctos in northeastern 
British Columbia, Canada. Wildlife 
Biology 7:105-115. 

Woods, J. G., D. Paetkau, D. Lewis, B. N. 
McLellan, M. Proctor,  and C. Strobeck. 
1999. Genetic tagging free ranging black 
and brown bears. Wildlife Society 
Bulletin 27:616-627. 

 
◄ Back to DNA estimates 
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Distinguishing duplicate 
observations of the same 
female from those of unique 
females   
 
◄ Back (to counting females with cubs) 
 

Knight et al. (1995) developed the 
following rule set used to distinguish sightings of 
unique females from repeated observations of the 
same female.  Females were judged to be 
different based on 3 criteria:  (1) distance 
between sightings, (2) family group descriptions, 
and (3) dates of sightings.   

Minimum distance for 2 groups to be 
considered distinct was based on annual ranges, 
travel barriers, and typical movement patterns.  A 
movement index was calculated using standard 
diameter of annual ranges (Harrison 1958) of all 
radiomarked Fcub monitored from 1 May–31 
August (Blanchard and Knight 1991).  The mean 
standard diameter for all annual ranges of Fcub 
was 15 km (SD = 6.7 km).  They estimated the 
average maximum travel distance as twice the 
standard diameter, or 30 km, and used this 
distance to distinguish sightings of unique Fcub 
from repeat sightings of the same female. 

Family groups within 30 km of each other 
were distinguished by other factors.  The Grand 
Canyon of the Yellowstone River, from the lower 
falls to the confluence of Deep Creek, was 
considered a natural barrier.  Females on either 
side of this canyon were considered unique.  
Knight et al. (1995) also discussed paved 
highways as impediments to travel and cited data 
presented by Mattson et al. (1987) which showed 
that grizzlies tended to stay >500 m from roads 
during spring and >2 km during summer.  They 
provided one example where 2 families 

considered unique were separated by 2 major 
highways and were 30 km apart (see Knight et al. 
1995: Table 1).  Family groups were also 
distinguished by size and number of cubs in the 
litter.  Once a female with a specific number of 
cubs was sighted in an area, no other female with 
the same number of cubs in that same area was 
regarded as distinct unless (1) the 2 family groups 
were seen by the same observer on the same day, 
(2) the 2 family groups were seen by 2 observers 
at different locations but similar times on the 
same day, or (3) 1 or both of the females were 
radiomarked.  Because of the possibility of cub 
mortality, no female with fewer cubs was 
considered distinct in an area unless (1) she was 
seen on the same day as the first female, (2) both 
were radiomarked, or (3) a subsequent 
observation of a female with a larger litter was 
made.  Knight et al. (1995) assumed that all cubs 
in a litter were observed and correctly counted.  
This assumption was strengthened by only 
considering observations from qualified agency 
personnel.  Observations from the air were only 
included if bears were in the open and easily 
observed.  Ground observers watched family 
groups long enough to insure all cubs were seen; 
observers reported any doubt.  Finally, Knight et 
al. (1995) referenced a time–distance criteria but 
did not provide specific rules for its application.  
The only example they provided was the 
separation of 2 sightings of 2 family groups 
observed 1 day apart and 25 km apart. 

 
◄ Back (to counting cubs) 
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9% or 4%? 
 
◄ Back to new mortality guidelines 
 
[reprinted from Harris et al. 2006: 53] 
 

Our estimate that the GYE grizzly bear 
population is likely to maintain a positive 
trajectory as long as survival of females (2+years 
old) remains above approximately 0.91 (i.e., 9% 
annual mortality) would seem, at first blush, to 
suggest a radical departure  
from the original 1993 guidelines. For example, 
Harris (1986:273) recommended that ‘‘the 
proportion of the female segment of the 
population that can be removed annually . . . 
without causing chronic decline should not 
exceed 3% of the female segment.’’ 
More recently, McLoughlin (2002:33) suggested 
that ‘‘most grizzly bear populations in North 
America can tolerate approximately 3% total 
annual kill before declines . . . accelerate to 
unsatisfactory levels.’’ Careful reading, however, 
reveals that, beyond some minor differences in 
assumptions and procedures, the apparent 
increase in tolerable mortality we report here 
arises not from real discrepancies in models or 
parameter values but rather from different ways 
of expressing a similar underlying dynamic. 

Comparing our results with those of 
Harris (1986) is important because current 
management guidelines in the RZ (U.S. Fish and 
Wildlife Service 1993, 2003) adopt an annual 
mortality limit derived largely from that work. 
First, our approach here differed 
fundamentally in that the earlier work attempted 
to estimate the mortality level associated with 
sustainability indefinitely. That is, Harris (1986) 
used a model of grizzly bear population dynamics 

that was self-regulating. Thus, bear populations 
equilibrated 
(rather than grew exponentially) in the absence of 
killing by humans. Adding human-caused deaths 
to this model engaged compensatory responses 
that were assumed to characterize grizzly bear 
populations (although parameters used to build 
the responses 
were not based directly on data but rather were 
interpolated from general principles). 

 Here, our aims were more modest: to 
project short-term growth rates applied under a 
range of plausible survival rates, making no 
assumptions about density-dependent (or other 
possible) regulating mechanisms that must, no 
doubt, intercede to change those trajectories at 
some point. Second, Harris (1986) assumed that 
natural mortalities, although decreasing as 
hunting increased, would never be entirely 
substituted by human-caused mortality. That is, 
even at the population level producing the highest 
sustainable yield indefinitely, background levels 
of natural mortality would continue. Harris’s 
(1986) objective was to estimate the maximum 
human-caused mortality rate that, when 
embedded into the assumed compensatory 
structure, equilibrated the population with its 
carrying capacity. Here, we declined to suppose 
any particular relationship between human- and 
non–human-caused mortalities (to say nothing of 
carrying capacity). Indeed, we had no data to do 
otherwise, given that not a single independent 
female mortality in the GYE attributable to 
nonhuman causes was documented during 1983–
2001 (Haroldson et al. 2006). Dependent young 
experienced natural mortality, but because cubs 
and yearlings were not collared, cause of death 
was undetermined in many cases (Schwartz et al. 
2006c). 
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 Thus, contrasting our results directly with 
the 3% sustainable mortality rate of females 
estimated by Harris (1986) is inappropriate. 
Harris (1986) also assigned survival rates to 3 
subadult female classes (2, 3, and 4 years old) in 
addition to 3 adult age classes, complicating any 
attempt to compare the total mortality rate 
sustained by adult females in his model 
populations with those we report here. 
Fortunately, we were able to rehabilitate the 
Harris (1986) model for application here and 
develop a common currency for comparison with 
our results. We discovered that maximum hunting 
rates he found consistent with sustainability (i.e., 
6.85 female kills/year from a population of 193.5 
females, or 3.54% of the female component killed 
annually; Harris 1986:276) corresponded to an 
annual survival rate of all females (cubs through 
the oldest class) of 0.851 (SD = 0.035, n = 3,000 
iterations). For comparison, our survival rates of 
all females (regardless of age) consistent with low 
probability of decline were 0.847 (SD = 0.022, n 
= 3,000 iterations) when independent female 
survival was 0.91 (under low process variation) 
and 0.852 (SD = 0.077, n = 6,000) when 
independent female survival was 0.92 (under high 
process variation). Thus, although the approaches 
and presentation of results were quite divergent, 
overall female survival rates consistent with 
nondeclining 
populations in both Harris (1986) and our present 
effort were almost identical. 

McLoughlin (2002) reported that a 
simulated population modeled approximately on 
the GYE grizzly bear data through 1995 
displayed a break point (at which persistence 
probability declined rapidly with additional kills) 
at a mortality rate of about 2.8%. However, 
human-caused mortalities in his model were 
assumed additive to natural mortality, which was 

set at 4.9% for females aged ≥6 years and 11.4% 
for females 2–5 years old (McLoughlin 
2002:table 2.1). With approximately 30% of the 
female population in ages 2–5 years and 46% >6 
years old (approximately the case if the 
population had achieved its stable age distribution 
prior to additional harvest), the mean natural 
mortality rate for females ≥2 years old would thus 
be approximately 6.4%. This, added to the 2.8% 
annual kill, yields 9.2% total mortality of females 
≥2 years old (i.e., annual survival of 0.908), 
which is again similar to our conclusion that λ 
will be 
1 with high probability when annual female (≥ 2 
years old) survival rates are approximately 0.90–
0.91. 
 Eberhardt (1990) also provided a simple 
Deterministic model relating grizzly bear life 
history rates to stable trajectories. Application of 
the mean survival rates from our simulations to 
his equation 1 (Eberhardt 1990:587) produced r = 
0 (i.e., λ = 1.0) with independent female (≥2 years 
old) survival of 0.898 and age of first 
reproduction set to 5 years, as well with as with 
independent female survival of 0.906 and age of 
first reproduction set to 6 years (GYE mean 
during 1983–2002 was 5.81 years, but 
Eberhardt’s [1990] equation did not allow for 
fractional ages). Although abstract, his model 
further confirmed our estimates of female 
survival rates consistent with non-declining 
trajectories. 
 
◄ Back to new mortality guidelines 
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Chao2  
 
◄ Back to new estimate of yearly Fcubs  
 
 One well-explored family of techniques 
for estimating population size uses the 
frequencies of captures. That is, each animal that 
is captured is categorized as having been captured 
once, twice, three times, four times, and so on. 
From this, one has a series of numbers (usually 
abbreviated f1, f2, f3, etc.) that refer not to 
individual animals, but to the number of animals 
that were captured exactly this many times. Now 
logically, if one could also figure out f0, (the 
number of animals never captured), then one 
would have covered all the possibilities and thus 
have an estimate of the total population size.  
 A number of models have been proposed 
for filling in this missing value (the number of 
animals captured exactly zero times), and they 
vary in their assumptions and in how accurately 
and precisely they perform under various 
conditions. For example, a simple method would 
be to simply fit a curve to the frequencies 
observed, and extrapolate this curve backward to 
include zero. This simple technique assumes, 
however, that all animals have an identical 
probability of being captured, and it performs 
poorly if this is not true. (Given the way that 
animals – in this case, females accompanied by 
cubs – are “captured”, it’s likely that they vary in 
their “capture-ability”). 
 Taiwanese biometrician Elaine Chao has 
been among the more active researchers in this 
field, and she has developed and published a few 
estimators for f0 (and thus for the population). 
Among these, the one she published in 1989 
(Chao 1989) relaxes the assumption that all 
animals must have the same probability of 

capture; indeed, it allows every animal to have a 
unique capture probability. Although the 
derivation of it involved some complex math, this 
estimator, which we’ve nick-named Chao2 
(because it was the 2nd such model she proposed), 
reduces to the equation 
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Where N̂  = estimate of the total population 
m = the total number of animals captured, 
regardless of how often (i.e., the minimum 
possible number) 
f1  = number of animals captured once 
f2  = number of animals captured twice 
 Chao (1989) also provided ways to derive 
the variance for this, so that one could produce 
not merely a point estimate, but also a confidence 
interval. Following the explorations of Wilson 
and Collins (1992), Keating et al. (2002) and 
Cherry et al. (2007) conducted simulations into 
the behavior of this estimator under various 
situations. Whereas Keating et al. (2002) initially 
concluded that this Chao2 estimator was not quite 
as good as some alternatives, these authors later 
realized that the frequencies of bear “captures” 
(remember that these were not physical captures, 
but rather identifications of unique females 
accompanied by cubs using the protocol of 
Knight et al. 1995) was slightly different than 
earlier assumed. Cherry et al. (2007) conducted 
additional simulations under conditions that more 
nearly resembled the actual data from 
Yellowstone, and they concluded that Chao2 was 
equal to the other possible estimators in yielding 
relatively precise estimates, and that when it was 
biased, it was always biased low and never high. 
Thus even when a bit off, using Chao2 would 
never suggest more bears than there really were. 
Cherry et al. (2007) thus recommended Chao2 as 
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the best way to estimate the total number of 
females with cubs present in any year, given a 
series of “captures” of such animals.   
 
◄ Back to new estimate of yearly Fcubs  
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◄ Back to trend monitoring 
 
 Akaike’s Information Criterion (AIC) is a 
metric that can be used to compare and contrast 
alternative, competing models that have been 
developed to describe the same phenomenon. 
Rather than test a proposed model against some 
assumed null model and ask if the proposed 
model is “significantly better”, the underlying 
approach here is that while no model is capable of 
fully describing reality, some models are more 
useful than others. AIC scores are generated for 
each candidate model an investigator devises (and 
thus it cannot possibly say anything about how an 
existing model compares to one not yet thought 
up!), and the comparison of these scores gives 
some indication of how well the model fits the 
data. AICc is a variant of AIC that has been found 
to perform better when sample sizes are small. 

Fig. 5.  Data points  

 It seems clear from Fig. 5. that there is 
generally an increasing trend in these data. A 
very simple model would be a straight line (Fig. 
6): 
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 A model that is too simple will depart 
from reality too much to be useful. A model that 
is extremely complex may track the raw data 
quite well, but be so specific as to have lost 
generality. AIC uses the principle of parsimony, 
i.e., making the best possible compromise 
between a highly-complex model (i.e, one with 
many “moving parts”) that tracks data but lacks 
generality, and one that is simple (and thus 
general) but imprecise. 

Fig 6. Data points, simple linear model  

 But clearly there is quite a bit of variation 
in these data that is unexplained by the simple 
straight line (note, for example, that it looks like 
the generally increasing trend was interrupted by 
a pause in the middle of the sequence). That 
probably means that there are other factors than 
simply “time” that explain all the jumping around 
we see in the data. Now suppose, in contrast, we 
threw every possible variable we could think of 
into a model, and ended up with a function that 
looked like this (Fig. 7): 

 As an example, consider the following 
figures, which shows some hypothetical 
phenomenon graphed against time: 
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Fig. 8. Compromise model, best AIC  Fig. 7. Very complex model  
  This new model has succeeded admirably 

in following the data. But will this actually be a 
useful model? Can it describe the underlying 
process that produced these data in a slightly 
different context, or under slightly different 
conditions? (That is, after all, what we are usually 
after in a model; explanation and insight, not 
merely data tracking). A model such as this is 
likely to be so specifically tied to this particular 
set of data (i.e., include variables that pertain only 
to this exact manifestation of the underlying 
process), that it will likely fail if used to 
generalize to the next manifestation of the very 
same underlying process! 

AIC would rank this as a “better” model than 
either of the first two. 
 The actual AIC scores are rather 
unimportant (they can range from very low to 
very high); it is the differences among the AIC 
scores of the models considered that are of 
interest. Unlike in traditional statistics, there is no 
“magic” threshold that distinguishes good from 
bad models, true from false models, or 
significantly better from insignificantly different 
models. Biometricians who’ve studied the 
behavior of AIC generally consider that any 
models that differ from each other by less than 2 
AIC “units” should be viewed as having similar 
support.  

 If we used AIC to judge these 2 models, 
the first (simple one) would be penalized for how 
much it diverges from the data, but gain from its 
simplicity. The second model would gain support 
from its tight fit to the data, but be penalized by 
the number of parameters (i.e., moving parts) 
needed to describe this very complex line. 

 If a suite of candidate models is 
considered, each model can be assigned an “AIC 
weight” as a sort of summary statistic that 
describes the relative strength of evidence for it, 
relative to the others. The weights of all the 
models considered sum to 1.0, so any given 
model gains support at the expense of all the 
others. Model averaging can then use these 
weights to produce a composite explanation that 
gains from the insight provided by all the 
candidate models, with the influence on the final 
model dictated by how strongly each individual 
model is supported. 

 Now if instead of these 2 extremes we 
could devise a compromise model (Fig. 8), one 
that included a few likely variables that enabled it 
to track the data’s variation better than the simple 
linear model, but -- unlike the 2nd model -- did not 
attempt to include every single minor cause of the 
observed fluctuations, it might look something 
like this: 

 For more information on AIC, see:  
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Burnham, K. P., and D. R. Anderson. 2002. 
Model selection and multimodel inference: 
a practical information-theoretic approach. 
Second edition. Springer-Verlag, New 
York. 

 
◄ Back to trend monitoring 
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Harris 1986  
 
◄ Back to mortality limits 
 
 The model underlying estimates of 
sustainable mortality is an approximation, and did 
not use information specifically from the GYE.  It 
used best information that was then available on 
grizzly bear demographics, made some general 
assumptions about how grizzly bear populations 
operated, and added in some quantifications of 
opinions from experienced bear biologists (on 
such matters as the vulnerability of certain 
sex/age classes of grizzly bears to man-caused 
mortality relative to other sex/age classes), and 
combined it into what was, at the time, a state-of-
the-art simulation model. In fact, the underlying 
model already existed at the time of the request. 
That the model had been parameterized well 
before the request — that is, that the numbers in it 
were developed entirely independently of its later 
use as means to estimate sustainable mortality — 
provided some assurance that it wasn’t 
particularly biased toward finding that either 
particularly high or low levels of mortality were 
sustainable. Unfortunately, the fact that so many 
important elements of the model had to be 
generalized from a number of grizzly bear studies, 
and that some quantifications were made based 
only on general patterns of the large mammal 
population dynamics, meant that the model was 
an abstraction. t was better than anything else at 
the time, and it arose free from any particular bias 
in killing or saving bears.  

In short, this model tracked the fate of 
individual “electronic” grizzly bears, each of 
which was assigned a probability of dying (and, if 
female, of giving birth). These probabilities were 
derived from various research studies that had 
been completed on grizzly bears at the time. The 

model was designed and built for the purpose of 
examining what information managers could 
extract from the age and sex of grizzly bears 
killed in a recreational hunt (the state of Montana 
had a legal, albeit limited, hunt of grizzly bears at 
this time). In order to perform this function, the 
model had to be an “equilibrating” one, that is, it 
had to be equipped with “density-dependence” 
(otherwise, the modeled population would rapidly 
decline to extinction if hunting was added, or 
conversely, would increase exponentially if 
hunting was not added!)  

The model was also stochastic, meaning 
that it incorporated variability. Rather than 
sustainability being defined as the mean mortality 
rate that would equilibrate the population, 
sustainability was defined as that mortality rate 
that produced a decline with a probability of 10% 
of lower. That is, most simulated population 
subjected to the 6% harvest equilibrated; only 1 
of 10 declined. However, the proportion of 
declining populations increased rapidly if harvest 
exceeded 6%.  

 
 

◄ Back to mortality limits 
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On non-parametric estimators 
of the true number of Fcubs 
 
◄ Back to estimating yearly Fcubs 
 
 One well-researched way to estimate how 
many animals are never seen is to model the 
distribution of the number of times animals were 
seen, and then to use that distribution to work 
backward, as it were, to estimate the number seen 
zero times. There are various models for doing 
this, each making its own assumptions and 
behaving in various ways when the assumptions 
are violated. Keating et al. (2002) investigated a 
number of these. One of the results of this work 
was that some estimators work best when the 
variability in how many times each animal was 
observed is high, others when it is low. This 
variability is quantified by what is called the 
coefficient of variation, CV. Another result was 
that the estimators vary in their performance 
based on the overall sample size, i.e., how many 
total observations were made (which is not the 
same thing as how many individual animals there 
actually were).  
 A formalization of this work can be found 
in Cherry et al. (2007). For more information on 
the Chao2 estimator, the one recommended in 
this report, click here. 
 
◄ Back to estimating yearly Fcubs 
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0.274 or 0.284? 
 
◄ Back to Fcubs to total population 
 

The original proportion of adult females 
with cubs was listed as 0.284 in the 1993 Grizzly 
Bear Recovery Plan.  That value was updated and 
changed to 0.274 by Eberhardt and Knight (1996: 
417).   
 
◄ Back to Fcubs to total population 
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The power of the protocol to 
detect a change in trend 
 
◄ Back to details of trend monitoring 
 
Methods 

Under monitoring protocols current as of 
2006, an estimate is made annually of the number 
of females with cubs of the year ( ). Unique 
females with cubs in each year are identified from 
all observations using a rule set developed by 
Knight et al. (1995). We consider sightings of 
females with cubs made with the aid of radio-
telemetry biased and excluded them from the 
calculations (Keating et al. 2002).  The Chao2 
estimator (Chao 1989, Keating et al. 2002, Cherry 
et al. 2007) is then used to estimate the total 
number of females with cubs present from the 
estimated number observed. The trend in this 
segment of the population and its rate of change 
can be estimated from these annual estimates, 
providing an independent estimate of λ. However, 
annual estimates of N  can vary because of 
sampling error, as well as because of pulsed or 
synchronized reproduction.  Thus, using annual 
estimates independently each year can result in 
greater variation in the estimate of total 
population size than is likely to characterize the 
true population.  

ˆ
iN

ˆ
i

Monitoring population size and λ using 
females with cubs.  The natural logarithm of the 
number of females with cubs [ lo ] can be fit 
with a linear model of year (yi = i − 1) to estimate 
λ as: 

ˆg( )iN

iii yN ε+β+β= 10)ˆ( log                 (Eq. 4) 
so that the population size at time zero is 
estimated as  and the rate of 
population change is estimated as , giving 

.  Asymmetric confidence intervals on 
λ can be estimated as the exponential of the 

symmetric confidence bounds on 

0
ˆˆ exp( )N = β0

)ˆ( 1βe
0
ˆˆ ˆ iy

iN N= λ

1β . Standard 
errors for log ( ) can be computed with the 
usual linear model methods, and confidence 
intervals for ( ) can be estimated as the 
exponential of the confidence bounds on log 
( ).When we assume a reasonably stable age 
and sex structure for the total population, this 
estimate of λ represents the rate of change of the 
entire population. Fitting a linear relationship 
makes the standard assumptions of least squares 
regression. 

iN̂

iN̂

iN̂

iyβ1( log
2

A quadratic regression can be also used to 
detect a change in λ̂  through time.  We fit the 
model 

iii yN ε+β++β= 2
20)ˆ       (Eq. 5). 

We expect that the estimate of β  will become 
negative as population growth slows (as it would, 
for example, if it reached carrying capacity) or 
reverses.  Information-theoretic model selection 
methods (Burnham and Anderson 2002) can be 
used to select between the linear and quadratic 
models, and hence to detect changes in λ̂  as 
additional data are collected.  We used model 
averaging with the linear and quadratic models of 
the predicted population sizes of females with 
cubs to estimate population sizes through time 
(i.e., ), and thus smooth the variation of the 
Chao2 estimates. We used AICc weights 
(Burnham and Anderson 2002) to weight the 
estimates from the linear and quadratic models to 
produce our best estimate of the current number 
of females with cubs and λ.  

iN̂

To assess the behavior of our proposed 
model selection procedure, we i) added 2 
hypothetical years of data for 2006 and 2007, 
assuming λ = 0.9 for both additional years, and ii) 
added 4 hypothetical years of data, assuming λ = 
1.0 for all additional years.  
 Power analysis of using N to estimate λ.  
Simply adding hypothetical years with altered λ, 

ˆ
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as above, would not constitute a power analysis 
of the proposed trend monitoring method, 
because future years’ data will also contain 
process and sampling variation. To estimate the 
power of these data to detect a true reduction in λ 
(i.e., correctly chose the quadratic model), we 
estimated variance components of the Chao2 
female-cubs counts 1983–2005, and applied these 
in Monte Carlo projections for 10 additional years 
under various assumed values of λ.   

To separate the sampling variance 
associated with each population estimate, 
( ) from process variance, we fitted the 
linear model (above), with the assumption that 
the variance of ε  was the sum of the sampling 
variance and the process variance (earlier 
analyses provided no evidence for significant 
serial correlation, unpublished data).  For the 
Chao2 estimator, var(  was estimated with 
bootstrap resmpling of the data, and the variance 
of the resampling distribution was the estimate 
of .  Note that the variance of log(  is 
estimated sing the Delta method 
as

)ˆvar( iN

)ˆvar( iN

i

)ˆ
iN

)ˆ
iN

u
( ) 2)ˆ

iiN = ˆ/)ˆ( i NNvarlog(var .   
 To estimate the process standard deviation 
from the 1983–2006 Chao2 estimates, we used 
PROC NLMIXED in SAS (code available from 
GCW).   This procedure maximizes the likelihood 
of forβ ,β , and the process SD, with the 
likelihood specified as a normal distribution with 
mean predicted by log(  and 
variance 

)ˆlog( iN 0 1

ii yN 10)ˆ β+β=
( ) 2SD) (Process )var +iN̂

)ˆ
i

log(

N

.  This 
model thus explicitly includes the sampling 
variance of log(  plus the process variance that 
is estimated by the procedure. Process SD was 
estimated to be 0.176 with SE 0.0461 and 95% 
confidence interval 0.0808–0.271 
 To estimate the expected sampling 
variance of future Chao2 estimates (which 
assumes that future sampling effort will remain 

approximately the same as used to collect the 
1983–2006 data), the mean of the sampling 
variances of the log population estimates for the 
1983–2006 data was computed.  The expected 
sampling variance of future Chao2 estimates was 
then computed as a normally distributed random 
variable with mean zero and standard deviation 
equal to the square root of mean sampling 
variance.  From this procedure, the estimated 
sampling standard deviation was 0.34. 

To evaluate sensitivity of the linear and 
quadratic models to changes in N over 1 to 10-
year time intervals, we projected forward the 
2006 population estimate of N2006 = 52.356 
(obtained by model averaging the linear and 
quadratic model estimates from the fits of the 
1983–2006 data), assuming alternative λ values 
of 0.95, 0.975, 1, 1.025, and 1.05, and using our 
estimates of process and sampling variation 
(above). Population size for each succeeding year 
was generated with the recursive relation 

ˆ

iii NN δλ ++=+ )log()log()log( 1 , where the 
process variation was added as iδ  , a normally 
distributed random variable with mean zero and 
standard deviation 0.176.  The estimated 
population size (corresponding to the Chao2 
estimates) was taken as log( 1+1)+ ε+ iiN

1+i

, where 
the sampling variation ε  was added as a 
normally distributed random variable with mean 
zero and standard deviation 0.34. Each replicate 
was simulated independently, i.e., completely 
new data were added to the 1983–2006 data for 
each simulation.   

One thousand replicates of each of the 50 
scenarios (5 alternative λ X 10 alternative time-
frames) were generated, from which we obtained 
estimates of the mean AICc weight of the 
quadratic model, the proportion of iterations in 
which the quadratic term was selected (weight > 
0.5), and the power of the t-test to reject the null 
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hypothesis that the quadratic term was equal to 
zero. This provided a realistic simulation of the 
data and analyses that would be available to 
managers when judging whether the population 
had changed its trajectory. 

 
Results 

 When our best estimates of process and 
sampling variation were added to hypothetical 
years 1 through 10, approximately 5 years were 
required of the population decreasing 5% yearly 
(i.e., λ = 0.95) before the preponderance of 
evidence (AICc weight > 0.5) favored the 
quadratic model (i.e., fundamental change in state 
from linear increase, Fig. 8, below).  Under the 
scenario in which population size stabilized after 
year 2006 (i.e., λ = 1.0), 7 or 8 years were 
required for the preponderance of evidence to 
favor the quadratic model (depending on the 
criterion used, Fig. 8). Power to detect a yearly 
decline of 2.5% was intermediate between these 2 
examples. Power was lower to detect changes in λ 
to 1.025 or 1.05 (unpublished data), but this was 
neither unexpected nor worrisome under the 
baseline linear estimate of λ of 1.0479. 

 
 
◄ Back
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 to trend monitoring 

Fig. 8. Mean AICc weight of the (negative) 
quadratic term, proportion of simulations in which 
the quadratic model had greater AICc weight than 

the linear model, and power of the quadratic term 
(i.e., probability of rejecting the linear model) when 
expected λ changed to 0.95 following the 1983–
2006 series of estimates of females with cubs, for 
additional years 1 to 10 and using estimates of 
process and sampling variation from the data.  
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Fig. 9. Mean AICc weight of the (negative) 
quadratic term, proportion of simulations in which 
the quadratic model had greater AICc weight than 
the linear model, and power of the quadratic term 
(i.e., probability of rejecting the linear model) when 
expected λ changed to 1.0 following the 1983–2006 
series of estimates of females with cubs, for 
additional years 1 to 10 and using estimates of 
process and sampling variation from the data.  
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The effect of correlation among 
demographic parameters on 
estimates of λ and the 
demographic vigor of the GYE 
grizzly bear population 
 
◄ Back to correlations affecting λ 
It is well known that the overall rate of population 
change (λ) is affected not only by mean vital rates 
but by their variances. Mean λ produced by a 
series of birth and death rates that vary annually 
will be lower than the λ produced by a single 
mean of those same rates. For this reason, 
Deterministic simplifications of growth processes 
are biased high, with the magnitude of the bias 
dependent on the magnitude of yearly variation. 
Clearly, if annual survival and reproductive rates 
covary (i.e., are positively correlated), overall 
variation will be greater than if they vary 
independently. For example, if the same 
underlying process causes both survival and 
reproduction to reach their lowest values in the 
same year, overall growth rate will be lower than 
if both reached that same lowest value in different 
years. Often it will be the case that vital rates are 
positively correlated among years. 
 Unfortunately, obtaining estimates of 
yearly co-variation is difficult. We are interested 
not in the appearance of yearly co-variation, but 
in true variation in the underlying process. If we 
simply calculate survival and reproductive rates 
annually, our estimates of covariance will largely 
be artifacts of sampling variation, which will tend 
to overwhelm the underlying process covariance. 
(We are interested only in the latter here, not the 
former). Haroldson et al. (2006) were able to 
estimate process variance for independent female 
survival (i.e., they “stripped away” sampling 
variance), but Schwartz et al. (2006b, c) lacked 

sample size and/or procedures to do so for 
juvenile survival or for reproductive parameters.  
 However, we can approximate the amount 
of underlying covariance among parameters 
because we modeled all as functions of common 
covariates. As these covariates change yearly, the 
various rates respond in tandem. We can use 
these models to estimate the magnitude of 
correlation among rates, and to examine how this 
magnitude of linkage affected our estimates of 
overall growth rate. This procedure will tend to 
emphasize any existing covariance in yearly rates 
(and hence inflate overall variance in yearly 
growth rate) because much of the correlation is 
imposed by the model.  
 
Methods 
 
Correlation structure of demographic 
parameters and its effect on λ 
 
 We used the top models of Haroldson et al. 
(2006) and Schwartz et al. (2006b, c) that 
employed temporal covariates to predict yearly 
survival of cubs, yearlings, and independent 
females, and of reproduction (summarized by mx). 
For mx, we used the model with the 2nd lowest 
AICc (∆AICc = 0.58, Schwartz et al. 2006b:21, 
model 2), which included WBP and Minpop as 
temporal covariates. This model predicted litter 
size probability. We assumed constant inter-birth 
intervals and ages at 1st reproduction (neither of 
which can be estimated annually), and adjusted 
results until they produced mx of 0.318 (used in 
all previous projections) when both WBP and 
MinPop were at their mean values.  For cub and 
yearling survival, we used the 2nd highest ranking 
model (∆AICc = 0.62; model 2, Schwartz et al. 
2006c:29), which included only WSI. In addition, 
we used the 3rd highest ranking model (∆AICc  = 
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0.85; model 3, Schwartz et al. 2006c:29) which 
included only MinPop. For independent female 
survival, we used the 2nd highest ranking model 
(∆AICc  = 0.50), which included WBP and WSI 
(using the C data set; Haroldson et al. 2006 did 
not provide AD models because they were unduly 
influenced by the occasional presence of 
unresolved-fate bears). In each case, we used the 
yearly covariate (Schwartz et al. 2006a:14), and 
calculated the model’s best estimate of each 
demographic rate for that year (with appropriate 
back-transformation and conversion to an annual 
rate). For mx (via litter size), we used the WBP 
and MinPop for year t − 1 to estimate the rate in 
year t (Schwartz et al. 2006b:13).  
 For both of these models, we then ran 2 
sets of Monte Carlo re-samplings of the 19 years 
of vital rates, 1) in which all rates varied in 
tandem, linked via their mutual association with 
that year’s WBP, WSI and MinPop values (i.e., 
co-varying rates using covariate values in 
Schwartz et al.2006a:14), and 2) in which all 
rates varied independently, i.e., sampled from the 
19 possible values, but scrambled from each other 
(i.e., independently varying rates), in each case 
calculating asymptotic λ using PopTools and Eq. 
3. A comparison of these 2 distributions (using 
identical vital rates, but one in which they were 
temporally correlated as suggested by our 
strongly supported models, and one in which 
rates varied independently) provided an estimate 
of the effect of co-varying rates on λ. 
 
Results 
 
Correlation structure of demographic 
parameters and its effect on λ 
 
 

◄ Back

As expected, survival of adults, cubs, and 
yearlings were positively correlated. (The 

correlation between yearly cub and yearling 
survival was imposed by the model; values were 
constrained by the fact that all had the same 
slopes on the logit scale). In contrast, correlations 
among reproduction and survival were weak and 
inconsistent. Although WBP appeared in all 
models (and the direction of the relationship was 
always the same), the reproduction model used 
WBP in the previous year, whereas survival 
models used WBP in the year of survival.  
 When using cub and yearling survival 
rates estimated from the WSI-only model, Monte 
Carlo re-sampling (n = 5,000) with the implied 
correlation structure yielded a mean λ of 1.0652 
(95% CI = 1.0084–1.1276). Identical re-sampling 
with rates scrambled independently of one 
another (n = 5,000) yielded a mean λ of 1.0648 
(95% CI = 1.0182–1.1257). When using cub and 
yearling survival rate estimates from the MinPop 
only model, Monte Carlo re-sampling (n = 5,000) 
with the implied correlation structure yielded a 
mean λ of 1.0720 (95% CI = 1.0063–1.1335). 
Identical re-sampling with rates scrambled 
independently of one another (n = 5,000) yielded 
a mean λ of 1.0713 (95% CI = 1.0245–1.1314). 
 

 to correlations 
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Details on trend monitoring 
 
◄ Back to trend monitoring  

Under monitoring protocols current as of 
2006, an estimate is made annually of the number 
of females with cubs of the year ( ). Unique 
females with cubs in each year are identified from 
all observations using a rule set developed by 
Knight et al. (1995). We consider sightings of 
females with cubs made with the aid of radio-
telemetry biased and excluded them from the 
calculations (Keating et al. 2002).  The Chao2 
estimator (Chao 1989, Keating et al. 2002, Cherry 
et al. 2007) is then used to estimate the total 
number of females with cubs present from the 
estimated number observed. The trend in this 
segment of the population and its rate of change 
can be estimated from these annual estimates, 
providing an independent estimate of λ. However, 
annual estimates of N  can vary because of 
sampling error, as well as because of pulsed or 
synchronized reproduction.  Thus, using annual 
estimates independently each year can result in 
greater variation in the estimate of total 
population size than is likely to characterize the 
true population.  

ˆ
iN

ˆ
i

 The natural logarithm of the number of 
females with cubs [ ] can be fit with a 
linear model of year (yi = i − 1) to estimate λ as: 

ˆlog( )iN

iii yN ε+β+β= 10)ˆ( log                 (Eq. 4) 
so that the population size at time zero is 
estimated as  and the rate of 
population change is estimated as e , giving 

.  Asymmetric confidence intervals on 
λ can be estimated as the exponential of the 
symmetric confidence bounds on β . Standard 
errors for log ( ) can be computed with the 
usual linear model methods, and confidence 
intervals for ( ) can be estimated as the 
exponential of the confidence bounds on log 

( ).When we assume a reasonably stable age 
and sex structure for the total population, this 
estimate of λ represents the rate of change of the 
entire population. Fitting a linear relationship 
makes the standard assumptions of least squares 
regression. 

0
ˆˆ exp( )N = β

iN̂

iN̂

0
)ˆ( 1β

1

0
ˆˆ ˆ iy

iN N= λ

iN̂

( log

A quadratic regression can be also used to 
detect a change in λ̂  through time.  We fit the 
model 

iiii yyN ε+β+β+β= 2
210)ˆ       (Eq. 5). 

We expect that the estimate of 2β  will become 
negative as population growth slows (as it would, 
for example, if it reached carrying capacity) or 
reverses.  Information-theoretic model selection 
methods (Burnham and Anderson 2002) can be 
used to select between the linear and quadratic 
models, and hence to detect changes in λ̂  as 
additional data are collected.  We used model 
averaging with the linear and quadratic models of 
the predicted population sizes of females with 
cubs to estimate population sizes through time 
(i.e., ), and thus smooth the variation of the 
Chao2 estimates. We used AICc weights 
(Burnham and Anderson 2002) to weight the 
estimates from the linear and quadratic models to 
produce our best estimate of the current number 
of females with cubs and λ.  

iN̂

To assess the behavior of our proposed 
model selection procedure, we i) added 2 
hypothetical years of data for 2006 and 2007, 
assuming λ = 0.9 for both additional years, and ii) 
added 4 hypothetical years of data, assuming λ = 
1.0 for all additional years.  
  Simply adding hypothetical years with 
altered λ, as above, would not constitute a power 
analysis of the proposed trend monitoring method, 
because future years’ data will also contain 
process and sampling variation. To estimate the 
power of these data to detect a true reduction in λ 
(i.e., correctly chose the quadratic model), we 
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estimated variance components of the Chao2 
female-cubs counts 1983–2005, and applied these 
in Monte Carlo projections for 10 additional years 
under various assumed values of λ.   

To separate the sampling variance 
associated with each population estimate, 
( ) from process variance, we fitted the 
linear model (above), with the assumption that 
the variance of ε  was the sum of the sampling 
variance and the process variance (earlier 
analyses provided no evidence for significant 
serial correlation, unpublished data).  For the 
Chao2 estimator, var(  was estimated with 
bootstrap resampling of the data, and the variance 
of the resampling distribution was the estimate 
of .  Note that the variance of log(  is 
estimated sing the Delta method 
as

)ˆvar( iN

)ˆvar( iN

i

)ˆ
iN

)ˆ
iN

u
( ) 2)ˆ

iiN = ˆ/)ˆ( i NNvarlog(var .   
 To estimate the process standard deviation 
from the 1983–2006 Chao2 estimates, we used 
PROC NLMIXED in SAS (code available from 
GCW).   This procedure maximizes the likelihood 
of forβ ,β , and the process SD, with the 
likelihood specified as a normal distribution with 
mean predicted by log(  and 
variance 

)ˆlog( iN 0 1

ii yN 10)ˆ β+β=
( ) 2SD) (Process )var +iN̂

)ˆ
i

log(

N

.  This 
model thus explicitly includes the sampling 
variance of log(  plus the process variance that 
is estimated by the procedure. Process SD was 
estimated to be 0.176 with SE 0.0461 and 95% 
confidence interval 0.0808–0.271 
 To estimate the expected sampling 
variance of future Chao2 estimates (which 
assumes that future sampling effort will remain 
approximately the same as used to collect the 
1983–2006 data), the mean of the sampling 
variances of the log population estimates for the 
1983–2006 data was computed.  The expected 
sampling variance of future Chao2 estimates was 
then computed as a normally distributed random 

variable with mean zero and standard deviation 
equal to the square root of mean sampling 
variance.  From this procedure, the estimated 
sampling standard deviation was 0.34. 

To evaluate sensitivity of the linear and 
quadratic models to changes in N over 1 to 10-
year time intervals, we projected forward the 
2006 population estimate of N2006 = 52.356 
(obtained by model averaging the linear and 
quadratic model estimates from the fits of the 
1983–2006 data), assuming alternative λ values 
of 0.95, 0.975, 1, 1.025, and 1.05, and using our 
estimates of process and sampling variation 
(above). Population size for each succeeding year 
was generated with the recursive relation 

ˆ

iii NN δλ ++=+ )log()log()log( 1 , where the 
process variation was added as iδ  , a normally 
distributed random variable with mean zero and 
standard deviation 0.176.  The estimated 
population size (corresponding to the Chao2 
estimates) was taken as log( 1+1)+ ε+ iiN

1+i

, where 
the sampling variation ε  was added as a 
normally distributed random variable with mean 
zero and standard deviation 0.34. Each replicate 
was simulated independently, i.e., completely 
new data were added to the 1983–2006 data for 
each simulation.   

One thousand replicates of each of the 50 
scenarios (5 alternative λ X 10 alternative time-
frames) were generated, from which we obtained 
estimates of the mean AICc weight of the 
quadratic model, the proportion of iterations in 
which the quadratic term was selected (weight > 
0.5), and the power of the t-test to reject the null 
hypothesis that the quadratic term was equal to 
zero. This provided a realistic simulation of the 
data and analyses that would be available to 
managers when judging whether the population 
had changed its trajectory. 
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 Monitoring population size and λ using 
females with cubs.  Data for 1983–2005 were 
used to estimate the rate of population change.  
The parameter estimates and AICc weights for the 
linear and quadratic models suggested that 
primarily the linear model was needed to model 
changes in the number of females with cubs 
during this period.  The estimate of λ using the 
linear model was 1.0479 with 95% confidence 
interval of 1.031–1.065.  The estimated quadratic 
effect (–0.000711, SE = 0.0013) was not 
significant (P = 0.6), and 79% of the AICc weight 
was associated with the linear model.  Thus, the 
linear model was the best approximating model 
for 1983–2005, but we also provide the model 
averaged estimates. 
 When 2 years with λ = 0.9 were added to 
these data, the resulting quadratic model had an 
AICc weight of 0.67847 and an estimated 
quadratic effect of −0.0028 (SE = 0.0012) that 
differed from zero (P = 0.03).  Thus, had the 
Chao2 counts declined by exactly 10% each year, 
our model selection would have detected this 
fundamental change in system state within 2 
years.  Two years would not have been sufficient 
to detect a change to stationary counts, but by the 
3rd year, model weights would have shifted to 
favor the quadratic model, suggesting that 
population growth had stopped. 

Power analysis of using N to estimate a 
change in λ. When our best estimates of process 
and sampling variation were added to 
hypothetical years 1 through 10, approximately 5 
years were required of the population decreasing 
5% yearly (i.e., λ = 0.95) before the 
preponderance of evidence (AICc weight > 0.5) 
favored the quadratic model (i.e., fundamental 
change in state from linear increase).  Under the 
scenario in which population size stabilized after 
year 2006 (i.e., λ = 1.0), 7 or 8 years were 

required for the preponderance of evidence to 
favor the quadratic model (depending on the 
criterion used). Power to detect a yearly decline 
of 2.5% was intermediate between these 2 
examples. Power was lower to detect changes in λ 
to 1.025 or 1.05 (unpublished data), but this was 
neither unexpected nor worrisome under the 
baseline linear estimate of λ of 1.0479. 

ˆ

For more on the expected power of the 
this trend monitoring, click here.  

 
 

 
◄ Back to trend monitoring  
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