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Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and 
surrounding areas requires annual estimation of the number of adult female bears with cubs of the year 
(FCOY).  We examined the performance of 9 estimators of population size via simulation.  Typically, 
capture probability heterogeneity has been quantified by the coefficient of variation (CV) of those 
probabilities.  CV does not, by itself, adequately describe the effects of capture heterogeneity, because 2 
different distributions of capture probabilities can have the same CV.  Valid simulation results require 
selection of capture probability distributions with capture probabilities high enough to ensure each 
individual in the population has a reasonable chance of being captured.  We found that the Chao (1989) 
estimator for model Mh performed the best for the simulations reported here. 
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1. INTRODUCTION 

 
There is a rich literature on estimating closed population size using capture-

recapture designs (Otis et al. 1978, Seber 1982). Initial attempts ignored capture 

heterogeneity but in recent years parametric and nonparametric methods have been 

proposed that account for heterogeneity over time and among individuals as well as 

heterogeneity due to behavioral changes caused by the capture process.  Capture 

heterogeneity has been typically quantified by the coefficient of variation (CV) in 

probabilities or other parameters (e.g. Poisson means) that determine counts of individual 

animals in a sample.  

 Monte Carlo methods are commonly used to assess the statistical performance of 

estimators even when analytical methods exist for calculating bias and variability. 

Typically, authors simulate data from a random process with a known CV, then draw 

general conclusions about estimator performance based on these simulations. This 



approach assumes that CV adequately quantifies capture heterogeneity – an assumption 

that may not be true, as we show below.  

In our work we have attempted to estimate the number of adult female grizzly 

bears with cubs of the year (FCOY) in the Greater Yellowstone Ecosystem (GYE) based 

on the frequency of sightings of unique individuals. Knight et al. (1995) developed a rule 

set to distinguish pairs of sightings of FCOY among those coming from 2 unique females 

or repeated observations of the same female.  Tallies of unique females provided a 

minimum annual estimate of FCOY in the GYE grizzly bear population.  These counts 

were then used to estimate minimum total population size and establish limits of annual 

allowable human caused mortality (USFWS 1993).  Because tallies of unique females 

were used, the method returned a minimum rather than a total population estimate.  

Keating et al. (2002) evaluated several nonparametric estimators that use sighting 

frequencies to estimate the total number of FCOY. The coefficient of variation (CV) of 

the probability of the ith individual being selected in the next sampling episode ip~ was 

used as a measure of capture heterogeneity. They recommended Chao’s sample coverage 

estimator (Chao and Lee 1992) as a reasonable method of estimating total FCOY based 

on their simulations and results in Chao and Lee (1992).  Lee and Chao (1994) also 

recommended the sample coverage estimator for model hM  under a multinomial 

sampling setting. 

We identify 2 problems with the recommendations of Keating et al. (2002). First, 

the simulations on which their recommendations were based all assumed CVs < 1, but 

recent empirical data (Haroldson 2005) strongly suggest that CV sometimes exceeds 1. 

Second, further work has shown that CV is not adequate by itself to quantify capture 



heterogeneity. Specifically, 2 very different distributions of ip~ s can yield identical CVs, 

yet be associated with dramatically different estimator performances. As we show below, 

the sample coverage estimator recommended by Keating et al. (2002) is not robust to this 

problem. Our concern is that, absent information about the true underlying distribution of 

the ip~  values, use of this estimator could lead to overestimating FCOY thereby setting 

annual mortality limits at unsustainably high levels. 

We have 2 objectives in this paper. First, we explore the effect of the particular 

method of data simulation on Monte Carlo based assessments of 9 estimators of 

population size. Second, we update the recommendations of Keating et al. (2002) 

regarding estimation of the number of FCOY in the GYE.  

2. METHODS 

2.1 NOTATION 

 We use the notation of Keating et al. (2002). We draw a series of independent 

observations of n individual animals from a closed population of N animals, with nm ≤  

of these animals being unique. The identity of each is recorded and we assume all 

animals are correctly identified. The probability of the ith individual being selected in the 

next sampling episode is denoted by Nipi ,,1,~ =  with  
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For convenience we will refer to the ip~ s as sighting probabilities. Let Nini ,,1, = be 

the number of times the ith individual is seen. We let jf  denote the number of 

individuals seen exactly j times, nrj ≤= ,,0 . Observable quantities are 0>in , 

rjf j ,,1, =  and  
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We wish to estimate N or, equivalently, 0f . 

2.2 DATA SIMULATIONS 

 Nine estimators were compared using Monte Carlo simulation methods for 

population sizes of N = 20, 40, 60, and 80, following Keating et al. (2002).  We generated 

data using 2 different procedures: a beta cumulative distribution (cdf) based procedure as 

per Keating et al. (2002) and a negative binomial based procedure as per Boyce et al. 

(2001).   For both procedures, heterogeneity of captures was measured by the CV of the 

N individual sighting probabilities ( ip  values).  We investigated values of CV = 0 to 1.75 

in increments of 0.25 except that for the negative binomial model, a CV = 0.01 was used 

instead of CV = 0 which is impossible for this model.  

Chao and Lee (1992) show that for fixed n the CV of the ip  is related to the 

sighting frequencies (fi) as 
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where n is the total number of captures, i
i

n if= ∑ . 

 The vector of capture frequencies (fi) for the beta distribution simulations was 

simulated using the methods of Keating et al. (2002).  We calculated ip  as the integral of 

a standard beta distribution over the interval ( 1)i N−  to i N as 



( 1)( , ) ( , )i i N i Np I I −= α β − α β , 

where ( , )xI α β  is the incomplete beta function ratio with parameters α  and β .  There are 

an infinite number of ( )βα , pairs that yield distributions of ip s with the same CV. For 

example, the 2 ( )βα , pairs (0.4172, 0.4172) and (6.1386, 6.1386) both produce 

distributions of ip s with CV = 1 for a population of N = 40, but the expected proportion 

of animals seen in a sample of size n = 80 (effort of 2) is 0.776 (Table 1) forα = β  = 

0.4172 and 0.568 for α = β = 6.13864.  Obviously, estimator performance will differ for 

these 2 scenarios.  

We used the Solver routine in Microsoft Excel to select 1α = β <  to give the 

desired CV of the ip s with the additional constraint that the minimum ip  was maximized 

so that all animals in the population had non-zero ip  (Table 1).  Using the resulting ip  

values, we randomly drew n sightings from the simulated population so that the number 

of sightings per individual in the population ( )n N  ranging from 0.5 to 4.0 in equal 

increments of 0.5 (with this variable designated as sampling effort). After each sighting, 

the identity of the individual was recorded.  Results were then used to tabulate the vector 

of sighting frequencies, f. Data could have been generated from any cdf but we chose the 

beta family because it is flexible and comparable with Keating et al. (2002). 

 Data were also generated by sampling from a negative binomial distribution 

although we did not draw directly from that distribution. We assumed that the number of 

times an individual animal was seen followed a Poisson process with 

parameter Nii ,,1, =λ . The iλ s were assumed to be a random sample from a gamma 



distribution. Following Boyce et al. (2001) we considered the following parameterization 

for the negative binomial model: 
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for x = 0, 1, … where k, and P > 0. The random variable X is the number of times an 

animal is sighted and has mean kP and variance kP(1 + P), where k and P are the shape 

and scale parameters of the gamma distribution used to generate the Poisson means. To 

obtain the appropriate CV we set 2
1

CVk = , and nP k
N
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 to provide an average of 

the Poisson means as Nn / .  Here CV is a measure of the heterogeneity in the Poisson 

means; however, this is equivalent to the CV for the ip s. Note that in simulations using 

the beta model, n (and hence effort) is a fixed constant, whereas for the negative binomial 

model, n is a random quantity varying with each simulation.  To simulate the number of 

captures of the ith animal for the negative binomial model, we generated a random 

variable from the gamma distribution with shape parameter k , multiplied the result by P, 

and used this result as the Poisson mean to generate the observed number of captures of 

that animal.  

 One thousand simulated data sets were generated for each of 256 combinations of 

CV, n, and N for the simulations using the beta cumulative distribution function and CV, 

the mean of n, and N for the negative binomial based simulations.  With each data set, 9 

estimators of population size were computed from the resulting fi statistics.  

2.3 ESTIMATORS 



Nine estimators (5 nonparametric and 4 parametric) of population size (N) were 

compared.  We first examined Chao’s (1984, 1987, 1989) estimator (hereafter referred to 

as Chao1): 
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where m is the number of individual animals captured. This estimator assumes model tM  

(Otis et al. 1978).  Using Chao1N̂ , the statistical expectation for the estimate, ),ˆ(NE  equals 

N only when sighting probabilities are the same for all animals; i.e., when CV = 0.  When 

CV > 0, NNE <)ˆ(  (Chao 1984).  This does not ensure NN ≤Chao1
ˆ  in all cases, but it does 

suggest that Chao1N̂  might provide an inherently conservative approach to estimating N. 

 The estimator Chao1N̂  is an asymptotic version of the non-asymptotic estimator: 

3 2
1 1 2 1

Chao1Mod 2 2
1 2 1 1 2

( )ˆ
( )

f n m m mN m
n m m m nm m n

⎡ ⎤− −
= + +⎢ ⎥− + − −⎣ ⎦

, 

where 2
1

1

2 fm
f

=  and 3
2

1

6 fm
f

=  (Chao 1984).    

We also considered an estimator developed by Chao (1989) for model hM .  

When the sample unit is the individual animal, this estimator (Chao2) is given by (Wilson 

and Collins 1992): 
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Chao and Lee (1992) proposed an estimator based on sample coverage (C), where 

C is the sum of the ip  values for the m individuals actually observed in the sample.  Lee 



and Chao (1994) offered 2 estimators of C (SC1 and SC2) that, in the notation of our 

sampling model, are given by 
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For model Mh of Otis et al. (1978), Lee and Chao (1994) then estimated N as 
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where i = 1 or 2, and γ  is a measure of the coefficient of variation of the pi’ s.  Where the 

sample unit is the sighting of an individual animal, 2γ̂  is calculated as (Chao and Lee 

1992), 
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Calculation of 2γ̂ requires an initial estimate of N.  Following Chao and Lee (1992), we 

used Darroch and Ratcliff’s (1980) estimator, ,ˆˆ
DR iCmN =  which assumes equal 

sightability among all animals in the population.  We only evaluated the 2
ˆ

SCN  estimator 

here. 

 A modification of 2
ˆ

SCN  (SC2Mod) was given by Chao and Shen (2004). 

Individuals are partitioned into 2 groups, those with high probabilities of appearing in the 

sample (high ip~ values) and those with low probabilities (low ip~ values). Individuals 

commonly seen are those observed more thanκ times. Define ∑=
=

κ

1i irare fS  and define 
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The squared coefficient of variation 2γ̂ is estimated by  
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if the sample size n is fixed and  
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if the sample size varies. The population size is estimated by  

02
ˆˆ fmN ModSC += . 

 It is not clear that there is a single cutoff value for κ  that is appropriate for general use.  

Chao and Shen (2004) applied their estimator to simulated data using κ  values of 5, 10, 

and 15 and found that it made little difference under conditions of homogeneity but was 

more important for heterogeneous populations. Setting κ equal to 10 seemed to yield 

estimates closest to the truth in their simulations and we also chose that as the cutoff for 

our simulations. 

            Keating et al. (2002) used a bootstrapping method to estimate standard errors. 

They determined that bootstrapped standard errors were comparable to the standard 

deviations of repeated simulations. We do not further evaluate that method here. Standard 



deviations presented for the 5 nonparametric estimators are determined from the 

simulation results. 

 The last 4 estimators are based on the maximum likelihood estimator of N 

computed from Poisson mixture distributions.  Norris and Pollock (1998) developed a 

mixture model of the number of animals captured i times, i = 0, 1, …., based on the 

Poisson distribution with likelihood  
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for a fixed value of A.  A is the number of mixtures for the mean of the Poisson 

parameter, λ , with 
1

1
A

a
a=

π =∑ , where aπ  is the probability of inclusion in mixture a. 

Estimator Poisson 
ˆ

AN  was computed for A = 1, 2, and 3, giving 2, 4, and 6 parameters 

estimated for the 3 models.  Optimization of these likelihoods was conducted with the 

NLP procedure of SAS Institute 2003 to obtain maximum likelihood estimates and SE 

from the variance-covariance matrix obtained by inverting the negative of the 

information matrix.  Note that the Poisson 
ˆ

AN  models can be derived from the estimator 

proposed by Pledger (2000) by replacing the binomial likelihood with the Poisson 

likelihood. 

 Model averaging as described by Burnham and Anderson (2002) was applied 

using the AICc values from these 3 likelihood-based models to obtain Poisson ModAveN̂ .  SEs 

were computed using the formulas provided by Burnham and Anderson (2002). 

2.4 SIMULATION SUMMARIES 



 Simulation results were summarized as the percent relative bias (PRB) for the 

number of simulations (l) being reported: 
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and mean squared error (MSE) is computed for the number of simulations (l) being 

reported: 
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2.5 COMPARISON OF EMPIRICAL DATA TO SIMULATED DATA 

Simulation results ultimately form the basis for recommendations to applied 

settings. Ideally, such recommendations are valid when observed data are assumed to 

have been produced by the given simulation method(s). It seems likely, however, that 

different simulation methods could produce data consistent with observed data, but with 

differing results for estimator performance.  To put it another way, it is possible to 

establish that observed and simulated data are different, but it is not possible to establish 

that empirical and simulated data that are consistent were produced by the same 

probabilistic process.  Our comparisons of empirical and simulated data were an attempt 

to show that our data are consistent, understanding this does not guarantee they were 

produced by the same process. We attempted to determine this in 2 ways.  

First we compared the sighting frequencies from the 1986–2004 data to the 

simulated data.  The if  statistics for the 19 years were summed across years, and these 

values standardized to sum to 1.  The result was a mean proportion of animals observed 

1, 2, … times across the 19 years.  Equivalent standardization was performed with the 



expected if  of simulated data, and sums of squared errors were used to quantify the 

discrepancy between the observed and simulated datasets to provide a measure of 

agreement between the average observed data and the simulated data.  Hence,  

( )2sim observedSS i i
i

f f= −∑  

was computed for each of the simulated scenarios to determine which sets of parameters 

generated data that most resembled the observed data.  

Second, we attempted to assess the discrepancy between observed and simulated 

datasets for each of the 19 years separately. Comparisons were based on the N/CV/Effort 

triple closest to the estimated triple for a given year. We computed the mean and standard 

deviation of the minimum counts in the simulated data and checked to see if the observed 

minimum count (m) was comparable. We also computed the average proportions in each 

of the if categories. There were 132 such categories in the simulations for N>20 and 80 

for N=20. We then determined the expected counts using the observed minimum count. 

The expected counts were computed assuming the observed data were indeed generated 

by our simulation choice.  We computed  
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where r is the number of nonzero expected counts. We carried out a randomization 

procedure by drawing m times from a multinomial distribution with probability vector 

equal to the vector of mean proportions computed above. We computed 2χ for each of 

1000 random draws and generated a randomization distribution of 2χ s associated with 

our simulation triple and an observed sample size of m. We then determined an 



approximate randomization P-value based for the observed 2χ . Large P-values are taken 

as evidence that the observed data is consistent with its associated simulation 

N/CV/Effort triple. 

 We also attempted a comparison of estimated sighting frequencies of FCOY in 

the GYE with the proportions seen in the simulated data sets. We estimated the number 

of times radioed FCOY were observed independently of radio telemetry relocation 

flights. To do this, we determined the number of females wearing a functional radio 

collar at den emergence that produced cubs. We then determined the frequency of 

sightings for these marked females that were made independent of the radio collar (they 

were seen without aid of telemetry relocation). We used this frequency distribution as an 

indication of average sightability. 

3. RESULTS 

3.1 SIGHTING PROBABILITIES OF RADIO-MARKED BEARS 

 From 1986–2004, we monitored 85 radio-collared female bears that emerged 

from their dens with cubs of the year.  During our observation period (den emergence to 

31 August), 51.8% of these bears were seen independent of any radio tracking flight.  

Treating this as a ratio estimate of the proportion yielded an approximate 95% confidence 

interval of (0.44, 0.59). Sighting frequencies included 22, 11, 7, and 1 observations of 

these collared bears 1, 2, 3,  and ≥4 times.  The proportion of the radio-marked 

population that was observed (51.8%) is bracketed by the simulated populations (Tables 

1, 2). 

 Observations of FCOY were also well distributed geographically throughout the 

GYE. Since 1997 the Interagency Grizzly Bear Study Team has been conducting 



observation flights in 37 bear observation areas that encompass 34,700 km 2 (Schwartz 

1998). During 1997–2004, there were aerial observations of FCOY from 24 of 26 areas 

within the USFWS (1993) Grizzly Bear Recovery Zone (RZ), and 5 of 11 flight areas 

outside the designated RZ. If we include ground observations, there were sightings from 

26 of 26 areas within the RZ and 7 of 11 areas outside the RZ. Only 2.7% of 914 FCOY 

sightings obtained during the period occurred outside the flight areas. 

3.2 COMPARISON OF DATA FROM SIMULATION METHODS 

 The higher the proportion of the population seen the better estimator should 

perform. The average proportion seen in our simulations was a function of both effort and 

CV. As effort increased and CV decreased the average proportion seen increased (Table 1 

and 2). In general, the expected proportion seen in the sample was higher with the 

simulations based on the beta cdf than with the negative binomial simulations. Note that 

the average proportion seen in the samples from the negative binomial simulations is the 

same across population sizes for a fixed CV and sampling effort. 

3.3 COMPARISON OF OBSERVED AND SIMULATED f STATISTICS 

 The comparison of the observed and simulated f statistics suggest the beta model 

generated data most closely resembling the observed data (Table 3) when compared 

across all 19 years.  The smallest sum of squares was provided by the beta model with 

CV = 1.75, N = 80, and effort = 2 although these CV and N values are not similar to our 

observed data. On average we had an estimated effort of about 1.7 and an estimated CV 

of around 0.5. The estimator of CV we used is known to be biased low (Chao and Lee 

1992) implying that CVs of around 0.75 are not unreasonable for our data on average. 

Four of the top 12 combinations in Table 3 have CV = 0.75 and effort of 1.5 for N = 20, 



40, 60, and 80. The simulated data align closely with the standardized averages of the 

observed data (Figure 1), suggesting that our simulations are useful when making 

inferences about the process of estimating FCOY.   Note, however, that the proportion of 

the population included in the sample for these simulated scenarios was around 70% 

(Table 1), compared to 51.8% for radio-marked bears. However, we believe the value of 

51.8% should not have too much importance attached to it because it was based on a 19 

year average with a wide range of estimated N/CV/Effort triples. The number of bears 

seen in any one year is only 4 or 5 on average and there is a good deal of uncertainty as 

indicated by the confidence interval.  

 Comparisons based on individual years (Tables 4 and 5) are consistent with at 

least one of the 256 simulation possibilities and with a simulation N/CV/Effort triple that 

is close to that actually observed (estimated). Simulations based on the beta cdf produced 

data that are consistent with observed data. 

 We conclude that the beta cdf simulation method in particular could have 

produced data similar to our empirical data, and consequently may be useful when 

exploring the 9 population estimators and their application to estimating the number of 

FCOY. 

3.4 ESTIMATOR PERFORMANCE 

Some simulated scenarios generated too few data to be useful (i.e., <3 fi > 0), 

particularly for low effort values.  None of the estimators performed satisfactorily when 

only one fi statistic was >0.  Most notably, the Poisson mixture estimators were undefined 

unless >1 fi was >0, and generate estimates of N of infinity, causing numerical 

optimization problems.  Although some of the other estimators (e.g. Chao2) generated 



estimates of N when only a single f value was >0, use of such estimates seems dubious. A 

measure of the quantity and quality of data was the number of fi > 0.   As a first 

evaluation of the performance of the 9 estimators, we evaluated the percent relative bias 

and mean squared error of each as a function of the number of positive fi statistics 

(Figure. 2–3).  The poor performance of the Poisson mixture estimators for low numbers 

of fi > 0 where ∞→N̂ was highlighted in these figures, in that the y-axis was scaled to 

exclude the extreme estimates from these estimators. 

The number of fi > 0 in the observed data ranged from 3 to 13 with mean 5.8 (SD 

= 2.4).  Of the 19 years, only 2 years had the number of fi > 0 = 3, and 5 years equal to 4.  

Because only 2 fi > 0 is quite sparse data, we eliminated all of these simulated cases in the 

remaining analyses reported here.  

The performance of the SC2 estimator and all of the Poisson mixture models was 

also poor compared to the remaining 4 models (Figures 2–3), so we have only 

summarized the performance of the Chao1, Chao1Mod, SC2Mod, and Chao2 estimators 

in the graphs of PRB and MSE as a function of effort for the 8 CV( p ) values (Figures 4 

– 5).  These all performed in a roughly comparable way in terms of absolute percent bias 

(Figure 4). This was particularly true for higher levels of effort. With effort ≥2 these  4 

estimators had absolute bias in the range of 0–10%. Chao2 was consistently biased low 

whereas the other 3 tended to be biased high. Other investigators have also noted the 

tendency of Chao2 to be biased low (Keating et al. 2002, Wilson and Collins 1992).  

Performance of the estimators was clearly different for the 2 different methods of 

simulating data. The Chao2 estimator demonstrates the smallest PRB, although somewhat 

negative for the simulated data from the beta model.  Performance of the Chao2 estimator 



was poor for data simulated under the negative binomial model, particularly as 

heterogeneity increased.  However, because the beta model was shown to most closely 

mimic the observed data, we recommend the use of the Chao2 estimator when the data 

for only a single year are used to compute the population estimate. 

Performance of the estimators with the observed bear data (Figure 6) does not 

suggest large differences between them, although the SC2 estimator does tend to produce 

larger estimates than the other estimators (Figure 6). 

4. DISCUSSION  

4.1 SIGHTING PROBABILITIES  

Our “recapture rate” on collared bears was high (51.8%).  Grizzly bears tend to be 

crepuscular (Schleyer 1983, Harding 1985), and tend to forage on both vegetable 

(Mattson et al. 1991a) and animal matter during spring and early summer (Green et al. 

1997, Mattson 1997) in meadows, open forests (Mattson et al. 1991a b, Green et al. 1997, 

Mattson 1997), and alpine habitats (Mattson et al. 1991b) making them visible from both 

the ground and air.  The Interagency Grizzly Bear Study Team flies a series of both 

radio-tracking and observation flights.  Annually, from 1997–2004, 2 rounds of 

observation flights have been flown averaging 149 hours/year.  The mean sighting rate of 

FCOY observed on these flights was 0.20 FCOY/hr (West 2005a).  From 1997–2004, the 

average hours flown for telemetry relocation was 394 hr/year, with incidental 

observations of 0.02 FCOY/hr (West 2005b).  Additionally, each year there were 

numerous aerial relocation, observation, survey, and other flights over the GYE 

associated with other species occurring over most of occupied grizzly bear range.  

Incidental sighting of FCOY are typically reported from these flights as well.  Overall we 



believe there is a high likelihood that most if not all grizzly bears in the GYE have 

sighting probabilities high enough to yield a large proportion of animals sighted within a 

year.  We cannot of course completely rule out the possibility that there are animals with 

low sightability or that there may be transient environmental conditions that render a 

good portion of the population effectively unsightable in a given year.  

4.2 COMBINING DATA ACROSS YEARS 

 Likelihood-based estimators have a theoretical advantage over the non-parametric 

estimators considered here in that the data across years can be combined to model 

nuisance parameters with a reduced parameter space by assuming some parameters are 

constant across years (MacKenzie et al. 2005, White 2005).  For example, parameters 

might be considered equal across years, or year-specific covariates could be used to 

model sighting probabilities.   Another benefit from combining data across years is that 

estimator failures due to sparse data would occur less often, because information is 

borrowed across years to generate estimates for years where estimator performance 

would normally be poor.  Modeling nuisance parameters across years will provide more 

precise estimates of the nuisance parameters and potentially generate more precise 

estimates of population size, although the risk incurred is some bias of the population 

estimates. Of the 10 estimators considered, 
1

ˆ
hMN , 

2
ˆ

hMN , 
3

ˆ
hMN , and  ModAveN̂  could 

benefit from this methodology.  In contrast, none of the non-parametric estimators can 

use this approach. 

 The estimator Poisson Additive in Figure 6 demonstrates an application of this 

methodology for the observed bear data across 19 years.  The additive model assumes a 



constant additive effect (i.e., a constant difference) in the high and low mean sighting 

probabilities for a 2 mixture model, so reduces the number of parameters by 18. 

 A negative aspect of combining data across years to estimate the nuisance 

parameters is that adding new information each year changes the population estimates for 

previous years.  As an example, suppose that an estimate of population size puts the 

allowable mortality in year t at just over the observed mortality.  However, with addition 

of data for year t + 2, the population estimate in year t is reduced, and now the mortality 

threshold is exceeded.  Such behavior is likely as the bear population approaches carrying 

capacity, and mortality equals recruitment complicating the decisions managers reach.  

Surprisingly, the likelihood based methods did not perform well in either of our 

simulation scenarios. We attribute this poor performance to (1) low number of 0>if , 

and (2) general lack of numerical stability for even moderate numbers of 0>if . The 

optimization of likelihoods for mixture distributions is difficult because of multiple 

optima. In simulation studies such as reported here, user intervention to assess whether a 

reported solution is the global maximum is precluded. We suspect that at least some of 

the solutions used in these simulations are not global maxima, and thus affect the 

reported results on bias and MSE. Although a rule to discard extreme likelihood estimates 

was considered, this approach was not used because of the subjectivity in defining such a 

rule.  

5. CONCLUSIONS 

We conclude that evaluation of estimators of this type with simulated data must  

be conducted more carefully than in the past. There has been an implicit assumption that 

a conclusion drawn about the performance of an estimator when CV = 1 is the same 



regardless of how the data were generated. Our results show that such an assumption may 

not be justified. Further, comparisons of results from different studies may be 

inappropriate if different simulation methods are used. The earlier conclusion of Keating 

et al. (2002) that the SC2 estimator of Chao and Lee (1992) was superior to the others 

they evaluated was incorrect because of this problem. At the least investigators who wish 

to apply such estimators need to assess whether or not the particular method of simulating 

data is relevant for their proposed application. 

  Although we argue that our simulation methodology produced data consistent 

with the empirical data, we recognize that this does not guarantee that our simulation 

results are in fact applicable to our applied setting. We have implicitly assumed that our 

population contains animals all of whom have a high probability of being seen one or 

more times during the summer field season. Our simulations were designed with this in 

mind. However, there is no guarantee of this. This is true for any study and needs to be 

borne in mind by all who are applying a given method on the basis of simulation results.  

Taking these caveats into account we observed that the 4 nonparametric 

estimators we focused on (Chao1, Chao1Mod, SC2Mod, and Chao2) all performed in a 

roughly comparable way in terms of absolute percent bias (Figure 4). This was 

particularly true for higher levels of effort. If effort was ≥ 2 then all the estimators had 

absolute bias in the range of 0 to 10% for the beta cumulative distribution function based 

simulations. Chao2 was consistently biased low whereas the other 3 tended to be biased 

high. Given our current state of knowledge, we recommend that bear managers do 

everything possible to get effort ≥ 1.5 and use Chao2 to estimate FCOY in the GYE.  

Chao2 is very simple to use and, based on our simulations, produced relatively unbiased 



estimates when effort is ≥ 1.5. When it is biased, Chao2 tends to biased low. We did not 

implement the bootstrap method of determining standard errors for Chao2 discussed in 

Keating et al. (2002). We do, however, recommend the use of this approach in practice.  

Additional work may produce improved estimation techniques.  The modeling 

approach clearly has great potential in this regard. The simpler nonparametric SC2Mod 

may also be improved by further work on the choice of a cutoff value κ , although such a 

cutoff would appear to be a function of factors not under the control or even knowable by 

managers. 
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Table 1.  Parameters of the beta distribution used to simulate data under the various 
population size (N) and CV scenarios.  The value of α = β for the U-shaped symmetrical 
beta distributions.  The expected proportion of the population that appears in the sample 1 
or more times (Proportion Sampled) is given as a function of the sampling effort, with an 
effort of 2 meaning that a sample of size 2N animals is observed.   

 
Proportion Sampled with Effort 

N CV( p ) α p  
Min 

p  
Max 

p  1 1.5 2 3 4
20 0.00 1.0000 0.0500 0.0500 0.0500 0.6415 0.7854 0.8715 0.9539 0.9835
40 0.00 1.0000 0.0250 0.0250 0.0250 0.6368 0.7811 0.8681 0.9521 0.9826
60 0.00 1.0000 0.0167 0.0167 0.0167 0.6352 0.7797 0.8669 0.9515 0.9823
80 0.00 1.0000 0.0125 0.0125 0.0125 0.6344 0.779 0.8664 0.9511 0.9821
20 0.25 0.7452 0.0500 0.0416 0.0845 0.6313 0.7723 0.8583 0.9443 0.9777
40 0.25 0.7601 0.0250 0.0211 0.0482 0.6271 0.7690 0.8559 0.9432 0.9773
60 0.25 0.7656 0.0167 0.0141 0.0348 0.6258 0.7679 0.8552 0.9429 0.9772
80 0.25 0.7686 0.0125 0.0106 0.0276 0.6252 0.7675 0.8549 0.9428 0.9772
20 0.5 0.5763 0.0500 0.0351 0.1213 0.6066 0.7430 0.8301 0.9244 0.9658
40 0.5 0.6069 0.0250 0.0182 0.0742 0.6056 0.7441 0.8324 0.9268 0.9675
60 0.5 0.6189 0.0167 0.0123 0.0558 0.6056 0.7449 0.8335 0.9277 0.9681
80 0.5 0.6257 0.0125 0.0093 0.0455 0.6058 0.7454 0.8341 0.9283 0.9685
20 0.75 0.4543 0.0500 0.0298 0.1591 0.5737 0.7058 0.7948 0.8983 0.9488
40 0.75 0.4989 0.0250 0.0159 0.1014 0.5791 0.7151 0.8052 0.9071 0.9549
60 0.75 0.5169 0.0167 0.0109 0.0779 0.5819 0.7190 0.8093 0.9103 0.9570
80 0.75 0.5272 0.0125 0.0083 0.0647 0.5837 0.7213 0.8116 0.9121 0.9582
20 1 0.3609 0.0500 0.0253 0.1971 0.5359 0.6636 0.7539 0.8660 0.9259
40 1 0.4172 0.0250 0.0140 0.1291 0.5509 0.6844 0.7760 0.8848 0.9396
60 1 0.4403 0.0167 0.0097 0.1006 0.5573 0.6925 0.7841 0.8912 0.9442
80 1 0.4538 0.0125 0.0074 0.0843 0.5611 0.6970 0.7885 0.8947 0.9466
20 1.25 0.2864 0.0500 0.0212 0.2352 0.4947 0.6169 0.7074 0.8266 0.8955
40 1.25 0.3523 0.0250 0.0124 0.1569 0.5218 0.6526 0.7450 0.8598 0.9214
60 1.25 0.3799 0.0167 0.0087 0.1235 0.5326 0.6656 0.7581 0.8706 0.9295
80 1.25 0.3961 0.0125 0.0067 0.1042 0.5388 0.6728 0.7652 0.8764 0.9337
20 1.5 0.2251 0.0500 0.0176 0.2733 0.4503 0.5656 0.6546 0.7783 0.8556
40 1.5 0.2990 0.0250 0.0110 0.1848 0.4920 0.6195 0.7122 0.8319 0.9000
60 1.5 0.3303 0.0167 0.0079 0.1465 0.5079 0.6384 0.7313 0.8485 0.9129
80 1.5 0.3488 0.0125 0.0061 0.1243 0.5168 0.6486 0.7415 0.8571 0.9195
20 1.75 0.1734 0.0500 0.0142 0.3113 0.4027 0.5089 0.5942 0.7193 0.8034
40 1.75 0.2539 0.0250 0.0097 0.2126 0.4615 0.5851 0.6773 0.8008 0.8749
60 1.75 0.2884 0.0167 0.0071 0.1696 0.4832 0.6108 0.7037 0.8246 0.8943
80 1.75 0.3090 0.0125 0.0056 0.1443 0.4950 0.6244 0.7174 0.8367 0.9038

 

 



Table 2.  Parameters of the negative binomial distribution used to simulate data under the various CV and Effort scenarios.  Values are 
the same for all population sizes.  The proportion of the population appearing in the sample 1 or more times (Proportion Sampled) is 
given as a function of the sampling effort, with an effort of 2 meaning that a sample of size 2N animals is observed 

 
Effort 

1 1.5 2 3 4 CV( p ) k 
P Proportion 

Sampled P Proportion 
Sampled P Proportion 

Sampled P Proportion 
Sampled P Proportion 

Sampled 
0.01 10000. 0.0001 0.6321 0.0002 0.7768 0.0002 0.8646 0.0003 0.9502 0.0004 0.9817 
0.25 16. 0.0625 0.6209 0.0938 0.7616 0.1250 0.8481 0.1875 0.9360 0.2500 0.9719 
0.5 4. 0.2500 0.5904 0.3750 0.7202 0.5000 0.8025 0.7500 0.8934 1.0000 0.9375 

0.75 1.7778 0.5625 0.5477 0.8438 0.6630 1.1250 0.7382 1.6875 0.8275 2.2500 0.8770 
1 1.0000 1.0000 0.5000 1.5000 0.6000 2.0000 0.6667 3.0000 0.7500 4.0000 0.8000 

1.25 0.6400 1.5625 0.4524 2.3438 0.5382 3.1250 0.5962 4.6875 0.6713 6.2500 0.7186 
1.5 0.4444 2.2500 0.4078 3.3750 0.4811 4.5000 0.5312 6.7500 0.5975 9.0000 0.6406 

1.75 0.3265 3.0625 0.3673 4.5938 0.4300 6.1250 0.4733 9.1875 0.5314 12.2500 0.5699 

 



Table 3.  The level of agreement between the standardized mean observed f 
statistics and the top 20 simulation scenarios.    

 
Data Simulation Model CV( p ) N Effort Sum of Squares 
Beta 1.75 80 2 0.0005351 
Beta 1.5 60 2 0.0005736 
Beta 1.25 40 2 0.0007240 
Beta 1.5 80 2 0.0008256 
Beta 1.5 40 2 0.0010979 
Beta 0.75 20 1.5 0.0011624 
Beta 1.75 60 2 0.0011970 
Beta 0.75 40 1.5 0.0012626 
Beta 1.75 40 2.5 0.0013654 
Beta 0.75 60 1.5 0.0013832 
Beta 1.25 60 2 0.0013849 
Beta 0.5 20 1.5 0.0014395 
Beta 0.5 40 1.5 0.0014497 
Beta 0.75 80 1.5 0.0014529 
Beta 0.5 80 1.5 0.0015270 
Beta 0.5 60 1.5 0.0015759 
Negative Binomial 0.5 80 1.5 0.0016076 
Beta 1 20 2 0.0016446 
Beta 1 40 2 0.0018139 
Negative Binomial 0.5 20 1.5 0.0018322 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Comparison of observed minimum counts and distribution of sighting 
frequencies with a simulated N/CV/Effort triple closest to the estimated triple for each 
year. Some years (1986 with 28ˆ =N ) had estimated population sizes that lay between 
two simulation choices in which case we looked at results for 2 triples (N = 20 and N = 
40 for 1986).  Simulation results are from the Beta CDF based simulations.  
 
Year (N) Observed Minimum 

Count ( N̂ ) 
Mean (SD) of 
Minimum Counts 
from Simulations 

Randomization  
P-value 

1986 (20) 
1986 (40) 

24 (28) 17.32 (1.32) 
35.45 (1.75) 

0.24 
0.33 

1987 (20) 12 (17) 12.16 (1.48) 0.92 
1989 (20) 14 (18) 14.12 (1.56) 0.44 
1990 (20) 22 (25) 17.10 (1.57) 0.80 
1991 (40) 24 (38) 28.62 (2.15) 0.24 
1992 (40) 23 (41) 23.13 (2.16) 0.90 
1993 (20)  18 (21) 15.42 (1.41) 0.61 
1994 (20) 18 (23) 15.42 (1.41)  0.69 
1995 (40) 17 (43) 13.86 (1.75) 0.47 
1996 (40) 28 (38) 25.11 (2.07) 0.92 
1997 (40) 29 (39) 28.62 (2.15) 0.45 
1998 (40) 33 (37) 33.22 (1.94) 0.40 
1999 (40) 30 (36) 34.54 (1.85) 0.44 
2000(40) 
2000(60) 

34 (51) 27.38 (2.31) 
41.58 (2.69) 

0.48 
0.27 

2001(40) 
2001(60) 

39 (48) 32.25 (2.06) 
48.52 (2.50) 

0.77 
0.73 

2002 (60) 49 (58) 50.76 (2.47) 0.17 
2003 (40) 
2003 (60) 

35 (46) 25.11(2.07) 
37.58 (2.44) 

0.50 
0.47 

2004 (60) 48 (58) 54.25 (2.14) 0.11 
 
 

 

 

 

 

 

 



Table 5. Comparison of observed minimum counts and distribution of sighting 
frequencies with a simulated N/CV/Effort triple closest to the estimated triple for each 
year. Some years (1986 with 28ˆ =N ) had estimated population sizes that lay between 
two simulation choices in which case we looked at results for 2 triples (N = 20 and N = 
40 for 1986).  Simulation results are from the negative binomial based simulations. 
 
Year (N) Observed Minimum 

Count ( N̂ ) 
Mean (SD) of 
Minimum Counts  
from Simulations 

Randomization  
P-value 

1986(20) 
1986(40) 

24 (28) 15.07 (1.93) 
29.88 (2.68) 

0.47 
0.43 

1987 (20) 12 (17) 11.84 (2.14) 0.96 
1989 (20)  14 (18) 13.40 (2.05) 0.31 
1990 (20)  22 (25)  17.13 (1.31)  0.82 
1991 (40)  24 (38) 26.59 (2.96) 0.44 
1992 (40)  23 (41) 21.88 (3.22) 0.67 
1993 (20) 18 (21) 15.31 (1.88) 0.63 
1994 (20) 18 (23) 15.3 1(1.88)  0.71 
1995 (40) 17 (43) 13.48 (2.98) 0.23 
1996 (40) 28 (38) 24.85 (2.88) 0.94 
1997 (40) 29 (39) 26.59 (2.96) 0.65 
1998 (40) 33 (37) 32.21 (2.52) 0.26 
1999 (40)  30 (36) 31.61 (2.54) 0.61 
2000(40) 
2000(60) 

34 (51) 24.07 (3.17) 
35.88 (3.76) 

0.39 
0.38 

2001(40) 
2001(60) 

39 (48) 29.75 (2.85) 
44.17 (3.42) 

0.43 
0.47 

2002 (60)  49 (58) 42.93 (3.49) 0.29 
2003 (40) 
2003 (60) 

35 (46) 24.85 (2.88) 
37.22 (3.77) 

0.49 
0.45 

2004 (60) 48 (58) 41.74 (3.48) 0.88 
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Figure 1.  Comparison of the standardized f statistics for the data simulation from the beta 
model [CV( p ) = 1.75, N = 80, Effort = 2] with the means of the standardized 
observed sighting data 1986–2004. 
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Negative Binomial Model
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Figure 2.  Percent Relative Bias of the 9 estimators considered as a function of the 
number of the fi 
statistics
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Figure 3.  Mean Squared Error of the 9 estimators as a function of the number of fi 
statistics >0.  

 

 

 



Figure 4.  Percent Relative Bias of the Chao1, Chao1Mod, Chao2, and SC2Mod 
estimators as a function of sampling effort for 4 of 8 CV( p ) values simulated for the beta 
(left column) and negative binomial (right column) simulation models. 



 

Figure 5.  Mean Squared Error of the Chao1, Chao1Mod, Chao2, and SC2Mod estimators 
as a function of sampling effort for 4 of the 8 CV( p ) values simulated for the beta (left 
column) and negative binomial (right column) simulation models. 
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Figure 6.  Comparison of estimates for GYE bear population.  The Poisson additive 
model assumes a constant additive effect across years between the high and low sighting 
means for 2 mixtures. 


