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1. Introduction  
The continental scaup (greater Aythya marila and lesser Aythya affinis combined) population has 
experienced a long-term decline (Austin et al. 2000, Afton and Anderson 2001, Austin et al. 
2006) in conjunction with 12 consecutive years of liberal harvest frameworks.  As a result, 
waterfowl managers are challenged with the issue of how to manage the harvest of this declining 
population in the absence of an objective harvest strategy.  In response to this dilemma, the SRC 
requested that a scaup harvest strategy be developed for the 2007 regulations cycle.  Here, we 
report on the development of a proposed decision-making framework to guide scaup harvest 
management.   
  

We began this work with the intent to develop a framework based on a formal derived 
harvest strategy that would enable managers to make an informed decision in relation to scaup 
harvest management.  Our intent for this report is to propose a modeling framework from which 
a harvest strategy can be derived, provide a context for describing the role that scaup harvest 
management objectives have in structuring the harvest policy, and to propose a decision-making  
framework for implementation during the 2007 regulations cycle.  

2. Assessment Framework 
The lack of scaup demographic information over a sufficient timeframe and at a continental scale 
precludes the use of a traditional balance equation to represent scaup population and harvest 
dynamics.  As a result, we continue to use a discrete-time, stochastic, implementation of a 
logistic growth population model with a harvest process to represent changes in scaup according 
to   
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With this formulation, annual changes in population size (N) are governed by the intrinsic rate of 
increase (r), and the carrying capacity (K), while accounting for losses through the harvest (H) 
and process error (ε).  We use a Bayesian approach (Meyer and Millar 1999, Millar and Meyer 
2000) to estimate the population parameters, characterize the uncertainty associated with the 
monitoring programs (observation error), and the ability of our model to predict actual changes 
in the system (process error). 
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In response to feedback from the waterfowl management and research communities, we 
have incorporated several changes to our original assessment framework (Boomer et al. 2004, 
Boomer and Johnson 2005).  Recent analyses exploring the reliability of the scaup breeding 
population estimates (Koneff et al. unpublished data) have highlighted some significant 
differences between prairie and bush survey protocols used by observers in the late 1960’s that 
we believe limit the use of the scaup breeding population estimates prior to 1974.  As a result, we 
have truncated the time series of breeding population estimates used in our assessment to only 
include years from 1974 through 2005.  This change also allowed us to represent total scaup 
harvest levels based on information from both the United States and Canada.   
  

Our initial assessment relied on the critical assumption that the data used to estimate the 
population parameters were measured on the same absolute scale.  Research conducted to model 
waterfowl populations from different sources of information has provided evidence of bias in 
waterfowl survey programs (Martin et al. 1979, Runge et al. 2002). While the source(s) of this 
bias are not yet known, it is possible to estimate correction factors to reconcile predictions based 
on disparate sources of information (e.g., USFWS 2006).  To address this issue, we chose to 
include an additional parameter in our assessment to function as a scaling factor that enables us 
to combine breeding population and harvest estimates in an expression of population change.  It 
is important to note that this term represents the combined limitations and uncertainty of all the 
monitoring data and functional relationships used in our assessment framework.  Although, our 
initial attempts to estimate a scaling parameter from population and harvest data yielded 
reasonable estimates, the variance estimates were large.  We found that the inclusion of a limited 
amount of scaup banding and recovery data provided enough information to structure the harvest 
process and reduce the uncertainty in the scaling parameter estimate.  More details regarding this 
parameterization and the estimation framework can be found in Appendix 1. 

3. Assessment Results 
The state space formulation and Bayesian analysis framework provided reasonable fits to the 
observed breeding population and total harvest estimates with realistic measures of variation 
(Figure 1 A and C).  The posterior mean harvest rate estimates ranged from 0.03 to 0.08 (Figure 
1 B).  In general, harvest rates fluctuated over the first decade and then tracked the declining 
population trend until the early 1990’s, when harvest rate estimates increased significantly before 
dropping in 1999 (Figure 1 D).     
 

The posterior mean estimate of the intrinsic rate of increase (r) is 0.110 while the 
posterior mean estimate of the carrying capacity (K) is 8.236 million birds (Table 2).  The 
posterior mean estimate of the scaling parameter (q) is 0.541, ranging between 0.461 and 0.630 
with 95% probability. Based on the estimated population parameters, the estimated average 
maximum sustainable yield (MSY) on the adjusted scale is 0.211 million scaup (0.389 million 
scaup on the observed scale).  One of the benefits of a Bayesian approach is that we can perform 
an equilibrium analysis during the estimation.  This results in a realistic representation of the 
variation in sustainable harvest levels because all forms of uncertainty are accounted for during 
the simulation.  The resulting yield curve depicts the scaled, sustainable harvest levels with wide 
credibility intervals that highlights the large amount of uncertainty associated with the estimates 
of scaup harvest potential (Figure 2).  Plotting the current observed harvest levels that have been  
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Figure 1 A-D.  Population assessment results based on a Bayesian analysis and scaup population 
and harvest data from 1974-2005.  A.  The posterior mean population estimates and 95% 
credibility intervals (gray shading) plotted with the observed breeding population sizes.  B.  The 
posterior mean harvest rate estimates and 95% credibility intervals.  C.  The posterior mean 
estimates of the U.S. harvest plotted on the observed scale with 95% credibility intervals and 
observed harvest levels.  D.  The posterior mean scaup population and harvest rate estimates 
resulting from the Bayesian analysis. 
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Table 1.  Summary statistics (mean, standard deviation, median and 95% credibility intervals) of 
the posterior distribution of each population and management parameter resulting from a 
Bayesian assessment of scaup population and harvest dynamics based on data from 1974 to 
2005. 
Parameter mean Sd 2.50% 50% 97.50% 

r 0.110 0.063 0.022 0.097 0.271 

K (millions) 8.236 1.773 5.727 7.880 12.210 

MSY (millions) 0.212 0.097 0.048 0.201 0.437 
2
Processσ  0.008 0.004 0.002 0.007 0.018 

PopMSY 4.118 0.886 2.863 3.940 6.105 

q 0.541 0.043 0.461 0.539 0.630 

MSY* ( millions) 0.389 0.171 0.093 0.372 0.784 

Deviance 90.926 12.370 68.089 90.415 117.000 
*Observed scale. 
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Figure 2.  Average sustainable scaup harvest levels and 95% credibility intervals (gray shading) 
and corresponding equilibrium population sizes estimated with the Bayesian analysis.  The years 
represent the observed breeding population sizes and total harvest levels that have been adjusted 
with the scaling parameter (q). 
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scaled by the mean estimate of q on the yield curve suggests that recent levels of exploitation are 
approaching or have achieved MSY levels.  

4. Derivation of a harvest strategy 
The results from the Bayesian analysis provide a reasonable basis for representing scaup 
population and harvest dynamics.  All major forms of uncertainty were considered in the 
estimation and the resulting population parameter values and their measures of variation can be 
used to model scaup population changes and responses to exploitation.  Because our goal was to 
develop an informed decision-making framework to provide an objective basis for scaup harvest 
management, we believe the decision problem must be structured by a derived, state-dependent 
policy.  With this type of strategy each year’s harvest management decision would be based on 
the current state of the system (e.g., breeding population size).  In addition, we also wanted to 
ensure that the harvest policy would be adjusted each year in relation to past performance and 
our current understanding of the system.  To meet these demands, we used discrete, stochastic 
dynamic programming to derive an optimal harvest strategy relative to an agreed upon 
management objective.  This procedure is analogous to the analytical methods currently used to 
derive an optimal state-dependent harvest policy for midcontinent mallards under the annual 
AHM process (Johnson et al. 1997, USFWS 2006). 
  

We modeled the state dynamics with the discrete logistic population growth model 
(equation 3.1), but with the harvest scaled by q, and we included multiplicative random process 
error that was assumed to be normally distributed with a mean equal to 0 and variance specified 
with the posterior mean estimate of 2

Processσ .  The population parameters r, K, and the scaling 
factor q were allowed to vary but not independently. To include a correlation structure for these 
parameters within the optimization, we defined a joint distribution representing 3 discrete 
outcomes for each of the 3 parameters.  This distribution was specified by first calculating the 
frequency of occurrence of each of the 27 possible combinations of each parameter value based 
on the simulation results from the Bayesian analysis and then assigning each parameter a discrete 
value for each event.  We used the 30 and 70 percent quantiles for each parameter as the cutoff 
ranges from which to define the three values of each parameter.  The midpoint of each of these 
ranges (15, 50, 85 percent quantiles) were then used as the actual parameter values in the 
optimization.   

 
We used ASDP software (Lubow 1995) to derive a state-dependent harvest policy under 

an objective to maximize long-term cumulative harvest (MSY) and an objective to attain a 
shoulder point (calculated as percentage of MSY) on the yield curve. We evaluated harvest 
levels from 0 to 5 million (in increments of 50,000) for population sizes of 1 to 10 million (in 
increments of 50,000) and harvest objectives ranging from 90 to 100% MSY (in 2 % 
increments).  For each optimization we assumed perfect control over the harvest decision 
variable.  We then simulated each policy for 5000 iterations to characterize the management 
performance expected if the harvest policy was followed and the system remained static. 

 
Under an objective to maximize long-term cumulative harvest (MSY) the resulting 

strategy is extremely knife-edged (Figure 3).  This policy prescribes zero harvests for population 
sizes less than 3.2 million and seeks to hold the population size at maximum productivity (one 
half the carrying capacity).  In contrast to the MSY policy, the harvest strategies necessary to 
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achieve a shoulder point are considerably less knife-edged and would allow for harvest at lower 
population sizes (see Figure 3).  However, current scaup harvest levels (317,000) exceed the 
prescribed harvests resulting from optimizations with each of the objective functions we 
evaluated. 

The simulated management performance of each harvest policy demonstrates the 
tradeoffs that arise when a shoulder point objective is used to derive an optimal policy.  As the 
desired shoulder point moves away from MSY, average harvest levels decrease while the 
average population increases (Table 2).   

5. Proposed Implementation 
The implementation of this framework requires a clearly articulated objective for scaup harvest 
management.  We propose that this objective should seek to achieve a shoulder point somewhere 
on the right hand shoulder of the yield curve.  Ultimately, input from the waterfowl management 
community will be necessary to determine the actual percentage of MSY that would serve as the 
shoulder point specified in the objective function.   
 

We suggest that the proposed estimation and optimization framework be used to derive a 
state-dependent harvest policy to determine the optimal harvest level for scaup for the 2007 
regulations cycle.  We believe that a harvest policy should be derived on an annual basis with 
updated parameter estimates (Figure 4).  This annual process will ensure that the harvest policy 
is consistent in relation to current observations from the monitoring programs and that all 
available information has been used to update the model of the system.   
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Figure 3.  Optimal scaup harvest levels (observed scale) as a function of the observed breeding 
population size derived under objective functions ranging from 100 to 90 percent of MSY.   
 
 
Table 2.  Summary statistics of simulated harvest policies derived under objective 
functions chosen as a percentage of MSY.   The average of the simulated population and 
harvest levels are displayed along with the frequency of prescribed optimal harvest levels 
(in millions). 
 Average Expected frequency of harvest levels 
% MSY N H H = 0 H ≤ 0.1 0.1 < H ≤  0.3 H >0.3 
100 3.893 0.388 22.98 21.55 14.82 40.65 
98 4.219 0.380 0.04 2.90 40.41 56.65 
96 4.404 0.374 0.00 1.94 42.80 55.27 
94 4.648 0.363 0.00 1.35 45.67 52.98 
92 4.746 0.358 0.00 1.18 44.57 54.24 
90 4.866 0.351 0.00 1.27 47.57 51.16 
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Figure 4.  The anticipated sequence of events involved with the implementation of a decision-
making framework to inform scaup harvest management.  Within this framework, a state-
dependent harvest policy would be derived annually based on the latest monitoring information 
and updated population parameters.   
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Appendix 1. Modeling and Estimation Framework 
We use a state-space formulation of scaup population and harvest dynamics within a Bayesian 
estimation framework (Meyer and Millar 1999, Millar and Meyer 2000).  This analytical 
framework allows us to represent uncertainty associated with the monitoring programs 
(observation error) and the ability of our model formulation to predict actual changes in the 
system (process error). 

 
8.1 Process Model 
  
Given a logistic growth population model that includes harvest (Schaefer 1954), scaup 
population and harvest dynamics are calculated as a function of the intrinsic rate of increase (r), 
the carrying capacity (K), along with the harvest (Ht).  Following Meyer and Millar (1999), we 
scaled population sizes by K (i.e., Pt = Nt/K) and assumed that process errors (εt) are lognormally 
distributed with a mean of 0 and variance 2

Processσ .  The state dynamics can be expressed as 
 
 1974

01974
εePP =  (8.1.1) 

 ( ) 005,1975,...,2t,/)1( 1111t =−−+= −−−−
teKHPrPPP tttt
ε  (8.1.2) 

 
where P0 is the initial ratio of population size to carrying capacity.  To predict total scaup harvest 
levels, we modeled scaup harvest rates (ht) as a function of the pooled direct recovery rate (ft) 
observed each year with   

  
 ./ ttt fh λ=  (8.1.3) 

 
We specified reporting rate (λt) distributions based on estimates for mallards (Anas 
platyrhynchos) from large scale historical and existing reward banding studies (Henny and 
Burham 1972, Nichols et. al. 1995, Garrettson et al. unpublished data).  We accounted for 
increases in reporting rate believed to be associated with changes in band type (e.g., from AVISE 
and new address bands to 1-800 toll free bands) by specifying year specific reporting rates 
according to 
 
  9961974,...,1   )04.0,38.0(~ =tNormaltλ  (8.1.4) 
 . 0051997,...,2   )04.0,70.0(~ =tNormaltλ  (8.1.5) 
 
We then predicted total scaup harvest (Ht) with 
 
 ( )[ ] .0051974,...,2t,1t =−+= KPrPPhH ttt  (8.1.6) 
 
8.2 Observation Model 
 
We compared our predictions of population and harvest numbers from our process model to the 
observations collected by the Waterfowl and Breeding Habitat Survey (WBPHS) and the Harvest 
Survey programs with the following relationships, assuming that the population and harvest 
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observation errors were additive and normally distributed.  May breeding population estimates 
were related to model predictions by 
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where 2

,BPOPtσ  is specified for each year with the variance estimates resulting from the WBPHS.   
 

We adjusted our harvest predictions to the observed harvest data estimates with a scaling 
parameter (q) according to 
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We assumed that appropriate measures of the harvest observation error 2

,Harvesttσ  could be 
approximated by assuming a coefficient of variation for each annual harvest estimate equal to 
0.15 (Paul Padding pers. comm.).  The final component of the likelihood included the year 
specific direct recovery rates that were represented by the rate parameter (ft) of a Binomial 
distribution indexed by the total number of birds banded preseason and estimated with.  
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where mt is the total number of scaup banded preseason in year t and recovered during the 
hunting season in year t and Mt is the total number of scaup banded preseason in year t. 
 
8.3 Bayesian Analysis 
 
Following Meyer and Millar (1999), we developed a fully conditional joint probability model, by 
first proposing prior distributions for all model parameters and unobserved system states and 
secondly by developing a fully conditional likelihood for each sampling distribution.  
 
Prior Distributions   
 
For this analysis, a joint prior distribution is required because the unknown system states P are 
assumed to be conditionally independent (Meyer and Millar 1999).  This leads to the following 
joint prior distribution for the model parameters and unobserved system states 
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In general, we chose non-informative priors to represent the uncertainty we have in specifying 
the value of the parameters used in our assessment.  However, we were required to use existing 
information to specify informative priors for the initial ratio of population size to carrying 
capacity (P0) as well as the reporting rate values (λt) specified above that were used to adjust the 
direct recovery rates estimates to harvest rates. 
 
We specified that the value of P0, ranged from the population size at maximum sustained yield 
(P0 = NMSY/K = (K/2)/K = 0.5) to the carrying capacity (P0= N/K= 1), using a uniform 
distribution on the log scale to represent this range of values.  We assumed that the exploitation 
experienced at this population state was somewhere on the right-hand shoulder of a sustained 
yield curve (i.e., between MSY and K).  Given that we have very little evidence to suggest that 
historical scaup harvest levels were limiting scaup population growth, this seems like a 
reasonable prior distribution. 
 
We used non-informative prior distributions to represent the variance and scaling terms, while 
the priors for the population parameters r and K were chosen to be vague but within biological 
bounds.  These distributions were specified according to 

 
 P0  ~  Uniform(ln(0.5),0), (8.3.2) 

 
 K  ~ Lognormal (2.17, 0.667), (8.3.3) 

 
 r  ~ Uniform (0.00001, 2), (8.3.4) 
 
 ft ~ Beta(0.5,0.5), (8.3.5) 
 
 q  ~ Uniform(0.0, 2), (8.3.6) 
 
 2

Processσ ~ Inverse Gamma (0.001, 0.001). (8.3.7) 
 
Likelihood  
 
We related the observed population, total harvest estimates, and observed direct recoveries to the 
model parameters and unobserved system states with the following likelihood function: 
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Posterior Evaluation  

 
 Using Bayes theorem we then specified a posterior distribution for the fully conditional joint 
probability distribution of the parameters given the observed information according to 
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We used Markov Chain Monte Carlo (MCMC) methods to evaluate the posterior distribution 
using WinBUGS (Spiegelhalter et al. 2003).  We randomly generated initial values and 
simulated 5 independent chains each with 1,000,000 iterations.  We discarded the first half of the 
simulation and thinned each chain by 250, yielding a sample of 10,000 points.  We calculated 
Gelman-Rubin statistics (Brooks and Gelman 1998) to monitor for lack of convergence. 
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