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KENNEDY LAB

e What are the drivers of life
history variation in salmonids?

« How does spatial heterogeneity
and environment impact
survival/reproduction trade-offs
throughout the life-cycle?




OBJECTIVES

Snake River Fall Chinook

 Representation of juvenile yearlings within
major spawning areas

 Reconstruct detailed juvenile migratory
behavior using otolith microchemistry

 Model life-history decisions using otolith
data in concert with other data sources.

 Understand long term changes and year-to-
year variation in juvenile life history
strategy.
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MIGRATION

RECONSTRUCTION

LA-ICP-MS

= Natal Signature (100-250 microns)

* Rearing Signature (50-800 microns)
* Overwintering signature (>80 microns)

= Ocean Entry (increase in strontium intensity)
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MIGRATION
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LA-ICP-MS

= Natal Signature (100-250 microns)

* Rearing Signature (50-800 microns)
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OBJECTIVES

Snake River Fall Chinook

% Representatlon of Juvenlle yearlmgs W1th1n
major spawning areas

 Reconstruct detailed juvenile migratory
behavior using otolith microchemistry

 Model life-history decisions using otolith
data in concert with other data sources.

 Understand long term changes and year-to-
year variation in juvenile life history
strategy.




WATER CHEMISTRY
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STUDY AREA
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YEARLING

REPRESENTATION

 Determining Yearling Representation

Natal Stream  Subyearling Yearling % Yearling

Upper Snake 12 2 13% *

Clearwater/Salmon 10 34 (0%

Lower Snake 22 36 62%
Grande

Ronde/Tucannon/Imna 1 1 50%
ha

Total 45 71
Percentage 39% 61%

N =120
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REARING LOCATION
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OVER-WINTERING
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OBJECTIVES

Snake River Fall Chinook

 Representation of juvenile yearlings within
major spawning areas

 Reconstruct detailed juvenile migratory
behavior using otolith microchemistry

v" Model life-history decisions using otolith

data in concert with other data sources.

 Understand long term changes and year-to-
year variation in juvenile life history
strategy.




LIFE CYCLE MODELING

Can we model migration timing in
terms of fitness?

Stage Dependent Modeling of Steelhead out-migration
» Mangel & Satterthwaite, 2008. Bulletin of Marine Science

» Satterthwaite et al. 2009, 2012. Transactions of the American
Fisheries Society



JUVENILE MIGRATION

STRATEGIES
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MIGRATION

RECONSTRUCTION

Important Inputs

e Life Stage Survival

e Lifetime Fecundity

e Habitat Specific Bioenergetics
Growth

Food Availability
Temperature



MIGRATION
RECONSTRUCTION

What data can we get from otoliths?

 Location (trace chemical signature)
* Yearling vs. Subyearling
* Growth

Juvenile otoliths
Adult Otoliths



OBJECTIVES

Snake River Fall Chinook

 Representation of juvenile yearlings within
major spawning areas

 Reconstruct detailed juvenile migratory
behavior using otolith microchemistry

 Model life-history decisions using otolith
data in concert with other data sources.
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LONG-TERM TRENDS

 Collections at Lyons Ferry
e Otolith collections 2006-2012
o 700-800 otoliths per season collected.

e Juvenile Otolith Collections

e 6 - Upper Snake

e 6 - Lower Snake

e 6 — Grande Ronde

e 12 - Clearwater

 Sort-by-code juveniles (variable numbers)

* Modeling will allow us to understand year- __ oseg
to-year variation. N LS,




NEW DEVELOPMENTS

Determining hatchery origin has been

difficult using otolith microchemistry.

» \We have used scale analysis and
presence/absence of tags to determine hatchery
vs. wild origin in the past




HATCHERY/WILD

ORIGINS

» \We are now able to determine hatchery origin using
a suite of chemical tracers
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HATCHERY/WILD
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» \We are now able to determine hatchery origin using
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HATCHERY/WILD

ORIGINS

- We are now able to determine hatchery origin using
a suite of chemical tracers (83%, K= 80.1)
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