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Figure 3. Model simulations for full logistic model (See Appendix). In plot A, curves show the 
effect of REI on probability of FLV for different depths. In plot B, the depth and REI are plotted 
for all 10 m grid locations between Blatnik Bridge and Oliver Bridge for which the predicted 
probability of FLV was > 0.5 or 0.6.  
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A predictive model for floating leaf vegetation in the St. Louis River Estuary 
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Background 

In summer 2014, USEPA staff was asked by MPCA to develop a predictive model for floating 
leaf vegetation (FLV) in the St. Louis River Estuary (SLRE). The existing model (Host et al. 
2012) greatly overpredicts FLV in St. Louis Bay probably because it was based on a limited 
number of observations of this wetland type and because their definition of FLV included areas 
of mixed floating and submerged aquatic vegetation, which is more widespread than true FLV. A 
more reliable model specific to floating plants could be included in the biological design basis 
for restoration projects in the SLRE. 

Objective 

Our objective was to create a predictive logistic mode to predict probability of occurrence of 
FLV in the SLRE. Previous wetland vegetation models for the SLRE (Angradi et al. 2013, Host 
et al. 2012) were based on visual or hydroacoustic detection of FLV. The model described herein 
was developed from data derived from photo-interpretation.   

Methods 

Preliminary analysis of Google Earth (GE) Imagery for August 2010 strongly suggested that 
certain species of FLV could be detected in the images. Field visits showed that many “stands” 
of white (Nymphaea) and yellow (Nuphar) water lilies could be reliably discerned from canopy-
forming submerged aquatic vegetation and other vegetation types.  

We created 5000 random points for the SLRE between the Blatnik and Oliver bridges, Using the 
polygon tool in GE, we circled 456 points where FLV (lily pads) was present under, surrounding  
or immediately adjacent to the point (Figure 1). We circled 698 points where the grid was either 

mailto:angradi.theodore@epa.gov
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in  error because the points was on land or the point was in a pure stand of emergent vegetation 
(not mixed with FLV). The remaining 3816 points were designated as FLV absent. 

 In GIS, we extracted the depth, REI and weighted fetch for all of points where FLV was present 
or absent. Using logistic modeling methods similar to those described in Angradi et al. 2013, we 
created a logistic model to fit the data. The dependent variable was FLV present (1) or absent 
(0). Candidate predictor variables were depth, depth2, Relative Exposure Index (REI), REI2, and 
depth * REI. 

The resulting models coefficients can be used to calculate the probability of FLV for any 
combination of depth (m) and REI. Note that predictions (yhat) in log odds must be converted to 
probabilities using the equation: probability of FLV (0-1) = eyhat/ (1+eyhat). 

Results 

Most FLV was at a depth of 0.2 to 1.3 m (the 10th and 90th percentiles of observed depths) 
(Figure 2). Likewise, nearly all FLW was at an REI between 640 and 2800. FLV was often 
absent present at points with depth and REI conditions otherwise favorable for FLV. The range 
of depth and exposure of conditions where FLV was present were a small subset of the total 
depth and REI range for the SLRE between the Blatnik and Oliver bridges (Figure 2) 

The Appendix shows the regression results for the logistic model to predict probability of FLV. 
All parameters except REI were included in the final model (but REI2 was included). 
Nagelkerke’s adjusted coefficient of determination was 0.51. Concordance was 93%.   
 
A model simulation (Figure 3A) shows the probability of FLV was highest (≈0.64) at a depth of 
0.6  0.7 m for all degrees of exposure (REI). Probability of FLV was highest (>0.5) at an REI of 
800 1200 for all depths between 0.4 and 1 m. The simulation (and underlying model given in the 
Appendix), and Table 1 can be used to find combinations of depth and REI that are likely to 
result in the eventual establishment of FLV stands that include Nymphaea and Nuphar in the 
SLRE.  
 
Assuming a cutoff probability of 0.6 or 60%, depth must be 0.4 0.9 m and REI must be <1700 

for FLV to occur (Figure 4B; weighted fetch values can be derived from REI using the 
information in Figure 5). Assuming a cutoff probability of 50%, depth must be 0.2 –1.1 and REI 
must be <2500 for FLV to occur. 
 
Figure 4B illustrates the interacting effect of depth and REI. The range of depths suitable for 
FLV depends on REI (e.g., the range narrows as REI exceeds 1000). Likewise, the range of REI 
suitable for FLV declines as depth exceeds 0.7 m. We speculate that in shallow, low exposure 
conditions, FLV may be outcompeted by (or mixed with) emergent vegetation. The reason why 
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FLV is predicted to be more likely at relatively deep locations of moderate exposure than at deep 
locations of low or high exposure is not clear. 
 

The model appears to do an excellent job predicting FLV where it actually occurs upriver of 
Grassy Point (Figure 5). In lower St. Louis Bay, however, the model predicts the occurrence of 
FLV in some areas where FLV was not present in the 2010 images (Figure 5, continuation). We 
consider three possible underlying reasons for this model error. 

1. FLV is present but not visible in imagery. 
2. The underlying depth or fetch data for the 10 m grid is wrong. 
3. One or more important predictors are missing from the model.  

We reject reason 1 because the model was build based water lilies, which were clearly absent 
from some areas where it is predicted by the model. Reason 2 may be important in some areas 
where true depth (in August 2010) was deeper than the available bathymetric data. Reason 3 may 
account for the overprediction of FLV in the northern part of St. Louis Bay (the 21st Avenue 
West project area). For example, the model predicts FLV at the mouth of Miller Creek and near 
the WLSSD outfall where no FLV was present. The model still outperforms the existing model 
(Host et al. 2012) for this area, which predicted large areas of FLV including around Interstate 
Island. The missing predictor may be substrate composition, which was a weak predictor in the 
Host (2012) model, water flow, or an anthropogenic stressor associated with the tributary or the 
outfall. High flows in Miller Creek may directly (disturbance) or indirectly (substrate particle 
size and contamination) account for the lack of FLV at the mouth of the tributary where REI and 
depth are otherwise suitable. 

Conclusions 

1. The predictive model described herein is based on more points than the model of Host et 
al. 2012 and is more accurate (predictions compares better with actual FLV stands).  

2. There is a strong interaction between exposure and depth that determines the physical 
conditions where FLV can occur in the SLRE. 

3. The predicted REI limit for high probability FLV occurrence was ≈1700. The predicted 
depth limit for FLV occurrence was ≈ 0.9 m. 

4. The model is applicable from Blatnik to Oliver Bridge, but may overpredict FLV in north 
St. Louis Bay for reasons that are not clear.  
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Figure 1. Google earth images from near Clyde Avenue Landing showing polygons selecting 
random points where FLV was present. Some FLV is not visible at this zoom level. 
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Figure 2. Depth and REI characteristics at grid locations where FLV was present and absent. In 
the box plots, the dashed line is the mean, and symbols are the 5th and 95th percentiles.  
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Figure 3. Model simulations for full logistic model (See Appendix). In plot A, curves show the 
effect of REI on probability of FLV for different depths. In plot B, the depth and REI are plotted 
for all 10 m grid locations between Blatnik Bridge and Oliver Bridge for which the predicted 
probability of FLV was > 0.5 or 0.6.  
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Figure 4. Empirical relationship for converting REI to weighted fetch. Points are locations with 
FLV. 
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Figure 5. Model prediction of FLV occurrence (probability >0.6 and 0.5) in the SLRE.  
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Figure 5. Continued. 
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Table 1. Depth range by REI and REI range by depth for which the probability of FLV is 
maximized (probability > 0.6). 

 

 

Depth 
(m) 

REI range 
 REI 

Depth range (m) 

Minimum maximum 
 

Minimum Maximum 

0.40 400 600 
 

0 0.50 0.70 

0.45 100 1100 
 

100 0.45 0.70 

0.50 0 1300 
 

200 0.45 0.75 

0.55 0 1400 
 

300 0.45 0.80 

0.60 0 1600 
 

400 0.40 0.80 

0.65 0 1600 
 

500 0.40 0.85 

0.70 0 1700 
 

600 0.40 0.85 

0.75 0 1700 
 

700 0.45 0.85 

0.80 300 1700 
 

800 0.45 0.85 

0.85 500 1600 
 

900 0.45 0.90 

0.90 900 1300 
 

1000 0.45 0.90 

    
1100 0.45 0.90 

    
1200 0.50 0.90 

    
1300 0.50 0.90 

    
1400 0.55 0.85 

    
1500 0.60 0.85 

    
1600 0.60 0.85 

    
1700 0.70 0.80 
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Appendix. SAS code (with model results) for logistic regression model 

 

*file FLV1; 

libname FLV 'M:\Biosonics data\lindgren rake survey'; 

 

***FLV random points model; 

*5000 random points overlay on GE images; 

*FLV Present or absent or land determined; 

 

proc import out =flv.FLV5 

datafile = 'M:\Biosonics data\lindgren rake 

survey\5000randompoints8_25_14.csv' 

dbms = csv replace; getnames = yes; guessingrows = 2000; run; 

*proc print data = flv.flv5 (obs = 1000);run; 

 

 

*create new predictor variables; 

data flv.flv6;set flv.flv5; 

if covertype = -1 then delete;*grid error = land; 

if covertype = 0 then flv_pa = 0;*FLV present; 

if covertype = 2 then flv_pa =1; 

if flv_pa = 1 and rei >7000 then delete;*outlier; 

if flv_pa = 1 and depth <-3 then delete;*outlier; 

depth = depth *-1; 

Depth_sqr = depth *depth; 

REI_sqr = REI * REI; 

DEPTHxREI= depth * REI; 

If depth lt 0.1 then depth = 0.1;*grid error; 

run; 

 

 

***full models; 

**model selection; 

proc logistic descending data = flv.flv6; 

model flv_pa = depth rei depth_sqr rei_sqr depthxrei/  selection = stepwise 

rsquare ; run; 

*rei dropped; 

                                

**final full model; 

proc logistic descending data = flv.flv6; 

model flv_pa = depth depth_sqr rei_sqr depthxrei /  rsquare ; 

output out=predFLV  p = yhat ; run; 
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*  MODEL results 

             

                                      The LOGISTIC Procedure 

 

                                        Model Information 

 

                          Data Set                      FLV.FLV6 

                          Response Variable             flv_pa 

                          Number of Response Levels     2 

                          Model                         binary logit 

                          Optimization Technique        Fisher's scoring 

 

 

                             Number of Observations Read        4122 

                             Number of Observations Used        4122 

 

 

                                         Response Profile 

 

                                Ordered                      Total 

                                  Value       flv_pa     Frequency 

 

                                      1            1           484 

                                      2            0          3638 

 

                                 Probability modeled is flv_pa=1. 

 

 

                                     Model Convergence Status 

 

                          Convergence criterion (GCONV=1E-8) satisfied. 

 

 

                                       Model Fit Statistics 

 

                                                           Intercept 

                                            Intercept            and 

                              Criterion          Only     Covariates 

 

                              AIC            2984.269       1687.795 

                              SC             2990.593       1719.416 

                              -2 Log L       2982.269       1677.795 

 

 

                      R-Square    0.2713    Max-rescaled R-Square    0.5268 

                      Nagelkerke R-square 0.51 

 

                             Testing Global Null Hypothesis: BETA=0 

 

                     Test                 Chi-Square       DF     Pr > ChiSq 

 

                     Likelihood Ratio      1304.4736        4         <.0001 

                     Score                  718.7658        4         <.0001 

                     Wald                   325.7926        4         <.0001 

_ 
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                                      The LOGISTIC Procedure 

 

                            Analysis of Maximum Likelihood Estimates 

 

                                              Standard      Wald 

            Parameter    DF    Estimate       Error    Chi-Square    Pr>chisq 

 

          Intercept     1     -0.5394      0.2279        5.6010        0.0180 

          Depth         1      3.3541      0.5424       38.2400        <.0001 

         Depth_sqr     1     -2.9041      0.2988       94.4848        <.0001 

          REI_sqr       1    -2.15E-7    2.391E-8       80.9766        <.0001 

          DEPTHxREI     1    0.000535    0.000126       18.0261        <.0001 

                                      Odds Ratio Estimates 

 

                                          Point          95% Wald 

                          Effect       Estimate      Confidence Limits 

 

                          Depth          28.620       9.885      82.864 

                          Depth_sqr       0.055       0.031       0.098 

                          REI_sqr         1.000       1.000       1.000 

                          DEPTHxREI       1.001       1.000       1.001 

 

                Association of Predicted Probabilities and Observed Responses 

 

                       Percent Concordant       92.4    Somers' D    0.850 

                       Percent Discordant        7.4    Gamma        0.851 

                       Percent Tied              0.2    Tau-a        0.176 

                       Pairs                 1760792    c            0.925 

 

end model results; 

 

 

proc import out =grid 

datafile = 'M:\Biosonics data\lindgren rake survey\grid.csv' 

dbms = csv replace; getnames = yes; guessingrows = 2000; run; 

*Output predictions for plots; 

data grid60 ;set grid; 

depth = depth *-1; 

Depth_sqr = depth *depth; 

REI_sqr = REI * REI;     

DEPTHxREI= depth * REI; 

if depth <0.1 then delete;   

*model;  

yhattest = -0.5394 + (3.3541 * depth) + (-2.9041*depth_sqr) + (-2.15e-

7*rei_sqr)+ (0.000535*depthxrei); 

*convert log odds to  prob; 

probflv = exp(yhattest)/(1+(exp(yhattest))); 

*toggle; 

*if probflv Lt 0.5 then delete; 

if probflv Lt 0.6 then delete; 

run; 

proc print data =grid60 (obs = 100);run; 

proc export data = grid60 

outfile= 'M:\Biosonics data\lindgren rake survey\flvgrid60_rand' 

DBMS = excel replace;run; 

***********end random flv models; 
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Submerged aquatic vegetation (SAV) provides the biophysical basis for multiple ecosystem services in Great
Lakes estuaries. Understanding sources of variation in SAV is necessary for sustainable management of SAV
habitat. From data collected using hydroacoustic survey methods, we created predictive models for SAV in the
St. Louis River Estuary (SLRE) of western Lake Superior. The dominant SAV species in most areas of the estuary
was American wild celery (Vallisneria americana Michx.). Maximum depth of SAV in 2011 was approximately
2.1 m. In regression tree models, most of the variation in SAV cover was explained by an autoregression (lag)
term, depth, and a measure of exposure based on fetch. Logistic SAV occurrence models including water depth,
exposure, bed slope, substrate fractal dimension, lag term, and interactions predicted the occurrence of SAV in
three areas of the St. Louis River with 78–86% accuracy based on cross validation of a holdout dataset. Reduced
models, excluding fractal dimension and the lag term, predicted SAV occurrence with 75–82% accuracy based
on cross validation and with 68–85% accuracy for an independent SAV dataset collected using a different
sampling method. In one area of the estuary, the probability of SAV occurrence was related to the interaction
of depth and exposure. Atmore exposed sites, SAVwasmore likely to occur in shallow areas than at less exposed
sites. Our predictive models show the range of depth, exposure, and bed slope favorable for SAV in the SLRE;
information useful for planning shallow-water habitat restoration projects.

Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.

Introduction

Submerged aquatic vegetation (SAV) provides the biophysical basis
formultiple ecosystem services in aquatic ecosystems (Kahn and Kemp,
1985), including coastal systems in the Laurentian Great Lakes (Sierszen
et al., 2012). SAV is a component of rearing and adult habitat for
commercially and recreationally important Great Lakes sport fishes
(Cvetkovic et al., 2010; Jude and Pappas, 1992; Randall et al., 1996).
SAV beds provide habitat for invertebrates (Krieger, 1992) and forage
for waterfowl (Knapton and Petrie, 1999; Prince et al., 1992). SAV also
has an important role in ecosystem functions including nutrient cy-
cling (Carpenter and Lodge, 1986; Wigand et al., 2000), wave atten-
uation (Christiansen et al., 1981; Koch, 2001), and sediment and
water quality dynamics (Barko et al., 1991; Best et al., 2008; Madsen
et al., 2001).

The St. Louis River Estuary (SLRE) is locatedwithin the St. Louis River
“Area of Concern” (AOC; http://www.epa.gov/glnpo/aoc/stlouis/index.

html; accessed 7 August 2013), an international designation recognizing
that the system has experienced significant environmental degradation,
and some ecosystem services or “beneficial uses” of the estuary have
been lost or are degraded. In the SLRE AOC, beneficial use impairments
include those that are related to SAV abundance and distribution. An
example is the beneficial use impairment “loss of fish and wildlife
habitat.” SAV is a critical shallow-water habitat for fish and wildlife
populations. In the SLRE, much of this habitat has been lost or degraded
due to sediment contamination, wetland filling, and channel dredging.
For this use impairment to be “delisted” for the AOC, shallow water
and wetland habitat must be restored. Prior to restoration, it may
be necessary to remediate sediments containing non-native material
(e.g., wood waste, industrial debris) or sediments contaminated with
metals and organic compounds. Following remediation and in areas
of uncontaminated sediments, restoration of natural substrates and
bathymetric contours to within limits favorable for SAV (and other
wetland types) is a key restoration objective (SLRCAC, 2002).

Efficient SAV restoration planning requires reliable information
about the physical habitat requirements that underlie the local distribu-
tion of native SAV species. The objective of this study was to examine
factors accounting for variation in the distribution and abundance of
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SAV in the SLRE within the context of spatially explicit predictive
models. These models can inform restoration efforts and conservation
in the SLRE and elsewhere andwill enhance understanding of ecological
response to changing conditions in Great Lakes estuaries.

The St. Louis River Estuary

The SLRE was formed when post-glacial isostatic rebound caused
Lake Superior to rise in the northeast, flooding the lower portion of
the St. Louis River at the southwestern end of the lake (Ojakangas and
Matsch, 1982). The SLRE is a Great Lakes “rivermouth” ecosystem as
defined by Larson et al. (2013). The 5000-ha estuary forms a section of
the state border between Duluth, Minnesota and Superior, Wisconsin
(Fig. 1). The estuary is at the terminus of the St. Louis River Basin
(9250 km2), but also receives discharge from several tributaries, the
largest of which is the Nemadji River (1140 km2 basin area). Land
cover in the St. Louis River watershed is 94% forest, wetland, and
water; 4% agriculture; and 2% developed.

Allouez Bay at the southeast end of the SLRE (Fig. 1) is a shallow,
semi-enclosed embaymentwithminimal human development. Superior
Bay is a lagoon formed behind a natural 16 km-long sand bar and is open
to Lake Superior at its northwestern and southeastern end. The bay
contains the outer Duluth–Superior Harbor, a large commercial seaport,
with extensive ship channels and industrial development. St. Louis Bay
includes the inner harbor and is likewise industrialized and channelized.
It is shallower than Superior Bay and is less hydrologically influenced
by Lake Superior. Spirit Lake, a large flooded backwater of the river,
is generally shallow and undeveloped. Above Spirit Lake, the estuary
is riverine.

Physical aspects of the SLRE relevant to this study are its relative
shallowness (mostly b3 m deep outside of dredged shipping channels
and slips), the general absence of coarse substrates except in the
upper, riverine portion of the estuary (which is not included in this
study), and the restricted openwater period, usually fromApril through
November. Estuary morphometry is irregular and fetch distances
are highly variable. For the prevailing northeast wind, maximum fetch
distance is ≈4.5 km. Tributaries to the Allouez Bay, the Nemadji River,
and the Pokegama River (Fig. 1) drain highly-erodible clays deposited
in Glacial Lake Duluth (Magner and Brooks, 2008) and these areas are
generally more turbid than the rest of the SLRE (DeVore, 1978).

SAV beds arewidespread across shallow areas of the SLRE. A vegeta-
tion survey of the SLRE conducted in 2010 (John Lindgren, MN DNR,
unpublished data) collected 21 species of SAV at 688 sites. At sites
where SAV was present, the most frequently collected species (present
at 83% of sites) was American wild celery, Vallisneria americanaMichx.

In June 2012, a 500-year recurrence interval flood occurred across
the lower St. Louis River Basin (Supplementary Information Appendix
A; Czuba et al., 2012). To evaluate the effects of this event on SAV,
we resurveyed portions of Allouez Bay, St. Louis Bay, and Spirit Lake
in 2012, post-flood. This aspect of our study was unplanned and oppor-
tunistic, but we include the results here because they provide insight
into interannual variation in SAV across the SLRE.

Methods

Survey methods and instrumentation

Methods for sampling SAV include grab or rake sampling (Havens
et al., 2002; Rodusky et al., 2005; Skubinna et al., 1995), direct observa-
tion by diving or video (Hudon et al., 2000), remote sensing
(Narumalani et al., 1997; Wolter et al., 2005), photo interpretation
(Zhu et al., 2007), and hydroacoustic methods (Depew et al., 2010). In
the SLRE, SAV beds are often patchy, turbidity varies considerably
among areas (DeVore, 1978) and over time, and the growing season is
short. Given these conditions, hydroacoustic survey methods were the

best option for generating the extensive, high resolution data needed
for modeling.

From late July through mid September in 2011, we surveyed SAV in
Allouez Bay, part of Superior Bay, eastern half of St. Louis Bay, and Spirit
Lake (Fig. 1). Transects were aligned along gridlines plotted on a GPS
unit (Garmin GPSMAP 536, Garmin International, Olathe, KS) aboard
the survey vessel. Total survey transect length in 2011 was 365 km. In
2012, we resurveyed transects in each area during the same weeks as
in 2011. The survey vessel was a 5.7-m long flat-bottomed aluminum
boat with outboard power. Because of vessel size, the operational
depth limit for the hydroacoustic survey was ≈0.5 m. This means that
models based on our data should not be extrapolated to shallower
depths.

Hydroacoustic instrumentation included narrow beam (6°), 120
and 420 kHz BioSonics transducers, and an onboard BioSonics DT-X
digital echosounder (BioSonics Inc., Seattle, WA). Data were cap-
tured on a notebook computer using Visual Acquisition software
(BioSonics, 2010). Hydroacoustic data for each GPS “fix” along each
transect was summarized into SAV indicators for that GPS location.
Many additional details of hydroacoustic methods and instrument
and software settings used in this study are given in Supplementary
Information Appendix B.

An underlying assumption of this method is that the digital signal is
detecting SAV and is not systematically detecting something else. In
areas of relatively shallow water, where SAV was visible from the
boat, we could confirm that the transducer was passing over visible
SAV beds or bare bottom from the display of digital signal from
the echosounder. The reliability of this method for surveying aquatic
vegetation has been demonstrated, and its use for this purpose is
widespread (e.g., Depew et al., 2010; Sabol et al., 2009; Valley et al.,
2005; Winfield et al., 2007).

Previous recent SAV sampling (Brady et al., 2010) and our own
observations showed that SAV was almost never collected deeper than
2.5 m in the SLRE. We therefore excluded locations with a mean
depth N 2.5 m to focus the predictive modeling on sources of variation
in SAV in areas of the estuary within the depth range currently capable
of supporting SAV.

Bottom typing parameters were extracted from digital data from the
120 kHz transducer using Visual Bottom Typer (VBT) V. 1.12 software
(BioSonics, 2007). We retained three parameters related to substrate
characteristics: E1, E1′, and fractal dimension (BioSonics, 2007). E1 is
based on thefirst part of the bottom echo for a ping andmay correspond
to bottom roughness. E1′ is based on the second part of the bottom echo
for a ping and may correspond to bottom hardness. Fractal dimension
has been correlated with physical and chemical properties of bed
sediment (Anderson and Pacheco, 2011).

We determined the fetch distance by wind direction for each
location (0–360 in 10-degree increments) using the SPM-restricted
method of Rohweder et al. (2008). Wave height is a function of fetch,
wind speed, and wind duration (Keddy, 1982). The relative exposure
index (after Keddy, 1982) integrates these variables into an index
computed as the sum across wind directions of mean monthly wind
for April–October from each direction multiplied by the proportion of
the month that the wind was blowing from that direction, scaled from
0 to 1, and multiplied by the fetch distance for the direction. Hourly
wind data were from Sky Harbor Airport on Superior Bay (46.7219 N,
92.0433 W). Bed slope in percent was calculated from bathymetry
raster data (10 × 10 meter cell size) using the Slope tool in ArcGIS for
Desktop 10.1 which is based on the average maximum technique
(Burrough and McDonell, 1998).

We used the measured SAV percent cover at the location imme-
diately previous to each useable record location along each
transect as a lag variable to correct for possible serial autocorre-
lation of model error. SAV percent cover, substrate parameters,
corrected depth, and exposure and bed slope data were combined
in Arc-GIS.
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Water quality and SAV grab sampling

At the start, midpoint, and end of approximately every fifth transect
we collected a surface water grab sample for turbidity analysis. For a
concurrent study, we collected water grab samples at random locations
across the SLRE for determination of nutrient concentration. Water
temperature was recorded every 15 min at 7 locations in the SLRE on
HOBOTemp recording sensors. (Onset Computer Corporation, Bourne,
MA). Turbidity was determined for each sample using an AquaFlour
turbidimeter (Turner Designs, Sunnyvale, CA). Total nitrogen and total
phosphorus concentrations were determined using a Lachat flow-
injection analyzer (Hach Company, Loveland, CO). Unfiltered sub-
samples were digested using the persulfate method (APHA, 1998).
Turbidity, nutrient concentration, and temperature data were
not included as predictors in SAV models, because they do not
vary (and were not measured) at the same spatial scale as our
hydroacoustic SAV data. Instead, we used this information to inform
spatial stratification of the SLRE for data analysis and for interpreting
the results.

At 124 locations within visible SAV beds distributed across the
surveyed areas, we collected SAV samples (0.27 m2) using tongs (after
Rodusky et al., 2005). Samples were sorted to species, dried (105 °C),
and weighed.

Substrate analysis

We examined echograms from selected locations in the SLRE to
locate ≈150-ping segments of transects with visually uniform bottom
type. We extracted the mean value of bottom type parameters

(E1, E1′, and fractal dimension) for each segment using Visual Bottom
Typer software. To calibrate the typing parameters we collected two
standard PONAR samples (0.046 m2) at each transect segment location
(N = 50 locations). Each PONAR sample was subsampled, sieved,
and dried (105 °C) to determine the percent of dry mass in the
clay (b63 μm), fine (63–500 μm), sand (500 μm–2 mm), and coarse
(N2 mm) fractions. Subsamples of each fraction were ashed (500 °C)
to determine the percent of organic matter. We used rank correlation
to determine if gravimetric substrate measurements in the calibration
dataset were related to bottom typing parameters.

Cover models

Preliminary analysis revealed complex non-linear responses of
percent SAV cover to predictors. We therefore used regression tree
modeling (RTM, TREE program in SYSTAT v. 11) to examine sources
of variation in SAV cover in each area of the SLRE. RTM is a non-
parametric approach (Breiman et al., 1984)well suited to characterizing
non-linear responses. Candidate predictors included depth, bed slope,
relative exposure index, fractal dimension, E1, E1′, and lag percent
cover. We randomly split the data in half into training and validation
(holdout) datasets. We also excluded data from an area in Superior
Bay to be used as an independent dataset for model validation.
Using RTM, we split sample locations into groups that minimized
within-group heterogeneity using a least squares loss function until
the added proportional reduction in error (PRE) was b1%. The final
groups are the terminal nodes of the regression tree. The cumulative
PRE is equivalent to model r2 (Wilkinson, 1998). We also created
reduced regression tree models excluding lag cover and fractal

Fig. 1. Four areas of St. Louis River Estuary were surveyed in 2011: Allouez Bay, Superior Bay, St. Louis Bay, and Spirit Lake. Survey transects were aligned along a grid of GPS waypoints
spaced 50 m apart. In Superior and Allouez Bay, transects were oriented northeast by southwest to run perpendicular to depth contours in this area. Elsewhere in the estuary, transects
were oriented east by west.
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dimension that could be applied to other locations in the SLRE
using readily available bathymetry, morphometry, and wind data. We
validated trees by dropping training, cross-calibration, and independent
(Superior Bay) data through the regression tree and examining the rank
order of the terminal means.

Occurrence models

We created logistic regression models for each area of the SLRE to
predict the probability of SAV being present at each report location.
We createdmodels for the training dataset using the Logistic procedure
in SAS v. 9.1 with stepwise elimination (α = 0.05). Plots of cover by
depth for selected predictor values (Supplementary Information
Appendix C) suggested that interactions between depth and other
predictors were likely to be significant, and so were included in regres-
sionmodels. We retained themain effect if their interaction termswere
significant in the model. We examined the performance of the models
using the area under the receiver operating characteristic (AUROC)
curve. AUROC is the probability of concordance between random
pairs of observations and ranges from 0.5 to 1 (Gönen, 2006). We
cross-validated logistic occurrence models for their ability to classify
correctly locations in the validation (holdout) dataset and in theSuperior
Bay dataset. For classification, we converted log odds from the model to
probability of SAV occurrence using the logistic function. We then
convertedmodel-predicted probability of SAV occurrence (ŷSAV) to bina-
ry predictions (i.e., ŷSAV N0.5 = 1, ŷSAV ≤0.5 = 0). Assessed accuracy
was the percent of all records where the predicted value and actual
value agreed either as true positive (1, 1) or true negative (0, 0).
Percent false positives (prediction = 1, actual = 0) or false
negatives (prediction = 0, actual = 1) were also determined.
We created reduced occurrence models to allow us to simulate
predictor effects when the gear-specific substrate predictor (fractal
dimension) and the autocorrelation variable (lag SAV) were excluded.
We cross-validated reduced models as described above. We further
validated reduced models using an independent dataset collected by
the Natural Resources Research Institute (NRRI; Brady et al., 2010;
Host et al., 2012) using rake sampling methods (MN DNR, 2012).
We extrapolated bed slope and relative exposure index for NRRI sample
locations using the methods described above. We also created
regression tree models (TREE program in SYSTAT v. 11) as described
above for SAV cover except with SAV occurrence (1 or 0) as the
response variable.

Results

SAV species composition

American wild celery (V. americana) was the most common species
collected by dry weight and frequency of occurrence in our samples
(Table 1). Wild celery was the only SAV species we collected in
St. Louis Bay. Clasping-leaved pondweed, Potamogeton richardsonii
(Benn.) Rydb., was co-dominant with wild celery in Allouez Bay. Across

the SLRE, SAV species diversity was higher in sheltered areas than in
more exposed areas.

Water quality variation among areas

Mean turbidity in Allouez Bay, 67 NTU, wasmuch higher than other
areas of the SLRE (b10 NTU) in 2011 (Fig. 2). Mean turbidity generally
decreased slightly up-estuary and was lowest in Spirit Lake. Total N
and total P concentration, and mean temperature were slightly higher
in St. Louis Bay and Spirit Lake than in Superior Bay or Allouez Bay.

Table 1
Relative biomass and frequency (%) of submerged aquatic vegetation (SAV) species in grab samples collected at four siteswithin the SLRE in2011.Mean total drymass for each site is given
at bottom of the table (g/m2).

Taxon Spirit Lake
N = 44

St. Louis Bay
N = 25

Allouez Bay
N = 22

Superior Bay
N = 33

Dry mass (%) Samples (%) Dry mass (%) Samples (%) Dry mass (%) Samples (%) Dry mass (%) Samples (%)

Vallisneria americana Michx. 90 95 100 100 54 68 94 94
Potamogeton richardsonii (Benn.) Rydb. 3 14 0 0 46 59 0 0
Ceratophyllum demersum L. 1 5 0 0 0 5 0 0
Potamogeton sp. 0 0 0 0 0 5 3 3
Najas flexilis Willd. 4 7 0 0 0 0 3 9
Myriophyllum sp. 2 5 0 0 0 0 0 0
Mean total dry mass (g/m2) 73 20 47 20

Fig. 2. Variation in turbidity, nutrient concentration, temperature, depth, and SAV occur-
rence among survey areas in the SLRE in 2011 (and 2012 for temperature). Values for
nutrients are means ± range (N = 5, 14, 12, 3 for Allouez Bay, St. Louis Bay, Spirit Lake,
Superior Bay respectively). Values for temperature are monthly means (June–October
2011). Values for turbidity are means ± range (N = 74, 89, 59, 73 for Allouez Bay, St.
Louis Bay, Spirit Lake, Superior Bay respectively).
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SAV cover and occurrence

About 60% of the surveyed locations of the SLRE were shallow
(b2.5 m, Fig. 2). Superior and St. Louis Bays were the deepest areas
with ≤55% of the surveyed area shallower than 2.5 m (Fig. 2). Spirit
Lake and Allouez Bay were the shallowest areas with ≥83% of the
surveyed area shallower than 2.5 m.

The percent occurrence of SAV in water shallower than 2.5 m was
highest in Superior Bay (49%) and lowest in Allouez Bay (26%). Where
it occurred, SAV cover was not continuous at the scale we measured.
Mean percent cover (i.e., within SAV beds) ranged from 31% in Spirit
Lake to 41% in Allouez and Superior Bays (Fig. 3).

SAV predictors

Across locations b2.5 m deep (the threshold depth for modeling),
mean depth, relative exposure index, bed slope, and fractal dimension
varied between locations with and without SAV (Fig. 3). Except for
relative exposure index in Allouez Bay, the difference between locations
with and without SAV was significant (t-test p b 0.05). For all areas,
locations with SAV were shallower and had finer substrate (higher
fractal dimension) than locations where SAV was absent (Fig. 3). The
patterns for relative exposure index and bed slope were not consistent
among areas.

The bottom typing parameters E1 (first part of bottom echo) and E1′
(second part of bottom echo) were strongly correlated with depth
(rs ≥ 0.92, Supplementary Information Appendix D.1). Fractal dimen-
sion was less strongly correlated with depth, positively correlated
with percent clay and negatively correlated with other particle size
fractions. Correlations among predictors from the survey confirm
the strong relationship of E1 and E1′ with depth (rs = 0.68–0.90,
Supplementary Information Appendix D.2). We therefore excluded E1
and E1′ from themodels. Correlations amongpredictorswere otherwise
weak (|rs| ≤ 0.3, Appendix D.2).

Relationships between percent cover and predictors were non-
linear (Fig. 4). Percent SAV cover did not vary much with change in
depth deeper than 2.25 m. Mean percent cover declined at depths
shallower than ≈1.2 m in St. Louis Bay and Spirit Lake. Cover did not
vary with change in fractal dimension below 1.0. Range in mean cover
across the range of bed slope (≈0–30%) was small, b10%. The relation-
ship between mean relative exposure index and cover was variable.
In St. Louis Bay, however, mean SAV cover declined with relative
exposure index above and below 7500.

SAV cover models

Cumulative proportional reduction in error (PRE;≈r2) in regression
treemodels ranged from 0.29 to 0.53 (Table 2). Most of the reduction in
error was from branching into lag cover groups followed by depth. The
best reduced regression tree model (fractal dimension and lag cover
excluded) was for St. Louis Bay (PRE = 0.36, Table 2, Supplementary
Information Appendix E.1). The St. Louis Bay reduced regression tree
model divided locations into depth groups of b1.5 m with a mean SAV
cover of 28% and ≥1.5 m with a mean SAV cover of 3% (PRE = 0.28).
The shallow group was split into a high relative exposure index group
(N3133) with a mean cover of 33% and a low exposure group (b3133)
with a mean cover of 21% (PRE = 0.02). The rank of node means for
the St Louis Bay validation data matched the node means for the data
on which the mode was based (Supplementary Information Appendix
E.1). Because the areas differed significantly in morphometry (see rela-
tive exposure index in Fig. 3), high relative exposure index nodes 4 and
6 were empty for the Superior Bay validation data. Ranks were other-
wise similar to the model training data indicating that the St. Louis
Bay model was reliable for independent data.

SAV occurrence models

SAV occurrence was significantly related to linear combinations
of predictor variables (all models p b 0.001; r2 = 0.30–0.62, Table 3)
for all areas. Lag presence/absence was the most important predictor
(based on the Wald X2 statistic). Logistic occurrence models for
St. Louis Bay and Spirit Lake were similar to each other relative to the
Allouez Bay model. For example, the signs of model coefficients of
depth, relative exposure index, depth x relative exposure index

Fig. 3.Variation inpredictors andpercent cover amongareas andbetween locationswithin
areaswith andwithout SAV in the SLRE in 2011. Box plots show 10th and 90th percentiles
(whiskers), 25th and 75th percentiles (boxes), medians (solid horizontal line), andmeans
(dashed line). N (number of locations) for SAV present/SAV absent = Allouez Bay 4954/
13,952; St. Louis Bay 5446/11,526; Spirit Lake 5523/8516; Superior Bay 945/965).
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interaction, and depth x fractal dimension interactionwere different for
Allouez Bay and the two other areas.

Model performance, as indicated by the area under the receiver
operating characteristic (AUROC) curve was N0.8 (Table 3). Assessed
accuracy of models (the percent of records where the predicted proba-
bility of occurrence and actual SAV presence or absence agreed) for split
datasetswas 79% for Allouez Bay, 86% for St. Louis Bay, and 78% for Spirit
Lake (Supplementary Information Appendix E.2). Assessed accuracy of
the St. Louis Bay model for Superior Bay was 74%. In St. Louis Bay and
Spirit Lake the percent misclassification by false positive (predicting
SAV occurrence when it is absent) and false negative was ≤56%.
In Allouez Bay, more misclassifications were due to false negatives
(72%). For the St. Louis Bay model (the most accurate of the fully
parameterizedmodels), the effect of relative exposure on probability
was significant as was the interaction of depth and exposure.
The positive effect of exposure on SAV occurrence decreased with
increasing depth.

Reduced occurrence models without lag cover or fractal dimension
(Table 4) were slightly less accurate than the full models (75–82%).
As for the full models, themodel for St. Louis Baywas themost accurate
(82%). Assessed accuracy of the St. Louis Bay reducedmodel for classify-
ing Superior Bay locationswas 68%. In Allouez Bay, the negative effect of
relative exposure on SAV occurrence increased with depth. In St. Louis
Bay, the positive effect of relative exposure decreased with depth. In

Spirit Lake, the bed slope had a negative effect on probability of SAV
occurrence, and the effect increased with depth.

Mean depth, relative exposure index, and bed slope for the
“population” of locations sampled by us in 2011 (on which our
models were based), and the rake sample sites sampled in 2010
and 2011 by NRRI (Brady et al., 2010; Host et al. 2012) were some-
what different (Table 5). The sites rake sampled in St Louis Bay
were, on average, significantly shallower and less exposed (lower
relative exposure index) than locations we surveyed. In Spirit
Lake, bed slope at rake sample sites was less than where we sur-
veyed. Despite these differences, our models were 68% accurate at
classifying rake sample sites as SAV is present or absent for
St. Louis Bay, and 85% accurate for Spirit Lake (Table 5). Most
misclassifications (73–100%) were false negatives wherein our
models failed to predict SAV at sites where rake samples indicated
SAV was present.

Lag cover and depth accounted formost reduction in error in regres-
sion tree models (Table 2). As for cover models, the best occurrence
models were for St. Louis Bay. The St. Louis Bay reducedmodel (Appen-
dix E.2) divided locations into shallow locations (b1.5 m) with a mean
SAV probability of occurrence of 0.71 and deeper locations (N1.5 m)
with a mean SAV probability of occurrence of 0.12 (PRE = 0.36). The
deep group was further split into shallow group (b1.74 m) with a
mean SAV probability of 0.34 and a deeper group (≥1.74 m) with a

Fig. 4. Panels A–C: Scatter plots of percent SAV cover in study areas in SLRE in 2011 by depth for Allouez Bay (A), St. Louis Bay (B) and Spirit Lake (C). Lines are running av-
erages (sample proportion = 0.05). Panels D–F: running average plots (sample proportion = 0.05; scatter plots not shown) for fractal dimension (D), bed slope (E), and relative expo-
sure index (F).

541T.R. Angradi et al. / Journal of Great Lakes Research 39 (2013) 536–546

image of Fig.�4


mean probability of occurrence of 0.07 (PRE = 0.03). The St. Louis Bay
SAV occurrence regression tree accurately classified cross validation
data (Supplementary Information Appendix E.2). The model performed
reasonably well for Superior Bay data, but over-predicted the probabil-
ity of occurrence in node 3 (locations 1.5–1.74 m deep with relative
exposure index N5138) relative to the training data.

June 2012 flood

On June 21, 2012, following a 2-day, 18-cm precipitation event
(Czuba et al., 2012), maximum daily discharge from Fond du Lac Dam
at the head of the SLRE was over 1600 m3/s. Normal June baseflow is
≈100 m3/s (Supplementary Information Appendix A). This event
followed a smaller storm in May during which flows in the St. Louis
River were also elevated. Reliable turbidity data are not available for
this period, but we observed elevated turbidity across the SLRE from
late May through July 2012. For the three areas we resurveyed in 2012
after the flood, percent SAV cover and occurrence were lower than in
2011 (Fig. 5). Percent cover declined by N60% in St. Louis Bay and Spirit
Lake and 31% in Allouez Bay. Percent of location b2.5 m deep with SAV
declined by N75% in St. Louis Bay and Spirit Lake and 41% in Allouez Bay.

We examined the accuracy of the reduced occurrence models
(Table 4) in predicting SAV occurrence after the flood. Model accuracy
in Spirit Lake was very poor after the flood, correctly classifying only
44% of locations (Table 4). The majority of classification errors (88% in
St. Louis Bay and 96% in Spirit Lake, Table 4) were false positives—the
model predicted SAV would be present and it was not.

Discussion

SAV and depth

Based on the mean percent submerged aquatic vegetation (SAV)
cover, maximum rooting depth of SAV in the St. Louis River Estuary
(SLRE) in 2011 was≈2.1 m. Optimal depth, belowwhich the probabil-
ity of SAV occurrence declines rapidly, was≈1.2 m in St. Louis Bay and
Spirit Lake and b1 m in more turbid Allouez Bay. This depth range for
St. Louis Bay and Spirit Lake is similar to published values for wild
celery from waters with similar turbidity. For example, on the Upper
Mississippi River (15 NTU) wild celery was most abundant at
0.5–1.1 m (Kreiling et al., 2007). On the Detroit River (5–10 NTU), the
species was most abundant at 0.3–1.5 m (Hunt, 1963). Wild celery
can grow deeper (N2.5 m) in more transparent waters (Catling et al.,
1994), and presumably would do so in the SLRE where turbidity
was lower.

We could not determineminimumSAVdepth in the SLRE because of
our sampling method. However, we observed that in water shallower
than 0.5 m, SAV gives way to bare sand in the exposed areas. We do
not know if this is due to the limitation of plants by direct wave action
or to the effect of wave erosion on sediment characteristics (Duarte
and Kalff, 1990). In more sheltered areas, SAV beds transition to a
mixture of SAV, floating, and emergent vegetation as water shoals.
Wilson and Keddy (1986) postulated diversity–disturbance relation-
ship for shoreline plant assemblages wherein disturbance limits
competitive dominance. This may account for our observation that in
more sheltered areas, caulescent SAV, floating-leaved, and emergent
species occupy depths at which wild celery would likely dominate
elsewhere in the SLRE in more exposed locations.

Predictive models

The physical habitat andwater quality data confirm the appropriate-
ness of the area-specific modeling approach for the SLRE. Allouez Bay
was much more turbid than the other areas and had a different SAV
assemblage. Turbidity was similar in St. Louis Bay and Spirit Lake,

but the water depth and exposure were higher in St. Louis Bay than
Spirit Lake.

Lag cover and depth accounted for themost variation in SAV cover in
all areas.When lag cover was excluded, exposure (i.e., relative exposure
index) became significant. The best regression tree cover models were
for St. Louis Bay where percent cover was highest (36%) in water
shallower than 1.5 m and where relative exposure index was N11,490.
This positive effect of exposure is discussed below.

The SAV cover and occurrence models were least accurate for
Allouez Bay, possibly due in part to the nature of the SAV assemblage
there. Wild celery in Allouez Bay is mostly restricted to a narrow band
between emergent vegetation (to landward) and openwater or patches
of clasping-leaved pondweed.We surmise that pondweed, a caulescent
“canopy-forming” species that concentrates photoreceptive biomass
near the water surface (Barko et al., 1984; Best et al., 2008), can out-
compete wild celery, a “meadow-forming” species, for light in much
of Allouez Bay since it is less constrained to a narrow depth range.
In Allouez Bay, clasping-leaved pondweed does not seem to grow
in beds like wild celery, but in more widely distributed patches
and therefore may not be as easily modeled at the fine spatial scale
of our data.

Based on independent rake sampling of the SLRE (Brady et al., 2010;
Host et al., 2012) the ability of our reduced models to classify correctly
locations as SAV present or absent was 85% for Spirit Lake and 67% for
St. Louis Bay (Table 5). In St. Louis Bay, our models were based on tran-
sects through locations that were, on average, more exposed (higher
relative exposure index) and deeper than the rake sample locations.
Our models probably underestimate the extent of SAV sheltered areas
of the SLRE, possibly because, due to inaccessibility, these areas were
underrepresented in the original survey on which the models were
based. Also, in shallow sheltered areas, floating-leaved and emergent
vegetation, which increase the amount of noise in the SAV data (Supple-
mentary Information Appendix B), tend to co-occur with SAV.

The inclusion of a lag variable improved the performance of the
occurrence models, as would be expected. Our interpretation is that
many SAV patches (and gaps between patches) were large enough to
overlap the bottom area covered by successive reports (which were
3.9 m apart; see Supplementary Information Appendix B). Wild celery
is capable of sexual and asexual reproduction. Clonal growth (Catling
et al., 1994) and a short seed-dispersal distance (Kaul, 1978) may
constitute contagious biological processes (sensu Legendre, 1993)
within wild celery beds that account for the non-independence of
locations along each transect.

Table 2
Regression treemodel results for SAV in the SLRE in 2011 showing proportional reduction
in error (PRE) in response variable for predictor at three sites.

SAV response
variable

Predictor Allouez
Bay

St. Louis
Bay

Spirit
Lake

Proportional reduction in error
(PRE)

Cover Lag cover 0.26 0.47 0.31
Depth 0.03 0.05 0.06
Fractal dimension 0.00 0.00 0.01
Cumulative PRE (r2) 0.29 0.53 0.38
Reduced models
Depth 0.11 0.31 0.22
Relative exposure index 0.06 0.05 0.00
Cumulative PRE (r2) 0.17 0.36 0.22

Occurrence Lag cover 0.17 0.42 0.06
Depth 0.03 0.08 0.34
Fractal dimension 0.00 0.01 0.00
Cumulative PRE (r2) 0.20 0.51 0.40
Reduced models
Depth 0.10 0.39 0.34
Relative exposure index 0.04 0.03 0.00
Cumulative PRE (r2) 0.14 0.42 0.34
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In St. Louis Bay and Spirit Lake, the positive effect of relative expo-
sure index on probability of SAV occurrence increased with decreasing
depth (see Supplementary Information Appendix C). We think that
the dominant SAV, a wild celery, a deep-rooted species (Wigand et al.,
2000), is adapted to persist within the normal limits of the fetch-
disturbance regime of the SLRE. This interaction probably owes to the
competitive advantage wild celery has over emergent and floating-
leaved species when relative exposure index is high. In Lakes Mendota
andWingra, Wisconsin, Titus and Adams (1979) found that the rooting
system of wild celery allowed it to resist replacement by Eurasian
water-milfoil, Myriophyllum spicatum L. in shallow water subject
to wave action. Stewart et al. (1997) found that canopy-forming SAV
species (e.g., Eurasian water-milfoil, and clasping-leaved pondweed)
were more susceptible to wave damage than wild celery with its basal
rosette growth-form. Kreiling et al. (2007) observed that wild celery
biomass on the Upper Mississippi increased with increasing wind
fetch, which they attributed to lack of competition from macrophyte
species, which were intolerant of turbulence. Spence (1982) noted
that SAV species diversity was usually higher in sheltered areas than
in exposed areas.

Duarte and Kalff (1986) predicted maximum submerged macro-
phyte biomass in Lake Memphremagog (Vermont–Quebec) using a
linear model including littoral slope which was negatively related and
sediment organic matter which was positively related to SAV biomass.
They felt that reduced sediment stability on steep slopes rather than
an effect of slope on wave action accounted for the slope effect. In the
SLRE, there was a significant interaction between slope and depth
in Spirit Lake and Allouez Bay, and the negative effect of slope on SAV
increased with depth. The mechanism underlying the slope effect in
the SLRE is not clear.

Substrate fractal dimension was a significant predictor in our
full models. In St. Louis Bay and Spirit Lake, the positive effect of fractal
dimension on SAV occurrence increased with depth. The fractal dimen-
sion is a digital characterization of the acoustic bottom signal that
is associated with substrate characteristics rather than a measure

of them. Our analysis (Supplementary Information Appendix D)
corroborates Anderson and Pacheco (2011). Like us, they found fractal
dimension to be positively correlated with percent clay and negatively
correlated with percent sand in bed sediments.

American wild celery, the dominant species in most of the SLRE, can
apparently thrive in a variety of substrates from hard clay to gravel
(Catling et al., 1994; Korschgen andGreen, 1988). Hunt (1963) reported
that the species grew best in silty sand in the Detroit River. Louvet-
Doust and LaPorte (1991) reported a high wild celery density in clay
sediment. On the Upper Mississippi River, wild celery grew on a variety
of substrates (Korschgen andGreen, 1988). Given this apparent indiffer-
ence of thedominant SAV species to substrate type, it is difficult to inter-
pret the meaning of the relationships between fractal dimension and
SAV in the SLRE, beyond the fact that fractal dimension was associated
with some aspect of the substrate that is related to the suitability
for SAV. An implication for SLRE habitat restoration is that emplaced
substrates should at least, to the degree possible, reflect the particle
distribution of native sediments where SAV already occurs.

We did not measure nutrient concentration at the same scale as SAV
cover, but we doubt that variation in nutrient concentration across the
SLRE, which was relatively slight (Fig. 2), contributedmuch to variation
in SAVdistribution. There aremany examples of large-scale SAVmodels
that are driven primarily by nutrient concentration or loads (e.g., Cerco
and Moore, 2001; Orth et al., 2010). Water quality varies significantly
among Great Lakes coastal ecosystems (Croft and Chow-Fraser, 2007;
Trebitz et al., 2007). Therefore, models of spatial variation in SAV
among Great Lakes coastal ecosystems, or of temporal variation in SAV
through time, will likely include water quality predictors such as nutri-
ent concentration and turbidity.

We have ignored some factors for whichwe lack empirical data that
might influence the distribution of SAV in the SLRE. For the predictive
models described herein, these unmeasured sources of variation,
including herbivory by waterfowl, ice scour, and phytotoxicity of
contaminants contribute to model error. Our observations in the SLRE
convince us that the effects of waterfowl foraging and ice scour on
SAV are at most localized. Reschke and Host (2013) have recently
presented preliminary evidence that sediment or water column con-
tamination may be influencing the distribution of aquatic vegetation
in the SLRE.

Table 4
Stepwise logistic regression results for reduced models (lag and fractal dimension
omitted). Model p b 0.001 in all cases. Dependent variable is log probability of SAV
occurrence. Accuracy (percent of caseswhere SAV probability N0.5 when SAVwas present
(P) and SAV probability≤0.5when SAVwas absent (A)) is based on cross-validation using
a split dataset. AUROC is the area under the receiver-operating characteristic curve;
AUROC ranges from 0.5 (random prediction) to a 1 (perfect classification). Accuracy
percentages inparentheses are for independent Superior Bay data; percentages in brackets
are for transects resurveyed in 2012. REI = relative exposure index.

Model
parameters

Allouez Bay
(N = 9422)

St. Louis Bay
(N = 8484)

Spirit Lake
(N = 7020)

Estimate Wald Χ2 Estimate Wald Χ2 Estimate Wald Χ2

Intercept 5.55 218 0.99 22 5.92 1306
Depth −5.17 335 −1.06 55 −4.23 1427
REI −0.0005 86 0.0008 366
Bed slope −0.26 51 −0.46 103
Depth x REI 0.0005 125 −0.0005 356
Depth x bed slope 0.23 110 0.29 115

Model performance and validation

Likelihood ratio 1206 3646 2616
Nagelkerke r2 0.18 0.48 0.42
AUROC (0.5–1) 0.73 0.87 0.83
Accuracy (%) 75 [66] 82 (68) [79] 76 [44]
True positive (%) 6 [8] 25 (26) [19] 35 [27]
True negative (%) 94 [92] 75 (74) [81] 65 [73]
False positive (%) 15 [31] 39 (4) [88] 49 [96]
False negative (%) 85 [69] 61 (96) [12] 51 [4]

Table 3
Stepwise logistic regression occurrence model results. Dependent variable is log
probability of SAV occurrence. Model p b 0.001 in all cases. Classification accuracy (SAV
probability N0.5 when SAV is present (P) and SAV probability ≤0.5 when SAV is absent
(A)) is based on cross-validation using a split dataset. Lag SAV P/A is the presence (1) or
absence (0) of SAV at the previous location on the transect. AUROC is the area under
the receiver-operating characteristic curve; AUROC ranges from 0.5 (random prediction)
to 1 (perfect classification). REI = relative exposure index. Accuracy percentages in
parentheses are for independent Superior Bay data.

Model
parameters

Allouez Bay
(N = 9323)

St. Louis Bay
(N = 8212)

Spirit Lake
(N = 6211)

Estimate Wald
X2

Estimate Wald
Χ2

Estimate Wald
Χ2

Intercept −44.19 −6.11 −1.37
Depth 18.15 10 −16.29 14 −11.78 4
REI −0.0004 43 0.0005 121 0.0003 13
Bed slope −0.21 27 −0.03 ns −0.32 22
Fractal dimension 45.99 31 6.47 ns 3.93 ns
Lag SAV P/A 1.57 784 1.85 621 1.20 279
Depth x REI 0.0004 66 −0.0003 113 −0.0002 10
Depth x bed slope 0.20 59 0.06 6 0.22 28
Depth x fractal
dimension

−21.33 15 14.58 12 9.03 3

Model performance and validation

Likelihood ratio 2116 4759 3023
Nagelkerke r2 0.30 0.62 0.52
AUROC (0.5–1) 0.80 0.92 0.88
Accuracy (%) 79 86 (74) 78
True positive (%) 13 28 (35) 35
True negative (%) 87 72 (65) 65
False positive (%) 28 44 (10) 53
False negative (%) 72 56 (90) 47
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Difference in SAV between 2011 and 2012

We infer that the decline in SLRE SAV in 2012 relative to 2011 was
due to conditions during the winter of 2011–2012 or during the spring
2012 flood that was unsuitable for germination and survival of over
wintering wild celery buds or seeds. Among the possible mechanisms
are insufficient light (Korschgen et al., 1997), burial by deposited sedi-
ment (Carter et al., 1985), scour (Spink and Rogers, 1996), or too-cold
water temperatures (Catling et al., 1994).

SAV declined more between 2011 and 2012 in Spirit Lake and
St. Louis Bay than in Allouez Bay. The upriver areas lie downriver from
a relatively confined river reach (Fig. 1) where flood energy would have
been higher than in Allouez Bay. We did not observe extensive sediment
deposition after the flood, and spring water temperatures were warmer
in 2012 than in 2011 (Fig. 2). We are therefore inclined toward flood
scour and decreased light availability through the spring and early sum-
mer after the flood as the reason for the decline in SAV cover and occur-
rence in 2012. Floods may cause long-term changes in riverine aquatic
plant communities (Bornett and Puijalon, 2011). Our short-term findings
for Spirit Lake and St. Louis Bay may represent the maximum inter-
annual variation in SAV cover and occurrence likely to occur in the SLRE.

Habitat restoration and future conditions

The SAV occurrence regression trees aremore intuitive than the logis-
tic model results and produce broadly similar predictions, but they con-
tain much less detail. For example, the reduced regression tree model
for St. Louis Bay predicts that the mean probability of occurrence will
be 0.79 when depth is b1.5 m and relative exposure index is N3134.
Simulations based on the logistic regressions allow prediction of SAV oc-
currence for a range of depths and relative exposure index in the SLRE.

Simulations for St. Louis Bay and Spirit Lake (Fig. 6), two areaswithin
the SLRE for which future habitat restoration is anticipated (SLRCAC,
2002) show conditions favorable for SAV, defined as a predicted proba-
bility of SAV presence ≥0.5. In St. Louis Bay, the maximum favorable
depth was 1.1–1.6 m depending on exposure. In Spirit Lake, maximum
favorable depth was 1.3–1.4 depending on bed slope. In St. Louis Bay,
probability of SAV occurrence in shallow water (e.g., b1 m) was much
higher when relative exposure index was higher than when relative
exposure index was low. We hypothesize that at shallow exposed
locations, only wild celery can persist; at more sheltered locations
SAV, floating, and emergent vegetation are intermixed.

Because our reduced SAV occurrence models do not include a
specialized sediment predictor or require knowledge of existing SAV
conditions (e.g., lag), they are more generally applicable for simulations
related to restoration or protection of SAV beds in the SLRE. They

will allow users, for example, to predict and map SAV occurrence
at unsurveyed locations in the SLRE using only bathymetric, morpho-
metric (fetch), and wind data, to predict vegetation responses to resto-
ration, or to predict how future changes in water level and changes
in fetch (e.g., due to creation, immersion, or emersion of islands) may
affect the distribution of SAV in the SLRE.

Seventeenth and eighteenth century travelers in the SLRE described
awide shallow riverwithwetland vegetation so extensive as to obscure
the path of the main river channel (SLRCAC, 2002). Since then, much
of the estuary has been dredged for navigation to a depth of 8.2 m.
Isostatic rebound has caused the Lake Superior Basin to tilt downward
to the southeast, gradually deepening the estuary (SLRCAC, 2002).
The net result has been an increase in open water at the expense of
wetlands. We speculate that accompanying this change has been the
increase in baseflow turbidity caused in part by the lost sediment trap-
ping function of emergentwetlands and SAV and increased resuspension
of deposited sediments in the now largely open water reaches of the
lower estuary.

The effect of climate change on future river flow and Lake Superior
water level is uncertain, although most projections are of a decrease in

Fig. 5. Change in percent SAV cover and occurrence between 2011 and 2012 in the SLRE
(following a large flood). Box plot shows 10th and 90th percentiles (whiskers), 25th and
75th percentiles (boxes), medians (solid horizontal line), and means (dashed line) (N for
2011/2012 = Allouez Bay 7993/7540; St. Louis Bay 3119/3734; Spirit Lake 5433/8153.

Table 5
Comparison of predictor values and validation results for the reduced SAV occurrence model applied to an independent dataset. Classification accuracy (SAV probability N0.5 when SAV
present (P) and SAV probability ≤0.5 when SAV was absent (A)) is based on model validation using an independent dataset collected in the SLRE in 2010 and 2011 by the Natural
Resources Research Institute (NRRI, Brady et al., 2010; Host et al., 2012). Comparison in predictor means between this study and NRRI data was based on two sample t-tests with unequal
variances. REI = relative exposure index; nsd = not significantly different.

Predictor St. Louis Bay Spirit Lake

This study N = 8486 NRRI N = 192 t-test This study N = 7020 NRRI N = 65 t-test

Mean 95% CI Mean 95% CI p Mean 95% CI Mean 95% CI p

Depth (m) 1.68 1.67–1.69 1.46 1.39–1.53 b0.001 1.58 1.57–1.59 1.53 1.39–1.66 nsd
REI 7158 7078–7238 6605 6103–7108 b0.05 6818 6774–6863 6705 6254–7156 nsd
Bed slope (%) 1.87 1.80–1.94 1.51 1.10–1.92 nsd 1.32 1.26–1.37 0.79 0.63–0.95 b0.001

Model validation

Accuracy (%) 68 85
True positive (%) 51 58
True negative (%) 49 42
False positive (%) 27 0
False negative (%) 73 100
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lake levels (Angel and Kunkel, 2010; IUGLS, 2012). Planned and future
restoration of shallow-water habitat in the SLRE should accommodate
this future uncertainty by providing a range of depth and exposure
combinations over native sediments so that SAV, floating, and emer-
gent vegetation, once established, can adjust its distribution to
future conditions.
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