Summary

Spawning aids such as Ovaplant® (Salmon Gonadotropin-releasing Hormone Analogue, sGnRHa), luteinizing hormone-releasing hormone analogue (LHRHa), human chorionic gonadotropin, and common carp pituitary are routinely used in aquaculture to induce gamete maturation in fish to enhance fish propagation programs. The U.S. Food and Drug Administration has authorized the use of Ovaplant® under the Compassionate Investigational New Animal Drug (INAD) Exemption #11-375 for the purpose of gathering efficacy data to support a new animal drug approval for Ovaplant®. In calendar year 2006 (CY06), 12 trials were conducted under this INAD to evaluate the efficacy of Ovaplant® to induce gamete maturation in a variety of fish species. Trials involved 491 treated fish and 337 control fish and were conducted at six different hatcheries, including three U.S. Fish and Wildlife Service fish hatcheries, two state hatcheries, and one tribal hatchery during this period. Efficacy was determined by whether or not treated fish produced or yielded more eggs or milt than untreated fish. Overall results from trials conducted in CY06 showed that treatments appeared
efficacious in approximately 83% of the trials and were characterized as inconclusive in
17% of the trials.

Introduction

The use of hormones to induce spawning in fish is critical to the success of many
federal, state, private, and tribal fisheries programs. A wide variety of programs,
including many that involve the restoration of threatened/endangered species, are
dependent upon hormone treatment to complete final gamete maturation and ensure
successful spawning.

The time of spawning is by its own nature a stressful period for all fish species.
Both sexes are undergoing significant changes in physiology, morphology, and behavior
(Hoar, 1969). The additional handling of fish required during the spawning process
complicates an already delicate situation. This is particularly true for wildstock species
that must endure the added stresses of capture, handling, and confinement in an un-
natural environment. In fact, with respect to some wildstock species, the stress of
capture alone is often sufficient to cause complete reproductive failure unless spawning
is induced by hormone treatment. Hormone treatment in a variety of fish species is
essential to ensure optimal spawning success.

Studies have shown that final gamete maturation (ovulation and spermiation) in
fish can be induced by the administration of a variety of hormones (Donaldson and
Hunter 1983; Goetz 1983). Investigations have found that synthetic analogues of
gonadotropin releasing hormones (GnRHa) to be one of the most effective means of
inducing final gamete maturation. These compounds, which may be similar to native
gonadotropins found in either fish or mammals, are attractive choices as they typically
exhibit both high biological activity and low species specificity. Although a number of
these analogues are available, the most commonly used analogue for fish culture to
date has been luteinizing hormone releasing hormone (LHRHa; Alvarino et al. 1992;
Donaldson et al. 1981; Erdahl and McClain 1987; Fitzpatrick et al. 1984; Taranger et al.
1992; and Van der Kraak et al. 1983). Effective treatment has been reported using both
injection and pellet implant therapy.

The use of implants that contain GnRH analogues has been evaluated over the last 15
years (Crim et al., 1983a). In early attempts to use implants, peptide was imbedded in
cholesterol pellets that contained cellulose to affect release rate (Sherwood et al.,
1988). In this system, a 5% carboxymethyl cellulose / 95% cholesterol pellet containing
mammalian GnRHa (mGnRHa) released an initial burst of mGnRHa followed by a
sustained release of peptide over the next 28 days. Several researchers have
demonstrated that these types of implants were capable of inducing maturation in a
variety of species including: Atlantic salmon (Crim et al., 1983a; Crim and Glebe, 1984),
herring (Carolsfeld et al., 1988), sea bass (Almendras et al., 1988), rainbow trout (Crim
et al., 1983b; Crim et al., 1988) and milkfish (Lee et al., 1986; Marte et al., 1988). In all
of these studies, mGnRHa was the imbedded peptide that induced maturation either in
advance of, or synchronously within, a population.
The inclusion of salmon GnRHa (sGnRHa) instead of mGnRHa in Ovaplant® implants designed for inducing maturation in cultured fish is a logical one. In both in vitro (pituitary fragments or cell cultures) and in vivo studies sGnRHa has been found to be more potent in effect than mGnRHa for many species including: goldfish (Peter et al., 1985, 1987), Atlantic salmon (Crim et al., 1988), rainbow trout (Crim et al., 1988; Weil et al., 1992), winter flounder (Crim et al., 1988) and catfish (Namvongchong et al., 1992b; Schulz et al., 1994). This potency may be attributed to high pituitary binding affinity and gonadotropin hormone (GtH) releasing capacity, even though sGnRH itself may not be an indigenous form for some of the species tested (Schulz et al., 1993). Moreover, sGnRHa produces a sustained level of GtH from pituitary cells with a low therapeutic dose (Peter et al., 1987). Additionally, sGnRHa either as peptide alone or as Ovaprim® (sGnRH + a domperidone, Syndel International, Inc.) has proven to be effective in inducing final gamete maturation in a variety of cultured fish including, but not limited to, chinook salmon (Powell, 1995), coho salmon (Powell et al., 1998), catfish (Namvongchong et al., 1992b; Schulz et al., 1993), and ricefield eel (Tao and Lin, 1993). Furthermore, sGnRHa is an attractive therapy for aquaculture use as it has been shown to be ineffective in mammals (Millar et al., 1993), and has a short half life in fish (Goren et al., 1990; Zohar et al., 1990; Weil et al., 1992). Conversely, mGnRHa is superactive in humans and has a prolonged half-life in fish and water (Sherwood and Harvey, 1986) which potentially could constitute a human safety risk. Collectively, the above-described considerations indicate that sGnRHa (Ovaplant®) is an attractive choice for further evaluation and development as a candidate compound for a new
animal drug approval for use to induce final gamete maturation in a variety of fish species.

Purpose of Report

The purpose of this report is to summarize the results of Ovaplant® field efficacy studies conducted under INAD exemption #11-375 in calendar year 2006 (CY06). Furthermore, it is expected that these data will be used to establish a Ovaplant® database for the purpose of developing an appropriate label claim for the legal use of this new animal drug in aquaculture.

Facilities, Materials, and Treatment Procedures

1. **Facilities**

 Field efficacy trials were conducted at six different fish culture facilities during CY06, including three U.S. Fish and Wildlife Service fish hatcheries, two state hatcheries, and one tribal hatchery. Water temperature during treatments at the various testing facilities ranged from 37.0 to 65.0°F.

2. **Chemical material**

 Syndel International Inc. of Vancouver, British Columbia Canada was the supplier for all Ovaplant® used in trials conducted during the reporting period.
3. Drug dosages

The Study Protocol authorized the use of up to 250 ug sGnRHa per pellet and administration as a single treatment event only. Drug dosages used by Investigators in CY06 ranged from 15 to 140.2 ug sGnRHa. Fish treated by pellet implant were euthanized at the hatchery and properly disposed after they were spawned.

Fish Species and Sex Treated

1. Fish Species Treated

Field efficacy trials were conducted on four different fish species under INAD #11-375 during the reporting period, including the following three salmonids and one non-salmonid:

Salmonids

Atlantic salmon Salmo salar
fall chinook salmon Oncorhynchus tshawytscha
steelhead trout O. mykiss

Non-salmonids

American Shad Alosa sapidissima
2. Gender of treated fish

Ovaplant® was used on 267 female and 224 male fish during the reporting period. Typically, females were treated with spawning hormone to shorten the gamete maturation period (i.e. advance maturation), while males were treated to ensure that sufficient milt would be available for egg fertilization.

Data Collected

1. Primary response variable (Maturation)

The primary response variable for evaluating the effect of Ovaplant® on fish was the percentage of ripe fish following treatment. These percentages reflected the number of female fish that ovulated and the number of male fish that reached active spermiation.

2. Egg development and milt evaluation

Secondary response variables for females included the relative number of eggs that reached the eyed stage and the number hatched. Secondary response variables for males included the volume of milt (ml) available from individual fish and an evaluation of milt motility (percent motile spermatozoa).
Discussion of Study Results

1. General observations on the efficacy of Ovaplant® to induce gamete maturation in salmonid and non-salmonid fish (Note: Tables 1 - 2 provides a summary of all efficacy trials; Table 3 lists the number of treatment trials, number of fish and species treated, and treatment regimens used; and Table 4 describes all trials conducted during CY06 under INAD #11-375.)

A. Efficacy of Ovaplant® on male fish treated between 15 and 114.4 ug/kg body weight (1 implant)

Treated male fish were used in six trials and implanted one time with Ovaplant® at a dosage between 15 and 114.4 ug/kg body weight (Table 1). Fish will not be available for human consumption. In addition, on occasion, the Investigator did not evaluate whether treatments induced gamete maturation. In these cases, it's implied that the relative level of gamete maturation was undetermined. Below are the treatment regimens used to induce gamete maturation in three fish species treated with Ovaplant® at the dosages described above:

1. **Dose: 15 - 40 ug/kg**

 Atlantic salmon and steelhead trout were used in three trials, and in each, fish were implanted with one Ovaplant®. Control fish were used in two of the trials. Results showed that there was 98 - 100% spermiation in treated
fish; as compared to 62 - 100% spermiation in control fish. Overall, treatment appeared efficacious in all trials.

2. **Dose: 107.1 - 114.4 ug/kg**

American shad were used in three trials, and in each, fish were implanted with one Ovaplant®. No control fish were used in any of the trials. Results showed that there was an unknown level of spermiation in one trial and 96 - 100% spermiation in the other two studies. In the studies where the spermiation was unknown, individual fish were not checked to see if they were ripe after treatment. Overall, treatment appeared efficacious in two trials, and was characterized as inconclusive in one trial.

Overall, treatment resulted in either an unknown percent spermiation (due to fish not evaluated for spermiation by the Investigator) or a 96 - 100% spermiation in the male treated fish; as compared to 62 - 100% in the control fish. Treatments appeared efficacious in five trials, and were characterized as inconclusive in one trial.

B. Efficacy of Ovaplant® on female fish treated at a dosage between 15 and 140.2 ug/kg body weight (1 implant)

Female fish were implanted one time with Ovaplant® pellets at a dosage between 15 and 140.2 ug/kg body weight (Table 2) in six different trials. Fish will not be available for human consumption. In addition, on occasion, the Investigator did not evaluate whether treatments induced gamete maturation. In
these cases, it’s implied that the relative level of gamete maturation was undetermined. Below are the treatment regimens used to induce gamete maturation in four fish species treated with Ovaplant® at the dosages described above:

1. **Dose: 15 - 40 ug/kg**

 Atlantic salmon, fall chinook salmon, and steelhead trout were used in three trials and fish were implanted with one Ovaplant®. Control fish were used in two trials. Results showed that there was 93 - 100% ovulation in treated fish; as compared to 100% ovulation in control fish. Overall, treatment appeared efficacious in all trials.

2. **Dose: 117.3 - 140.2 ug/kg**

 American shad were used in three trials, and in each, fish were implanted with one Ovaplant®. No control fish were used in any of the trials. Results showed that there was an unknown level of ovulation in one trial and 75 - 100% ovulation in the other two studies. In the studies where the ovulation was unknown, individual fish were not checked to see if they were ripe after treatment. Overall, treatment appeared efficacious in two trials, and was characterized as inconclusive in one trial.

Overall, treatment resulted in either an unknown percent ovulation (due to fish not evaluated for ovulation by the Investigator) or a 75 - 100% ovulation in the
female treated fish; as compared to 100% in the control fish. Treatments appeared efficacious in five trials, and were characterized as inconclusive in one trial.

2. Observed Toxicity

No toxicity or adverse effects relating to Ovaplant® treatments were reported in any trials conducting in CY06.

Summary of Study Results

Ovaplant® was used in 12 efficacy trials to induce gamete maturation in four different fish species (n = 491 treated fish; 337 untreated control fish) at dosages ranging from 15 - 140.2 ug/kg bw. Ovaplant® was administered as a pellet implant. All treated fish administered Ovaplant® as a pellet implant were euthanized after the spawning season. Water temperature during treatments ranged from 37.0 - 65.0°F. Approximately 83% of the trials appeared efficacious and 17% were characterized as inconclusive (due to failure of the Investigator to evaluate gamete maturation following treatment). Data from the CY06 trials indicate that Ovaplant® treatment was efficacious in inducing gamete maturation in a variety of fish species. Although it is anticipated that the majority of future efficacy data collected under INAD #11-375 will also be ancillary data, efforts will be made to improve the quality of data whenever possible.
References

Crim, L.W., N.M. Sherwood, and C.E. Wilson. 1988. Sustained hormone release. II. Effectiveness of LHRH analog (GnRHa) administration by either single time injection or cholesterol pellet implanted on plasma gonadotropin levels in bioassay model fish, the juvenile rainbow trout. Aquaculture. 74: 87-95.

Table 1. Summary of Year 2006 Ovaplant® Male Efficacy Results - Implant

<table>
<thead>
<tr>
<th>Number of Trials</th>
<th>Efficacy</th>
<th>Species</th>
<th>Facility</th>
<th>Spawning Interval</th>
<th>Number Treated</th>
<th>Dose (ug/Kg b.w.)</th>
<th>% Spermiate</th>
<th>Control</th>
<th>Number of Controls</th>
<th>% Spermiate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>effective</td>
<td>AMS</td>
<td>Edenton NFH</td>
<td>1 - 13 days</td>
<td>26</td>
<td>107.1</td>
<td>96</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>inconclusive</td>
<td>AMS</td>
<td>Edenton NFH</td>
<td>?</td>
<td>25</td>
<td>107.1</td>
<td>?</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>AMS</td>
<td>Watha SFH</td>
<td>1 - 9 days</td>
<td>65</td>
<td>114.4</td>
<td>100</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>ATS</td>
<td>Richard Cronin National Salmon Station</td>
<td>5 days</td>
<td>14</td>
<td>33.1</td>
<td>100</td>
<td>53</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>STT</td>
<td>Dworshak NFH</td>
<td>14 - 21 days</td>
<td>49</td>
<td>15</td>
<td>98</td>
<td>13</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>STT</td>
<td>Wells SFH</td>
<td>every 7 days</td>
<td>45</td>
<td>40</td>
<td>100</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Summary of Year 2006 Ovaplant® Female Efficacy Results - Implant

<table>
<thead>
<tr>
<th>Number of Trials</th>
<th>Efficacy</th>
<th>Species</th>
<th>Facility</th>
<th>Spawning Interval</th>
<th>Number Treated</th>
<th>Dose (ug/Kg b.w.)</th>
<th>% Ovulate</th>
<th>Control</th>
<th>Number of Controls</th>
<th>% Ovulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>effective</td>
<td>AMS</td>
<td>Edenton NFH</td>
<td>1 - 13 days</td>
<td>30</td>
<td>140.2</td>
<td>83</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>inconclusive</td>
<td>AMS</td>
<td>Edenton NFH</td>
<td>?</td>
<td>25</td>
<td>140.2</td>
<td>?</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>AMS</td>
<td>Watha SFH</td>
<td>1 - 9 days</td>
<td>63</td>
<td>117.3</td>
<td>75 - 100</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>ATS</td>
<td>Richard Cronin National Salmon Station</td>
<td>5 days</td>
<td>94</td>
<td>33.1</td>
<td>100</td>
<td>22</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>FCS</td>
<td>Nez Perce Tribal Hatchery</td>
<td>5 - 21 days</td>
<td>14</td>
<td>15</td>
<td>93</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>effective</td>
<td>STT</td>
<td>Wells SFH</td>
<td>every 7 days</td>
<td>41</td>
<td>40</td>
<td>100</td>
<td>249</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Description of Number of Treatment Trials, the Number of Fish and Species Treated, and Treatment Regimens used During CY 2006 Ovaplant® Efficacy Studies

<table>
<thead>
<tr>
<th>Total Number of Treatment Trials</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Trials that Appeared Efficacious:</td>
<td>10 (83%)</td>
</tr>
<tr>
<td>Number of Trials that Appeared Inconclusive:</td>
<td>2 (17%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Treated Fish:</th>
<th>491</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Treatment Regimes Used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 - 40 ug/Kg body weight</td>
</tr>
<tr>
<td>107.1 - 140.2 ug/Kg body weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Temperature (°F) Range:</th>
<th>37.0 - 65.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fish Species Treated:</th>
</tr>
</thead>
</table>

Salmonids

Atlantic salmon *Salmo salar*
fall chinook salmon *Oncorhychus tshawytscha*
steelhead trout *O. mykiss*

Non-salmonids

American Shad *Alosa sapidissima*

| Size Class of Treated Fish: | Adults |