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Executive Summary 
In recent years, public benefits from ecosystem services have been the focus of increasing 

attention from scientists, managers, and stakeholders. The measurement of the non-market benefits such 
as clean water or flood protection that the public receives from ecosystem services is known as ecosystem 
service valuation. Primary valuation studies use original data to measure these values and are the ideal 
approach. Benefit transfer methods have been developed as a low-cost and rapid alternative to primary 
valuation studies. Benefit transfers are methods where ecosystem service values that have been previously 
measured by primary valuation studies are used individually or in a group to infer the value of benefits at 
an unstudied site. Meta-analysis benefit transfer is a robust type of benefit transfer that typically uses a 
statistical model to incorporate information from multiple primary valuation studies for benefit transfer.  

The focus of our research is to develop improved techniques for conducting meta-analysis benefit 
transfer in order to gain a better understanding of the ecosystem service values associated with wetlands 
in the USFWS National Wildlife Refuge (NWR) System. In phase 1a of our research we examined how 
an existing, peer-reviewed meta-analysis model can be used to estimate public benefits from water quality 
provisioning, flood and storm surge protection, and habitat for commercial fish species that can be 
attributed to NWR wetlands in four case study NWRs. Phase 1a also included an assessment and 
quantification of the carbon stocks and associated values of carbon storage at four case study NWRs. 

In phase 1b of our research, presented in this document, we conduct a novel meta-analysis 
restricted to wetlands of the contiguous US, and we expand our analysis of existing meta-analyses by 
other authors to provide a broad comparison. To illustrate this new approach we focus our novel meta-
analysis on the estimation of benefits that wetlands contribute to water quality and flood and storm 
protection services. We developed a new statistical approach to enhance the accuracy and flexibility of 
our meta-analysis while maintaining a systematic approach. Using the new modeling method and a new 
domestic-oriented wetland valuation database, we estimate ecosystem service values at the four case 
study refuges. Results indicate that wetlands near large populations and with few adjacent wetlands are 
among the most valuable. Populations with higher incomes are also likely to place a higher value on 
wetland ecosystem services. Our model also largely agrees with other models that water quality 
provisioning is often more valuable than flood control and storm protection, yet in many instances 
(contrary to the other more restrictive models we reviewed) this relationship is found by our flexible 
model to be reversed. For example, water quality provisioning is found to be less valuable than flood 
control and storm protection services at the two larger refuges, Blackwater NWR and Okefenokee NWR. 
Our results broadly indicate decreasing returns to scale as wetland acreage increases, a finding consistent 
with the comparison models. 

Concerns remain in the scientific and public policy communities about the accuracy of benefit 
transfers. Accordingly, we advise that estimated values based on meta-analysis benefit transfers are valid 
for making ordinal comparisons across different wetlands or user populations. This approach avoids over-
reliance on potentially imprecise values based on small samples and sites with heterogeneous 
characteristics and user populations. Comparisons of relative differences among estimates and methods 
will be useful in interpreting the importance of ecosystem service values that often can vary spatially and 
temporally. Future research is needed to: 1) expand the current model by including a wider variety of 
primary valuation studies focusing on a broader group of wetland ecosystem services; 2) develop useful 
applications of these values and test their generality in decision making. For example, these estimated 
values could be useful along with other information regarding which refuges could be expanded to 
increase the value of multiple ecosystem services. Ranking the relative public benefits of future wetland 
acquisitions against the real-estate costs of those acquisitions might be effective in determining 
landscape-level plans for protecting corridors or providing sustainable habitats under different future 
demographic or climate scenarios. Novel primary valuation studies of common but under-studied 
wetlands are also an important means for enhancing our understanding of these important public benefits 
and enhancing the accuracy of the next iteration of benefit transfers. 
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Introduction 
This document is intended as a follow-up of the initial assessment of wetland ecosystem services, 

“National Wildlife Refuge Wetland Ecosystem Service Valuation Model, Phase 1 Report” by the same 

authors. The purpose of this update is to provide additional insights into the process and results of rapid 

ecosystem service valuation. The rapid valuation technique we use, Meta-Analysis Benefit Transfer 

(MABT), offers researchers a systematic way to test hypotheses about the causes of variations in 

ecosystem service values as well as for forecasting ecosystem service values. We are particularly 

interested in the potential for using the MABT for producing forecasts of ecosystem service value; this 

document is intended in part to provide a fuller picture of the variability of predicted valuation results 

from various published meta-analysis studies. We also provide a novel meta-analysis of our own, which is 

intended to target water quality provisioning and flood control and storm protection services of wetlands 

in continental National Wildlife Refuges. We develop and estimate a novel, parametric locally weighted 

least squares regression model that we refer to as PLWLS. The purpose of the new model is to enhance 

the efficiency of forecasts. 

A wide variety of policy applications ranging from low stakes local decisions to high stakes 

international policies require estimates of the benefits to the public provided by various ecosystems. In 

order to compare these benefits to the benefits of conventional, private-market goods, quantification is in 

terms of monetary value. Benefit transfers (BT) are a valuation approach particularly apt for low-stakes 

decision making contexts that tend to exclude quantitative non-market ecosystem service values. Low-

cost, rapid estimates of the economic value of wetland ecosystem services can be produced via benefit 

transfer with existing wetland ecosystem service meta-analysis (MA) models, but the accuracy of these 

models compared to primary studies is poorly understood. Compounding uncertainty about the 

appropriate uses of benefit transfer value estimates obtained from meta-analysis models is the uncertainty 

that exists with regard to the correct methodology for calculating benefit transfer estimates. Specifically, 

peer-reviewed guidance is lacking with regard to the best practices for implementing a meta-analysis 

benefit transfer (MABT), in particular, when several existing meta-analyses are available. 

The use of MAs for prediction of a population’s willingness to pay (WTP) for ecosystem services 

from wetland landscapes has been, to the best of our knowledge, confined in the peer-review scientific 

literature to the very studies that design and estimate an MA model. The process of creating a database of 

studies, coded for all relevant explanatory variables and estimating a model requires a considerable 

amount of time and expertise. As MABT value estimates are especially low in cost to produce, a natural 

extension of the MABT literature is an analysis of the choices faced by an independent analyst with 
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limited resources that prevent the estimation of a novel, state-of-the-art MA model. When resources allow 

the creation of a targeted MABT model, questions still remain regarding valid applications of the model. 

While we interpret the dependent variable in these studies as a measure of Hicksian surplus, or 

willingness to pay, important cautions have been raised in the literature about the appropriateness of such 

an interpretation of the dependent variable. Welfare measure consistency, discussed in Smith and 

Pattanayak (2002) and Bergstrom and Taylor (2006) and again in the review paper of Nelson and 

Kennedy (2009), requires (under a strict interpretation) that the studies comprising the meta-data in the 

original MA have the same welfare measure. This feature is lacking in all three MAs used for BT herein. 

A similar concept, commodity consistency, requires that the services or goods valued in each observation 

of the MA also be identical. The need for a greater understanding of ecosystem service values combined 

with the extensive heterogeneity in primary valuation studies has led to compromises on the part of MA 

researchers who essentially may choose only two, at best, of the following three desirable attributes: a 

large dataset, welfare measure consistency, or commodity consistency. Bayesian MA studies that take 

advantage of small samples tend to focus on the latter two (Leon-Gonzalez and Scarpa 2008; Moeltner, 

Boyle, and Paterson 2007; Moeltner and Woodward 2009), while the studies in our analysis focus on a 

large dataset by including a variety of valuation approaches and services. We rely on dummy variables to 

achieve commodity and welfare measure consistency. 

Meta-analysis methods were originally developed by Glass (1976) for evaluating the effect size 

of treatments in the field of education research. The first ecosystem service meta-analysis studies were 

published in the late 1980’s and early 1990’s (Walsh, Johnson, and McKean 1989; Smith and Kaoru 

1990a; Smith and Kaoru 1990b). A sequence of wetland ecosystem service studies that focused on the 

landscape rather than the consumer have been published more recently (i.e., Woodward and Wui 2001; 

Brander, Florax, and Vermaat 2006; Ghermandi et al. 2010). These studies are convenient for answering 

questions about management of wetland landscapes because the dependent variable is willingness to pay 

per acre rather than willingness to pay per person as was the case with earlier nonmarket valuation meta-

analysis studies. 

Benefit transfer methodologies such as benefit point transfer preceded MABT by more than a 

decade (Johnston and Rosenberger 2010). Benefit point transfers are the simplest type of benefit transfer 

where a measure of welfare obtained by studying one site is used as a value for a different site as if it 

were measured there by the primary valuation study. Commonly, the site where the original study was 

performed is referred to as a study site, while the site where the value is applied is referred to as a policy 

site (Rosenberger and Loomis 2000). A variety of techniques have been developed to transfer one or more 

study results from study sites to a policy site; while results have been mixed, studies reviewing a variety 

of transfer methodologies have often concluded that MABT can lead to lower transfer error than benefit 
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transfer methodologies that make less systematic use of the available data, but that existing MA studies 

do not meet the necessary criteria and thus may perform quite poorly (Rosenberger and Stanley 2006; 

Johnston and Rosenberger 2010). However, MABT models make the most systematic use of available 

data, a highly desirable feature in empirical studies. 

In this paper, we examine the flows of selected ecosystem services from wetlands in Arrowwood 

National Wildlife Refuge (NWR), North Dakota; Blackwater NWR, Maryland; Okefenokee NWR, 

Georgia; and Sevilleta and Bosque del Apache NWRs, New Mexico. The Sevilleta and Bosque del 

Apache NWRs are modeled as a single unit because of their proximity to one another within a single 

ecoregion along the Rio Grande River and the availability of extensive data from the Sevilleta’s Long 

Term Ecological Research (LTER) project. The choice of sites is intended to contrast major types of 

wetlands of the contiguous United States. Salinity, precipitation, temperature, and distance to ocean are 

examples of physical variations across these sites. Variability across the sites in income distribution, 

population density, and culture reasonably well represent the range of diversity that could be compared 

quickly within the scope of our analysis. All values are adjusted for inflation to 2010 US dollars using the 

US Bureau of Labor and Statistics CPI Inflation Calculator. Landcover data for the Brander et al. (2006) 

meta analysis primarily come from the NLCD 2006 dataset (Xian et al. 2009) while landcover data for the 

Ghermandi et al. (2010) meta analysis come from the USFWS National Wetlands Inventory database 

(USFWS 2011), due to the definitions used in these studies to distinguish among wetlands. 

Our analysis focuses on two specific wetland-related ecosystem services, water quality 

provisioning and flood control and storm protection. In this report we typically refer to the combined 

services of flood control and storm protection as simply flood control, as the valuation studies in our 

meta-analysis dataset include coastal storm protection services focused on flooding from storm surge. 

Similarly, for simplicity, we refer to water quality provisioning simply as water quality. The provisioning 

of increased water quality and flood control affect downstream (or inland) populations that are off-site. 

Because the pre-existing MA studies we consider do not require an estimate of the population benefitting 

from the services and the two services we consider affect populations in a spatially complex manner, 

these services can be valued in a much more straightforward manner with a MA that has a dependent 

variable normalized by wetland surface area. Recreation benefits, especially in the context of NWRs 

which have visitation data, might be more accurately valued using MAs that have the dependent variable 

welfare measure normalized by person, trip, or household. Recreation benefits are not modeled in this 

study. 

Because several relevant meta-analyses of wetland ecosystem services can be found in the peer-

reviewed academic literature (e.g., Woodward and Wui 2001; Brander et al. 2006; Ghermandi et al. 

2010), we begin our benefit transfer valuation experiment by exploring the options for predicting 
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willingness to pay for a landscape that provides ecosystem services using each of these studies. Due to the 

logarithmic transformation of the dependent variable common in ecosystem service meta-analyses, no 

simple method exists for computing benefit transfer expected values from stochastic MA models. 

Accordingly, to estimate the distribution of willingness to pay, we simulate the dependent variable’s 

distribution, allowing for estimation of quantiles and the mean associated with each existing MA and 

study site. Because we have three similar MA models pertaining to wetland ecosystem services, we 

implement a forecast combination approach in order to efficiently combine data from each of the existing 

meta-analyses considered. 

The heterogeneity of the primary data for each MA model used in our analysis makes unclear 

whether the best interpretation of predicted values is that they are the value of a service or the value of a 

wetland that provides a service. In choosing the contingent valuation methodology (CVM) or stated 

preference approach, where applicable, the most apt interpretation is that we are valuing a wetland that 

provides a service. A review of many of the CVM studies that are referenced by each MA and of the 

stated preference studies in our own MA dataset indicates that the valuation questions is typically focused 

on a particular wetland extent and the respondents are notified of the most important services provided by 

that wetland. The units of the dependent variable in the existing MA models, WTP/area/year, also suggest 

that the appropriate interpretation of the MA model dependent variable is associated with a wetland that 

provides ecosystem services. 

The validity of using existing MA models for MABT depends on the required accuracy of the 

intended use of the results (Sargent 2010). An understanding of the features of each study is useful for 

developing a qualitative sense of the expected accuracy of each model. The validity of MABT values for 

land-use and public policy decisions is still a matter of debate due to uncertainty about the accuracy of 

transfers. Much of the focus of this study is not on the validity of BT estimates for policy decisions, but 

on the content validity (Bishop 2003) of value estimates obtained with an MA model. In other words, a 

primary purpose of this study is to help establish best practices for using existing MAs for MABT. 

A key theme that emerges in the steps detailed below is the reduction in accuracy and simplifying 

assumptions for our analysis that are required due to unavailability of a thorough statistical description of 

each published MA model. Below, we first briefly discuss important features of wetlands in each NWR 

study site and our qualitative expectations of the value of several ecosystem services. Next, we discuss the 

method followed and data necessary for implementing each MA model and provide a discussion of how 

one might best proceed when faced with incomplete modeling information. Then we present the results of 

each MABT dependent variable simulation. We end with a discussion of the results and implications for 

future MA studies. 
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In addition to analyzing the performance of existing MA studies, we develop a novel MA 

database and implement two estimation strategies. The first strategy is the familiar OLS model and the 

second strategy is the PLWLS estimator that we develop, primarily in the appendix. The unique MA 

database that we develop focuses entirely on wetlands in the contiguous United States. While we are most 

interested in flood control and water quality services, we include a variety of other services and necessary 

controls in order to obtain better inference on parameters common across all observations, such as the 

effect of a population’s income. An important contribution of our MA model is that we normalize the 

dependent variable, aggregate willingness to pay, by both acres valued and the population over which the 

welfare measure is aggregated. We chose such a normalization and also included the population over 

which results are aggregated as an exogenous variable as it became evident in the course of constructing 

the MA database that aggregating a welfare measure is too sensitive to potentially arbitrary assumptions 

to rely on a reduced form model that omits details about how the analyst chose to aggregate the welfare 

measure. Specifically, we found that surface area and population were the most important aspects of the 

modeling process that are best treated as analyst imposed decisions for the purpose of answering specific 

questions (e.g., What are the benefits of the water quality provisioning services associated with specific 

wetlands indicated on a map to the residents of the state that contains the wetland?). An important 

implication of this approach is apparent in how we interpret, discuss, and treat the dependent variable. 

The alternative interpretation of the MABT model is that we are forecasting the results of a hypothetical 

primary valuation study, not that we are directly predicting a welfare measure that can be sensibly 

communicated without also describing the methodology by which the value was measured.  

The appropriate interpretation of the dependent variable is an important and nuanced issue that in 

our view has received too little attention in the ecosystem service MABT literature. In all studies in this 

field that we are aware of, the dependent variable is essentially treated directly as an estimate of an 

economic welfare concept. We interpret the dependent variable somewhat differently, as the resulting 

welfare estimate obtained via a primary valuation study. For forecasts of the dependent variable the 

estimated value is fundamentally the predicted result of a primary valuation study. Due to the possibility 

of generating predictions from unlikely or even nonsensical combinations of services and methods, such 

an interpretation better highlights the context of the WTP estimate and implies the appropriate means for 

criterion validation (i.e., conducting a primary valuation study to serve as a comparison). For example, via 

MABT one might forecast the value estimated by a travel cost study that values commercial fishing at a 

temporarily flooded forested wetland site where no commercial fishing operations exist; criterion 

validation via a primary valuation study of this predicted value is not feasible or sensible. Simulations of 

the results of such a study with MABT are feasible but the results fail a basic test of content validity. 

Similarly, the practice of coding methodological variables at their sample means and predicting a single 
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number suggests an unusual (and typically non-linear) hybrid of studies that would defy criterion 

validation efforts; alternatively, simulating a number of realistic primary valuation studies (coding 

methodological dummy variables as 1’s or 0’s) and using a weighted average to combine the results is 

more consistent with the original data and amenable to criterion validation with future primary valuation 

studies. 

In the sections below, we first develop the basic methodology by which we examine existing MA 

studies and the novel database that we have constructed. Secondly we review the data that are required for 

the various methodologies we describe. Next we provide the final results and a discussion of those results 

followed by some general conclusions. An appendix is included at the end where we develop the PLWLS 

estimator in detail. 

Methods 
The methodology section is organized into 4 parts which each describe a means for analyzing 

valuation data. These data analyses are intended to both shed light on ecosystem service values estimated 

with secondary data and the performance of MA models that are used to analyze and estimate those 

values. First we examine the relative sampling performance of existing, published wetland valuation 

MAs. Second we present a straightforward OLS model that we will implement with a novel dataset of our 

own construction. The third component of our methodology is the introduction of a new estimation 

procedure intended to increase the efficiency of MABT forecasts while avoiding ad hoc analyst 

resampling. Finally we briefly discuss a means for simulating out-of-sample forecast performance that 

can be used to compare the performance of OLS with our new estimator. 

 

Models from the Literature: Constructing Confidence Intervals and Forecast 

Combination 
In our initial analysis, we conduct three separate MABTs, based on the published MA models of 

Woodward and Wui (2001), Brander et al. (2006), and Ghermandi et al. (2010). Each of these studies 

reports an estimated relationship between per acre (or per hectare) willingness to pay and regressors 

related to characteristics of the wetland (e.g., size), the surrounding population and geography (e.g., 

population density), the methodology used to generate the estimate (e.g., contingent valuation, travel 

cost), and study quality (only in Woodward and Wui 2001). Table 1 contains a list of explanatory 

variables included in each of the three pre-existing meta-analysis models. We divide these variables into 

categories similar to the divisions of explanatory variables in each study.  All three of these meta-analysis 
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studies include a diverse assortment of primary valuation studies that include several wetland ecosystem 

services and represent all populated continents. The first step in our method is a parametric Monte Carlo 

simulation of the dependent variables of interest for each meta-analysis. The second step is a forecast 

combination procedure that combines the results from the first step for each service at each refuge. We 

develop these methods in the context of MABT in order to shed light on questions about how one might 

use existing MAs for MABT. We are particularly interested in how one might assess the statistical 

properties of MABT forecasts with only the published summary of a model and dataset available. 

 

Monte Carlo Simulation of Distribution 
 As mentioned above, the popularity of using logged dependent variables necessitates a more 

complex approach such as bootstrapping or Monte Carlo simulation to capture the effects of curvature of 

the exponential function within the expected value operator (Wooldridge 2002). In order to properly 

model the exponential function with limited information about the original sample, we simulate the entire 

distribution of each dependent variable forecast using a parametric Monte Carlo simulation. The 

bootstrapping approach would be desirable, but is not possible without the original sample. 

Limited information reported in the three meta-analyses makes it difficult to accurately estimate 

confidence intervals associated with the expected WTP estimates without relying on additional 

assumptions. Using estimated coefficients and standard errors, we use a Monte Carlo simulation to obtain 

a distribution for the dependent variable. The original MA studies we employ do not report the full 

covariance matrix of the estimated parameters, so we assume zero covariance between parameters, 

resulting in a diagonal variance-covariance matrix for the regression parameters.  

The basic algorithm for our parametric Monte Carlo simulation, implemented in Matlab, is to 

draw a pseudo-random vector of parameter values from each meta-analysis using a joint normal 

distribution with mean and variance equal to the estimated parameters reported in each study. We 

multiply each of the constant value regressors from Tables 2 - 5 by the appropriate joint normal randomly 

drawn parameter and the sum of these products is exponentiated by the base of the natural logarithm. The 

process is iterated one million times for each meta-analysis, each wetland NWR and each of the two 

services considered, resulting in 24 vectors with length equal to one million containing log normally 

distributed WTP estimates. We compute the mean of each series and the variance of the mean by 

regressing each vector on a 1 million element column of 1’s and obtaining the OLS estimated parameters 

and associated homoskedastistic variances. Also, from each of the 24 sorted vectors we obtain quantiles 

representing the 5th, 50th, and 95th percentiles. 
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The parametric Monte Carlo simulation is useful because it provides us with a means for 

estimating the variance of each WTP estimate. The popular alternative procedure typically requires an 

estimate of the standard error of the residual (Wooldridge 2002), which was not available for all the MAs 

we consider. Our assumption that the covariances of the parameters are all zero may lead to substantial 

error in the estimated variance of the dependent variable; in particular this may be a problem when used 

with a model based on a small sample. For example, if we observe two explanatory variables that have 

positive values and we randomly draw positive estimated coefficients that should have negative 

covariance but this covariance is assumed to be zero, the resulting sum of the product of each variable and 

its coefficient will be biased upwards. The purpose of our experiment is to explore how to implement 

MABT using a suite of existing models from published summaries of the original results. Obtaining each 

dataset and running full-sample diagnostics would be preferable, but as rapidly growing interest in 

ecosystem service values outpaces funding to implement primary valuation studies to estimate these 

values, the usefulness of existing models to produce the lowest cost quantitative estimates is a natural 

question. 

Forecast Combination 
We use the simulated distribution of WTP described above to combine the three separate point 

estimates for each simulated study into a single value via an inverse variance weight approach 

(DerSimonian and Laird 1986; Borenstein et al. 2009). The forecast combination literature suggests an 

inverse variance weighting approach often leads to improved forecast performance (Smith and Wallis 

2009). Accordingly, we take a weighted average of the three median values estimated from each meta-

analysis for each service at each refuge. This inverse variance weighting is identical to implementing an 

efficient generalized least squares regression (Wooldridge 2002) where the model includes only an 

intercept and we possess known variances. The weighted average of WTP for site i and service j, can be 

seen in equation (1), where subscripts i and j index the site and service and subscript k indexes the meta-

analysis used for the WTP estimate. Summation is over k=1,…,3 for the three meta-analyses. 

𝑊𝑊𝑊𝑊𝑊𝑊�������𝑖𝑖𝑖𝑖= 
∑[ 1

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)]

∑[ 1
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖

]
 (1) 

In equation (1) we choose the point estimate or median of the distribution as a conservative 

central estimate of WTP but use the estimated variance of the sample mean of the one million Monte 

Carlo draws. The use of a median is consistent with predicting the outcome of a referendum vote, where 

the magnitude of any individual’s WTP is relevant to the extent that it tells us how that individual will 

vote for a policy. The median also reduces the influence of large outliers relative to the mean. 
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Additionally, as the logarithmic transformation of WTP ensures positive values across the simulated 

distribution (censoring of non-positive WTP estimates), the use of the median measure of central 

tendency opposes to some extent the effect of a truncated predicted distribution(i.e., negative values are 

not allowed when the dependent variable is in log form). Ultimately, the use of the median in place of the 

mean is particularly compelling with inefficiently estimated models as the mean may be very large due to 

outliers. In equation (1), each weight is then the inverse of the simulated variance of the mean associated 

with that observation. The sum is normalized by the sum of the inverse variances associated with each 

meta-analysis model. Alternatively, inverse variances can be interpreted as precision estimates and each 

weight is the share of that observation’s precision among the three MAs.  

In addition to the inverse variance or precision weighted average, we also estimate a 

conventional, evenly weighted average. We do so in order to highlight the influence of simulated 

variances on the final estimate of WTP. We choose the median as our initial estimate of willingness to 

pay in the spirit of obtaining conservative estimates. For instances where willingness to accept is the 

appropriate construct (e.g., when consumers are deprived of the benefits of an ecosystem service to which 

they have a legal right), the larger mean rather than median of each simulated distribution may be more 

appropriate. 

 

OLS Regression with a Novel MA Dataset 
In order to allow comparison between our MA dataset and existing datasets, we provide an OLS 

regression that is largely consistent with the existing wetland meta-analyses. Diverging somewhat from 

existing wetland MAs, we utilize the dependent variable normalized by both surface area in acres and the 

population over which individual welfare estimates were aggregated in the primary valuation study. 

Equation (2) is the basic form for our linear MABT forecast model where the dependent variable, 

log(𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖) is the natural logarithm of the estimated aggregate willingness to pay divided by the 

population and acreage counts associated with the aggregate value for observation i.  

log(𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖) = 𝛽𝛽1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠\𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖 ∗ 𝛽𝛽2 

+ 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑎𝑎𝑟𝑟𝑟𝑟𝑖𝑖 ∗ 𝛽𝛽3 

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 ∗ 𝛽𝛽4 

+ 𝑒𝑒𝑖𝑖 

(2) 

In equation (2), study/sitevars is a set of study descriptor variables, including the study area and the 

count of the study population over which the value estimate is aggregated; both of these values are used in 

the normalization of the dependent variable. We specifically label this group of variables to draw 

attention to the fact that the acres and population over which valuation is applied are characteristics of a 
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primary valuation study and often not natural characteristics of a landscape or geographic context. 

Methodologicalvars includes dummy variables for the service valued and indicators of whether the 

valuation approach is stated preference, revealed preference, or a non-utility theoretic approach such as 

replacement cost or avoided damage estimates. We group the remaining variables into the broad category 

of contextvars, which includes variables that describe both the user population and landscape in the vicinity 

of the primary valuation study site.  

We include in the last category of context variables a ratio of local, surrounding wetlands to a 

local population count as an indicator of the availability of substitutes outside the study area relative to 

the local population. These two variables are measured in acres and a count of people, but are distinct 

from the acreage and population counts in the variable group, study/sitevar. Other contextual variables 

include the average GDP per capita of the one or more states in close proximity to the study site and 

indicators of wetland type. An important feature of our meta-analysis model is the normalization we 

chose for the dependent variable. Our choice was motivated by our observation that most primary 

valuation studies use effectively obscure reasoning for choosing the population size for aggregating 

welfare measures and the boundaries and types of land included in the valuation study. This phenomenon 

is most evident in stated preference studies that sample from a particular region (e.g., a state) and ask 

participants about a particular, compartmentalized landscape. Studies such as these censor willingness to 

pay observations that are outside of that state and thus only estimate aggregate values conditional on the 

sampled population. These studies also compartmentalize the landscape by assuming that people’s 

preferences or landscape structure and function can be meaningfully geographically isolated. By dividing 

the aggregate welfare measure by the count of the modeled population, we control for the arbitrary 

influence of censoring WTP of non-sampled populations that have positive WTP. We also control for the 

effect of the sampled population by including this count as an explanatory variable. Analogously, we 

normalize the aggregate welfare measures by the number of wetland acres valued in the study and include 

this acreage count as an explanatory variable. 

 

A Parametric LWLS Regression with a Novel MA Dataset 
The majority of the technical aspects of our discussion of the locally weighted least squares 

estimator are confined to the appendix. The purpose of this section is to lay out an intuitive understanding 

of how the parametric locally weighted least squares (PLWLS) approach works. The appendix describes a 

two-step process, the first is calibration where an unconventional type of parameter is estimated, and the 

second step is the use of the estimated parameter to develop weights for a weighted least squares 

regression.  
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 The motivation behind developing the PLWLS estimator and going beyond OLS is that 

we wish to estimate a regression that is targeted towards each site (i.e., a site of interest or centered site) 

for which we desire an estimate of value. The motivation for selecting a potentially unique model for each 

site comes from a desire for forecast efficiency, or low prediction error variance. The basic concept 

behind the PLWLS regressor is that certain variables, referred to as correspondence attributes, are 

indicative of how close observations are to each other. Two observations that are close to each other 

provide more information about each other than two observations that are not. We make use of this 

correspondence information by applying lower weights to data that are less close to the policy site of 

interest. The idea of correspondence has arisen in a number of ecosystem service MA publications, but we 

are unaware of any attempts to formalize a systematic procedure for estimating or implementing 

correspondence. 

 An immediate challenge that arises in implementing this idea is that we do not know how 

to combine correspondence attributes with very different units. Thus we estimate parameters that serve as 

a normalization that allows us to combine dissimilar correspondence attributes. For example if we 

suspect that geographic distance between two sites and the difference between two sites in average 

income of the local population are both important indicators of correspondence, lacking a quantitative 

model, we have only our best judgment to guide us in deciding the relative importance of distance and 

difference in income. With PLWLS we are able to estimate parameters, referred to as correspondence 

parameters that allow us to add up the correspondence distance between two sites as measured by both 

geographic distance and the difference in income. An important challenge is that there is a cost to 

applying lower weights to certain observations, as we would be losing useful information if we 

incorrectly reduce the weight of a particular observation in the model for a policy site of interest. 

Accordingly, we allow correspondence parameters to equal zero (which results in the same OLS 

estimator in each regression) or any positive, real number. We also analyze the performance of the 

estimator in comparison to OLS in an artificial forecast simulation, described in the next section. 

The main divergence of our model from a conventional OLS regression is that we have a 

regression for each observation; these regressions are distinguished by potentially unique weights used 

during estimation. Equation (3) contains the basic formula for estimating the weight applied to 

observation j in the regression tailored to site 𝑖𝑖. In this equation we have the sum of H terms in a negative 

exponential function. 

𝛀𝛀�𝑖𝑖 𝑗𝑗𝑗𝑗−1 = 𝑒𝑒−∑ |𝑎𝑎ℎ𝑖𝑖−𝑎𝑎ℎ𝑗𝑗|𝛿𝛿�ℎ𝐻𝐻
ℎ=1 = 𝑒𝑒−(|𝑎𝑎1𝑖𝑖−𝑎𝑎1𝑗𝑗|𝛿𝛿�1+⋯+|𝑎𝑎𝐻𝐻𝐻𝐻−𝑎𝑎𝐻𝐻𝐻𝐻|𝛿𝛿�𝐻𝐻) (3) 

The variable 𝑎𝑎ℎ𝑖𝑖 is a correspondence attribute where the subscript ℎ indicates which attribute (e.g., 

income or geographic location) and the subscript 𝑖𝑖 indicates the observation associated with the attribute. 
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Thus |𝑎𝑎ℎ𝑖𝑖 − 𝑎𝑎ℎ𝑗𝑗| is an unweighted measure of correspondence distance, which is weighted by the 

estimated correspondence parameter, 𝛿𝛿ℎ, and the sum of these H terms is the argument of the negative 

exponential function. The resulting value, 𝛀𝛀�𝑖𝑖 𝑗𝑗𝑗𝑗−1 , is the jth diagonal element of the diagonal, positive 

definite regression weight matrix, 𝛀𝛀𝑖𝑖
−1. The desired regression parameter vector, 𝐵𝐵�𝑖𝑖, is calculated 

according to the WLS formula in equation (4), where the tilde above a variable indicates that we have 

estimated that variable via L-WLS. 

𝐵𝐵�𝑖𝑖 = (𝑿𝑿′𝛀𝛀�𝑖𝑖−1𝑿𝑿)−1𝑿𝑿′𝛀𝛀�𝑖𝑖−1𝑌𝑌 (4) 

Here 𝑿𝑿 is a (𝑛𝑛 × 𝑘𝑘) matrix of explanatory variables including an intercept term, 𝑌𝑌 is a column vector of 

observations of WTP of length n, and 𝐵𝐵�𝑖𝑖 is an n-element column vector of parameter estimates. The 

subscript 𝑖𝑖 indicates that the matrix 𝛀𝛀�𝑖𝑖−1 has been estimated for observation 𝑖𝑖, which is the sole source of 

information that leads to a potentially unique parameter estimate for site 𝑖𝑖. 

 

Jackknife Out of Sample Forecast Simulation 
 We implement a jackknife or leave-one-out forecast analysis in order to develop a better 

understanding of how our model might perform for actual forecasts for policy sites that have no 

corresponding valuation study. For the OLS model we drop an observation and estimate the regression 

coefficients without that observation, then using those coefficients we forecast the dependent variable and 

sample error for each observation. The forecast and sample error of the dropped observation is of 

particular interest since that observation is out of sample relative to the estimated parameters and 

coefficients. The jackknife provides n2 forecasts that can be used to reconstruct an approximation of the 

sampling distribution. Because we lack equations for constructing standard errors that reflect variability in 

correspondence coefficients, the jackknife also provides a parallel means for assessing the PLWLS and 

OLS model variability. 

The jackknife procedure for the PLWLS is very similar, but requires recalibration of the 

correspondence coefficients for each omitted observation. This procedure also provides us with a first 

approximation of the sampling variability of the correspondence coefficients themselves. A natural 

question is whether our PLWLS model outperforms OLS in the jackknife setting.  
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Data 

Forecast Combination 
To conduct the MABT dependent variable simulation, two basic steps are required. First, we must 

specify values for the explanatory variables pertinent to each wetland ecosystem and for each published 

MA model. Second we treat the estimated regression model from the original study as a stochastic 

predictive model with estimated coefficient means and variances which we use to simulate a distribution 

of the dependent variable. We use the National Wetlands Inventory geospatial database as the primary 

definition of wetlands while the NLCD 2006 dataset provides landscape data for the wetland type 

distribution in the Brander et al. (2006) meta-analysis. Refuge boundaries are taken from the USFWS 

Cadastral Special Interest layers (USFWS 2009); we specifically use parcels designated as “acquired” 

under the variable, “status”.  

Population density data are obtained from the SEDAC Gridded Population of the World: Future 

Estimates dataset for the year 2010 (CIESIN 2005). GDP data for the state(s) occupied by or immediately 

adjacent to each NWR are adjusted for inflation to the appropriate data year for each study using the BLS 

CPI Inflation calculator; these data are from the BEA’s SA04 State Income and Employment Summary 

dataset (BEA 2012). 

While many explanatory variables for MABT can be specified with little difficulty, geospatial 

and methodological variables require important assumptions. Because all three MAs estimate non-

constant returns to scale, the geographic extent chosen for the analysis will impact the results. As we are 

interested in modeling wetlands in NWRs, we use NWR boundaries as the unit of analysis. Future work is 

needed to develop a formal procedure for endogenously identifying the appropriate unit of analysis for 

wetland ecosystem service modeling, especially in the context of non-constant returns to scale for wetland 

acreage.  

Several alternative approaches for the treatment of methodological variables when predicting the 

dependent variable can be found in the MABT literature (Moeltner, Boyle, and Paterson 2007; Johnston 

and Thomassin 2010). In order to include passive use values in our BT estimates, we simulate a 

contingent valuation method for the two earlier meta-analyses that include methodological variables. We 

use model B from the Ghermandi et al. (2010) study, which omits methodological variables, as the 

study’s authors indicate this is the best model among those estimated. Study quality variables for the 

Woodward and Wui (2001) meta-analysis were set to zero, implying that we are predicting the WTP 

estimates that would be obtained from a hypothetical, high-quality primary valuation study. Our approach 

to coding methodological explanatory variable for dependent variable prediction differs from existing 

approaches in the literature in that we view the results as a simulation of the results of a hypothetical 



16 

  

primary valuation study. This interpretation of the MABT model suggests that if we wish to estimate a 

hybrid of methods, we should not code binary dummy variables as fractions, but rather we could estimate 

results as if they were from multiple primary valuation studies and then average these results, perhaps 

using sample means for each methodological dummy variable as the weights in the average. We do not 

attempt to combine valuation results from multiple primary valuation methodologies in this paper. Rather 

we choose first the valuation approach (stated preference approach) most suitable for answering questions 

about the total value of ecosystem services, and we choose next the valuation method (contingent 

valuation method) most abundant in the MA datasets. 

The data used to estimate flood control benefits from each MABT are given in Tables 2 - 5. The 

layout of the explanatory variable values matches Table 1. The variables for wetland type must sum to 1, 

so for example from Table 2 we can see that Arrowwood NWR is 99.8% fresh marsh (fresh marsh 

proportion obtained from NLCD 2006 gridcode 95 – emergent herbaceous wetland) and 0.2% woodland 

(woodland proportion obtained from NLCD 2006 gridcode 90 – forested wetland) . The population 

density variable in the Brander et al. (2006) meta-analysis is negative because the units employed are the 

natural log of 1000people/square kilometer and there are fewer than 1000 people in the average square 

kilometer in North Dakota. The many dummy variables that were coded to zero are omitted from these 

tables, but can be seen in Table 1. To predict the value of flood control, for example, the flood control 

dummy was set equal to 1 and all other service valued dummy variables were set equal to 0. The 

analogous coding is used to estimate the value of water quality provisioning. 

A general review of the studies referenced in each MA publication indicates that some 

observations simultaneously valued more than one service provided by a single wetland site. Specifically, 

the methodological variables in Brander et al. (2006) and Ghermandi et al. (2010) are unlike conventional 

dummy variables, as they are not perfectly linearly related: for example, one valuation study may use 

multiple methods to obtain a result or a result may reflect the value of multiple services. Because no 

interaction effects among different services are estimated in any of the models, one resulting restriction is 

that the partial effect of predicting WTP for a single service provided by a wetland (e.g., flood control) is 

the same as adding that same service to another (e.g., adding flood control to a BT value that also predicts 

water quality provisioning value); this restriction can imply negative partial effects for certain services. 

For example, with the Brander et al. (2006) MA, valuing flood control alone will always return a positive 

WTP estimate, but simultaneously valuing flood control and water quality will have a positive but lower 

predicted value, indicating that water quality services have a negative effect. We handle this complication 

by always valuing only one service at a time. In the context of our interpretation of the dependent variable 

as a simulated study result, we simulate a primary valuation study estimated by a single methodology that 

focuses on a single service. 
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The Novel MA Dataset 
While theory offers little formal guidance for the MA practitioner specifying the model to be 

estimated, existing MAs provide some guidance concerning functional form and relevant explanatory 

variables. Once the MA practitioner has assembled a list of explanatory variables to include in the model, 

obtaining the values of each variable for each observation is the next task. Challenges can potentially 

arise when attempting to find measurements of both the dependent variable and the explanatory variables. 

In the paragraphs below we describe examples of the process behind measuring the values of variables 

and how we address problems that arise. We follow with a discussion on the choice of variables included 

in the final model used for MABT. Some variables are included in the database that are not used in the 

final model; these variables may be useful for future modeling efforts. 

 Existing wetland ecosystem service MAs specify the dependent variable in terms of WTP per 

acre/hectare or WTP per person. To develop a model that follows the published literature, observations 

that are retained in our dataset must share a common normalization or units of the dependent variable – 

typically WTP per unit surface area or per person. Careful consideration and additional information is 

important when combining primary valuation results with different units and different welfare measures 

representing different services obtained from differing valuation approaches. The main assumption of the 

meta-analyst is that explanatory variables can be specified that control for these many sources of 

variation.  

Following similar wetland ecosystem service valuation MA studies, we include a variety of 

economic valuation approaches as a component of our econometric identification strategy. By including 

multiple primary valuation approaches, we allow for a larger sample with more variation in explanatory 

variables. A number of studies were eliminated from consideration due to the author’s reuse of a dataset 

associated with an earlier valuation study. Other criteria for eliminating a study from our model include 

uncertainty about whether the study focuses on ecosystem services attributable primarily to wetlands or if 

the study focuses on a broader landscape including uplands. An important final criterion that determines 

both sample size and model specification is the availability of values for all explanatory variables for all 

observations. A summary of the final data used in our MA regressions is provided in Table 6. Ultimately, 

the dataset we used for analysis contains 82 observations of WTP obtained from 26 primary valuation 

studies, and all studies are based on unique datasets. The first column of Table 6 contains variable names, 

with the dependent variable (2010 US dollars per 1000 acres per person per year) on the first row below 

the header. The second column is the sample mean of the 82 observations and the third column in the 
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table is the variance of the sample mean. All methodological variables are binary or dummy variables as 

is the variable, “coastal” for sites that are on the coast of an ocean. 

The most frequently used approach for valuing wetland ecosystem services in our dataset is the 

stated preference approach. The Contingent Valuation Methodology provides 46 observations and the 

remaining 14 are from choice experiments. Both of the stated preference methodologies provide 

observations of WTP per person, typically as Hicksian Compensating Variation. Most of the remaining 

studies follow the revealed preference approach, all 15 of the revealed preference observations we use are 

based on the Travel Cost Methodology. We exclude valuation studies that implement the Hedonic Price 

Method because so few of these studies estimate the second stage regression necessary for converting 

implicit prices into a demand curve that can be used to estimate consumer surplus. The Hedonic Price 

Method also captures private market values that are fundamentally different from the public goods we are 

interested in, namely water quality and flood control. 
The remaining observations retained in our final dataset are from studies that utilize economic 

valuation methodologies that are generally considered to be less theoretically appropriate. We lump 

together into a single omitted dummy variable studies that utilize damage avoidance and replacement cost 

(of capital). We include these studies in order to obtain a variety of observations for flood control and 

water quality provisioning services. In order to mitigate concerns that replacement cost studies of water 

quality overestimate value, we only use studies where the authors have identified that the Clean Water 

Act has led to mandatory water treatment. 

Because some primary valuation studies simultaneously value more than one service, we utilize a 

variable called joint to allow for us to control for primary valuation studies that value multiple services at 

one time. For example, Roberts and Leitch (1997) report value estimates that include habitat, recreation, 

and aesthetics in a single stated preference study. For each instance such as this, we code each service 

variable to one and code the variable joint to be 3. While a more robust approach would be to include an 

interaction term for each combination of services, the approach we employ is useful because it does not 

consume excess degrees of freedom and also ensures that we can obtain reasonable identification with a 

model that already contains a large number of dummy or binary variables. 

In primary valuation studies the measured WTP of a representative agent is often aggregated to 

the relevant user population, typically through multiplication (e.g., Bergstrom et al. 1990). More 

advanced approaches may segment the population by observable characteristics (e.g., Cooper and Loomis 

1993; Bishop et al. 2000) or may include information to estimate distance decay (Sutherland and Walsh 

1985). Distance decay is the intuitive concept that people further from a site will benefit less from the site 

than people who are closer. However, because not all studies contain estimates of aggregate WTP, this 



19 

  

process requires additional information from the MA practitioner. Similar problems arise with the Travel 

Cost Method which may report WTP normalized by person, trip, or household. 

 When additional information is required for estimating aggregate WTP associated with an 

observation, the MA practitioner typically must make a decision about how to proceed, potentially 

introducing error into the model. Some primary valuation studies may specify the geographic extent from 

which the sample was obtained, often delimited by political boundaries (e.g., Cooper and Loomis 1993; 

Phaneuf and Herriges 1999), but the study may not report relevant socio-economic data on the population 

of the area. For example, the local population count and average income are not reported in many 

valuation studies. For instances such as these, we use US Census historical data and BEA (2012) data to 

recover population and income information for counties and states associated with the user population. 

 One of the most important aspects of the data gathering process that may require supplementary 

information beyond the primary valuation study is the identification of the geographic extent of the 

wetland that is valued. Most existing wetland MAs include a surface area regressor, allowing for non-

constant returns to wetland area, this implies that both aggregate values and values-per-acre may be 

misestimated if wetland extent is measured with error. Identifying the extent of the wetland valued in an 

observation in the dataset also allows for more complex geospatial analysis of the site’s geographic 

context. Thus we imposed the requirement that the study must provide sufficient information to identify 

the geographic extent of the studied wetland. We also eliminated from our model studies that provide a 

value for extremely large wetland extents, such as the entire country (e.g., Bergstrom and Cordell 1991).  

The additional analysis and decisions that the MA practitioner needs to make in order to estimate 

the extent of valued wetlands can be usefully illustrated by example. In Breaux, Farber, and Day (1995) a 

wastewater treatment wetland in Thibodaux, LA is identified but with too little information in the 

publication to identify the site on a map. By searching the Internet for documents relating to the “State 

Department of Environmental Quality”, “Thibodaux, Louisiana”, and terms relating to wastewater 

treatment and discharge, we found a document describing the site. The site in Twilley and Boustany’s 

(1990) report matches closely the description in Breaux, Farber, and Day (1995), including the extent of 

treatment wetlands (230 hectares vs. 570 acres, respectively) and both describe a two ridge system with a 

drainage canal. Additionally, both reports cite locally relevant studies by William H. Conner and John W. 

Day; other similar documents confirming the site were also found. The additional information obtained in 

the Twilley and Boustany (1990) document allowed us to find the site in the EPA’s Water Quality 

Assessment Status reports (http://watersgeo.epa.gov/mwm/?layer=305B&feature=LA120207_00 

&extraLayers=null), providing sufficient information for identifying the boundaries of the site in ArcGis. 

We then construct a polygon matching the boundaries of the site, allowing for analysis of the surrounding 

population and geography.  
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While the Breaux et al. (1995) study valued a small geographically specific wetland, Bergstrom, 

Stoll, Titre, and Wright (1990) value a substantially larger wetland system, estimated at 3.25 million acres 

by the authors. Using their figure 3, a map of the counties in the study region, we identify the appropriate 

Louisiana counties in ArcGis. Because Bergstrom et al. (1990) attribute all consumer surpluses in their 

study to wetlands in the selected counties, we retain all wetlands therein as the scope of valuation. The 

procedure for identifying coastal wetlands valued in Costanza, Farber, and Maxwell (1989) was similar. 

In their study a section includes estimates of the value of hurricane protection services provided by 

Terrebonne Parish coastal wetlands. We define their site first by selecting wetlands in Terrebonne Parish 

and then selecting by hand the subset of these wetlands that are between populated areas and the Gulf of 

Mexico.  

Ultimately, the question of how big the wetland study site associated with a primary valuation 

study is can potentially have an unclear answer. Stated preference studies evaluate willingness to pay to 

protect or prevent the loss of a precisely defined wetland area (i.e., indicated on a map or with a precise 

description) (e.g., Sutherland and Walsh 1985; Sanders, Walsh, and McKean 1991), of a generic and 

locally relevant wetland (e.g., Johnson and Linder 1986; Blomquist and Whitehead 1998; Bauer, Cyr, and 

Swallow 2004), or of a certain portion of a larger nearby wetland area(e.g., Beran 1995; Bishop et al. 

2000; Whitehead et al. 2009; Petrolia and Kim 2011). Even for sites that value wetlands of a well-defined 

extent, the wetland ecosystem around or nearby the site may be substantially larger. Attributing the 

average per-acre willingness to pay for a smaller subset of wetland acres to all adjacent wetland acres 

may lead to a large upward bias in the aggregate welfare measure. Accordingly, when applicable, we 

specify the wetland surface area variable as the value (i.e. the stated number of acres valued) discussed in 

the primary valuation survey. As we discuss below, the accounting of substitute wetlands in a radius 

around the study site as an explanatory variable allows for us to control for changes in WTP that are 

related to the broader wetland landscape.  

Beyond estimating the size of the wetlands being valued, a further conceptual issue arises when 

identifying wetland acreage from a primary valuation study. This occurs when the study values a 

hypothetical or generic rather than an actual wetland. Johnston et al. (2002) and Bauer et al. (2004) are 

examples of valuation studies where a hypothetical or generic site is valued. Both of these studies, 

however, indicate a context that motivated the research; we use this context as the actual site of valuation 

in order to be able to obtain information about the geographic context of the wetland. 

The relatively recent wetland MAs of Brander et al. (2006) and Ghermandi et al. (2010) include 

dummy variables distinguishing wetland type. We follow this approach, but we use continuous variables 

representing the proportion of wetlands at the site in each subsystem, as defined by Cowardin et al. 

(1979). Because many wetland valuation studies consider wetlands that include a variety of wetland 
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subsystems, this flexible approach can capture more variation in sites and is less prone to measurement 

error at the expense of requiring more geospatial analysis. However, because we are using other spatial 

variables, there is little difficulty in measuring the wetland subsystem proportions beyond identifying the 

boundaries of each site. Ultimately through pre-testing, we eliminate all wetland classification variables 

from our regression models; these variables may prove useful in future analyses. 

With a well-defined digital map of each wetland, we can assess more complex geospatial 

variables and relationships. In order to control for the availability of substitute wetland sites, we follow 

Ghermandi et al. (2010) who include a variable for the total area of wetlands in a 50km radius around the 

center of each site. However, valuation studies that value geographically extensive wetlands, such as all 

the wetlands in a particular state, are likely to be associated with a wider scope for substitution than 

studies that value small wetlands. Because of this concern we pursue a more flexible method for 

measuring substitutes that varies with wetland surface area. In our model the radius begins at the outer 

boundary of the study site (rather than the center of the site) and extends for the number of miles that 

equals the cube root of study acres. Thus the wetland substitutes variable for an 8000 acre site would 

include all wetland acreage in a 20 mile radius (as the cube root of 8000 is 20) beyond the boundaries of 

the site. This functional form was chosen based on our best judgment, and in part due to its positive first 

derivative and negative second derivative, which causes the radius to increase with a study’s wetland 

acreage but at a decreasing rate. We use the NLCD dataset that is closest in time to the year of data 

acquisition to define local substitute wetlands. An important limitation in how we account for substitute 

sites is that we do not distinguish among different wetland types. For example, a wetland study site that 

consists only of brackish wetlands for which freshwater wetlands may be a poor substitute has included in 

the count of substitutes both freshwater wetlands and brackish wetlands. 

We use NASA-SEDAC’s Gridded Population of the World v3 dataset 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v3) to count the population around a wetland site in 

the same manner as we count substitute wetlands. We include this variable in order to control for 

variations in demand for wetland services associated with each site. We included this variable as a 

measure of the study and site context, as the local population variable differs from the population over 

which a benefit estimate is aggregated. Ultimately, the wetland substitute and local population measures 

are used as a ratio variable in our regression equation. The intuition behind this specification is that the 

ratio of local people to local wetlands might be indicative of the degree of scarcity of wetlands and 

associated ecosystem services. 

For the PLWLS estimator, we also include latitude and longitude measured in meters from a 

common point in the western hemisphere in the Albers 1983 projection, obtained from analysis in ArcGis 

10. Distance is measured in the Euclidean sense; we use the familiar Pythagorean distance formula to 
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calculate the distance between all observations in the sample. This value is used only as a correspondence 

attribute, as we are unaware of any straightforward means of accounting for distance between 

observations in an OLS regression. 

 

Explanatory Variable Values for Forecasting 
 The application of our MA models for out-of-sample forecasts of NWR ecosystem service 

benefits requires little additional data. We use USFWS Cadastral Special Interest Layer polygons with a 

status of ‘acquired’ as our definition of the extent of each NWR. These polygons combined with NLCD 

2006 land cover data provide us with a means to estimate the surface area of wetlands in each refuge, 

which is used to construct the remaining geospatial variables. The population variable that is a study/site 

variable (a distinct measure from the local population variable that describes the geographic context of the 

site) is set as the mean of study populations in our dataset. We choose this value for simplicity, though the 

actual application of results to a policy question would benefit from a more carefully and specifically 

defined population count. 

 

Results 

Forecast combination 
The results of our Monte Carlo simulation of WTP per acre can be found in Tables 7 to 12. 

Tables 7 to 10 contain estimated quantiles of WTP based on the one million multivariate random normal 

parameter draws in our Monte Carlo analysis; each table contains a summary of the simulated distribution 

of WTP for flood control and water quality at a refuge. The results for flood control are in the top half and 

the results for water quality provisioning are in the bottom half of these tables. Each row of Tables 7 to 10 

contains an estimate of WTP per year per acre from a particular meta-analysis regression model. The last 

two rows within each service are the precision-weighted and evenly-weighted averages of the three 

estimates above. We can see that med(WTP) appears to converge to eE[Xβ]. This is a basic feature of the 

lognormal distribution based on a symmetric normal distribution. Tables 11 and 12, respectively, contain 

the results of our mean and variance estimates for flood control and water quality. The first numerical 

column is our estimate of the mean of the dependent variable after being exponentiated by the 

antilogarithm. The second column of numerical data is the simulated variance of the mean ,and each row 

contains one of the NWRs evaluated by one of the meta-regressions. A comparison of the dispersion of 

WTP estimates from each meta-analysis, indicated clearly both by the variance estimates and the 5th and 
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95th estimated percentiles, suggests that the Ghermandi et al. (2010) meta-analysis is far more precisely 

estimated than the two older meta-analyses. While this conclusion might be a result of estimation error 

due to our assumption that all sample covariances among parameters were equal to zero, with limited 

information the Ghermandi et al. (2010) meta-analysis appears to be the most precise by a substantial 

margin. Accordingly, we suggest that the Ghermandi et al. (2010) MA values are the best estimates that 

can be obtained from existing MA models and can be used in place of the forecast combination results for 

simplicity. 

The point estimates in Tables 11 and 12 are most similar between the Brander et al. (2006) and 

Ghermandi et al. (2010) models, while the Woodward and Wui (2001) values are substantially larger. 

This divergence can be attributed in part to the inclusion in the Woodward and Wui (2001) meta-analysis 

of study quality variables, which indicate that lower quality studies systematically produce lower welfare 

estimates; as we coded the variables for a high quality study, the estimates are larger than the average 

study. Figure 1 is a bar graph containing point estimates of WTP per acre per year for each service at each 

refuge and estimated with each MA model. In Figure 1, the left hand axis corresponds to the blue bars for 

the Woodward and Wui (2001) point estimates while the right hand axis corresponds to the green and red 

bars for the Ghermandi et al. (2010) and Brander et al. (2006) studies. An important feature of the welfare 

estimates concerns the differences across MA models in the relative WTP estimates for each refuge. 

While both the Brander MA and the Ghermandi MA place Blackwater as having the most valuable 

wetlands, The Woodward MA places Blackwater NWR as third most valuable per unit of land. This result 

appears to be due largely to the inclusion of socio-economic variables in the later two MA models. 

Next we aggregate WTP estimates over all wetland acres in each refuge for each service. Figures 

2 and 3 are graphic representations of our estimates of WTP for ecosystem services supported by all NWI 

identified wetlands in each refuge. The corresponding numerical values can be found in Table 13 along 

with median (obtained via point estimate) WTP and the total count of NWI identified wetlands within 

each refuge. As discussed above, by our judgment, the best estimates of WTP are those obtained from the 

point estimate method of obtaining the median from the Ghermandi et al. (2010) meta-analysis WTP 

distribution, found in the last 8 rows of Table 13. In this case our choice of best is motivated entirely by 

the simulated variance of the mean of each forecast. The simulated variances indicate that the Ghermandi 

et al. (2010) study produces the most precise estimates and that simulated means are unreliable due to the 

assumptions required for estimation. 

The results in Table 13 and Figures 1, 2, and 3 generally indicate that for wetland ecosystem 

services the Okefenokee NWR is most valuable as a whole with the Blackwater NWR providing 

moderately less valuable ecosystem services. The large estimated value of the Okefenokee NWR is 

largely due to the extensive wetland surface area, as median values per acre are among the lowest of the 
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four refuges considered across all three MAs. The aggregate values of Arrowwood NWR and Sevilleta & 

Bosque del Apache NWR wetland ecosystem services are substantially lower, by a factor of 

approximately ten. The primary reason for these lower values is the limited surface area of wetlands in 

these two refuges. The values of the average acre of the vast Okefenokee NWR are lowest primarily due 

to the decreasing returns to scale relationship estimated in all three MAs. The high values per average 

acre of Blackwater NWR wetlands are due largely to the high incomes and population densities coupled 

with the refuge’s modest surface area. Generally we find that the results of the MABT with existing MA 

studies are in line with our imprecise, qualitative expectations. 

 

OLS 
The results of our OLS regression can be found below in Table 14. We report Huber-White or 

heteroskedasticity robust standard errors, t-statistics, and the p-values associated with the t-statistic for 

each parameter. The parameters estimated for both water quality and flood control are significant at the 

10% level or better. The water quality parameter is significant at the 5% level; the flood control parameter 

just barely misses that mark, suggesting that the parameter estimates are reasonably precise. The 

parameter estimate for the number of acres valued is negative and significant at better than the 10% level 

with robust standard errors. The parameter for population is similar in magnitude to the parameter for 

acres, but the p-value is less than 1%. Because the dependent variable is normalized by acres and 

population, the interpretation is that a 1% increase in one of these variables leads to about a 0.5% 

decrease in WTP/acre/person, which suggests diminishing returns to expanding the scope of acres valued 

or the scope of the population for aggregation. The variable, joint, which indicates how many services 

were jointly valued is strongly significant and indicates that adding additional services to a valuation 

study results in a reduction of the estimated value relative to a model where the additional services were 

valued separately. The results of our OLS forecasts are discussed with the results of the PLWLS estimator 

in the next sub-section as well as in the discussion section. 

 

PLWLS 
As the calibration of correspondence parameters is the first step in the PLWLS estimator, we 

present these values first. The results of our PLWLS calibration can be found in Table 15. All 

correspondence attributes were standardized by their sample means and variances prior to calibration, 

with the exception of Euclidean distance which was converted from meters to 1000’s of kilometers. In 

Table 15 we have removed the transformation for correspondence attributes other than distance to 
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facilitate a comparison. The results of the calibration step indicate that GDP and Euclidean distance 

between sites are important non-methodological determinants of correspondence among studies in our 

sample. Additionally, studies that value similar services and which aggregate over a similar population 

have higher correspondence with each other than otherwise. The PLWLS calibration step found that the 

number of acres valued by a study was not a determinant of correspondence, a notable result that might be 

reassessed in future studies. The moderate values for these parameters and the moderate weights 

(typically between 0.01 and 0 .9) that are consequently applied in each regression suggest that the 

algorithm is moderately down-weighting observations with poor correspondence, but retaining ample 

information for reasonably robust estimation. 

The next step in the PLWLS procedure after identifying correspondence parameters is to use 

those parameters to calculate a (𝑛𝑛 × 𝑛𝑛) matrix of regression weights for each out-of-sample study/site of 

interest. These regression weights are used to calculate a regression for each site and also can be used to 

rank observations according to their relative information content. For any given centered site, 

observations that are weighted more heavily are assumed to have greater correspondence and therefore be 

more informative about the centered site.  

We provide several graphs that illustrate correspondence in 2 dimensions; we specifically depict 

the NWR study sites as the centered observation in each graph in Figure 4. Figure 4 contains a plot for 

each refuge, where each refuge is the centered site indicated by the open circle towards the top-right of 

each graph, which is also the graph’s origin. In each graph the horizontal axis represents the weighted 

difference between each data point and the centered observation Filled circles that are colored blue 

receive lower weights, while magenta circles receive higher weights, indicating greater correspondence. 

The four smaller filled circles represent the four case study NWRs, which can be seen to all have the same 

population, but varying incomes. The purpose of the figure is to demonstrate that the correspondence 

parameters give rise to weights that display a similar pattern across these out-of-sample observations or 

policy sites.  

While the OLS regression treats each observation equally, the PLWLS approach allows us to rank 

observations according to the weight applied in each centered regression. The highest ranked observations 

contribute the most information, so the forecasted primary valuation study results are associated most 

strongly with the characteristics of the most highly weighted observations. Tables 16-23 contain the ten 

observations in each centered regression receiving the highest weights for each of the 4 case study refuges 

for both water quality and flood control services. The first four tables are for water quality and the next 

four are for flood control and storm surge protection. The top row of each table contains the values for the 

centered NWR followed in the second row by the column headings. GDP per capita values are all in 2010 

US dollars. Euclidean distances are in kilometers. The regression weights are normalized so that all n=82 
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observations have weights that sum to 82; this normalization facilitates a simple comparison with OLS 

weights that are always 1 by assumption. Some rows in these tables appear to be duplicates, which is a 

result of variations in site attributes not included in the table such as the number of acres of wetlands 

valued. For example, in Table 16 the first 3 observations are from Bishop et al. (2000), which differ in 

both the measured value of WTP/person/acre/year and the number of wetland acres valued, which are 

both variables not included in these tables.  

Generally, one can see that studies that value the same service are always the highest ranked 

observations for all 8 examples. High correspondence observations that value the same service as the 

centered observation tend to have markedly higher weights than subsequent observations that value other 

services; however this is not always the case. In Table 20, for example, the weight applied to the Costanza 

et al. (1989) flood/storm surge damage avoidance study is substantially lower than the weights applied to 

the higher correspondence flood control studies, which is consistent with the non-zero correspondence 

parameters estimated for GDP per capita and Euclidean distance. Both of these variables differ 

considerably more between Arrowwood NWR and Costanza et al.’s (1989) Louisiana study site and the 

higher ranked prairie pothole observations, as can be seen in the table.  

We present the valuation forecasts of a stated preference study of flood control and water quality 

benefits for each of our NWR policy sites in Tables 24 and 25. The former table contains the median and 

mean of the dependent variable after reversing the log transformation and the values are scaled to 2010 

US dollars per thousand acres per thousand people. The latter table contains median and mean aggregate 

values where the population is specified as the mean value in our dataset, about 3.5 million people. The 

median population is about half as large; the mean population in our dataset is relatively high due to 

several observations that aggregate benefits over large populations. The median WTP values are the point 

estimates of WTP forecasted by OLS and PLWLS estimators. For each estimator we include a forecast of 

both the median and mean values of willingness to pay. The magnitude of the difference between the 

median and the mean is inversely proportional to the precision of each model, and the consistently smaller 

gap between mean and median for the PLWLS model implies that this model is consistently more precise 

than the OLS model. We also provide acreage counts used during estimation and aggregation in Table 25. 

Also of note, many of the PLWLS dependent variable estimates, both mean and median, fall between the 

mean and median of the OLS estimates, implying that the PLWLS results do not suffer from extensive 

bias relative to the results from the unbiased OLS estimator. We highlight the mean value single service 

revealed preference study results as we consider these to be the best estimates (i.e., for forecasting the 

value of ecosystem services when estimated by a primary valuation study) available from our MA 

regression methodology. Under our suggested interpretation of the forecasts of the dependent variable, 
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best estimates include the judgment that a stated preference study of a population with about 3.5 million 

people would be the best choice to estimate the total economic value of each service. 

 

Jackknife Leave-One-Out Analysis 
The results of our jackknife leave-one-out procedure indicate that the additional information used 

in the PLWLS forecast may be useful for lowering out-of-sample forecast variances. We found that of 82 

observations, the PLWLS algorithm when forecasting an out-of-sample observation produced a lower 

variance estimate than OLS 50 times (61%). The leave-one-out forecasts of the PLWLS estimator beat the 

full data forecasts of OLS 35 out of 82 times (43%), while the leave-one-out forecasts of the OLS 

estimator only beat the full information version of the PLWLS estimator 18 out of 82 times (22%). Future 

work may focus on identifying patterns that could be useful for predicting whether OLS or PLWLS is 

more likely to produce a more efficient out-of-sample forecast. 

Discussion 
We have combined the values obtained from MABT using 4 wetland meta-analysis datasets in 

Tables 26 and 27, which contains results for flood control and water quality provisioning, respectively. 

Tables 26 and 27 contain forecasted ecosystem service valuation results from simulated stated preference 

studies for each refuge and for the 5 MA models (the last two models are based on our dataset). These 

tables include a row of results that are the median value or point estimate. Additionally, the mean values 

are included below each row of median values. As mentioned above, an important aspect of evaluating 

each model is the magnitude of the model’s error variance. The larger a model’s error variance is, the 

larger the divide between the median and mean value will be. The PLWLS model has the smallest gap 

between median and mean estimates of WTP, implying that the PLWLS model is the most precise.  

The high precision of the PLWLS estimator comes at the expense of introducing variability 

through the estimated correspondence parameters; this increased variability is not captured by 

conventional, robust standard errors. However, the alternative ad hoc process of choosing a sample that is 

thought to have high correspondence with the policy site also introduces variability that is not accounted 

for when estimating standard errors. Accordingly with the PLWLS and all other econometric models, it is 

important to keep in mind that all results are conditional on the sample and model specification, and in the 

case of reported standard errors estimated for the PLWLS regression parameters the values are 

conditional on the estimated correspondence coefficients which effectively serve as a means for 

resampling the data.  
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For the flood control benefit forecasts using the PLWLS methodology, the top observations 

(Tables 20-23) are values from primary studies that use a damage avoidance approach to quantifying 

flood control benefits. Pre-testing with a variety of combinations of correspondence attributes indicated 

that valuation approach (e.g., stated preference, revealed preference, damage avoidance, or replacement 

cost) was generally not a determinant of correspondence for our dataset. Accordingly, forecasting a stated 

preference valuation result with a substantial proportion of the information coming from damage 

avoidance studies is more appropriate than using a stated preference study that values a different service. 

The result that flood control damage avoidance studies and flood control stated preference studies do not 

differ in correspondence can also be interpreted as being indicative of low WTP for the passive use value 

of flood protection services; in other words, people are unwilling to pay more than the costs of avoided 

damages for flood protection services. 

All MABT results in this paper can be interpreted as coming from a stated preference study, with 

the exception of the estimates obtained from the MA model of Ghermandi et al. 2010, which lacks 

controls for study methodology1. While we present these 5 models together in Tables 26 and 27, it is 

important to caution that for the existing MA studies only the results of the median calculations have been 

made with all necessary information. Another important difference lies in our inclusion of the population 

over which benefits are aggregated as a dependent variable. The additional assumptions (that the standard 

errors of estimated parameters have zero covariance) required to calculate the mean value of the 

dependent variable for the MAs other than our own potentially leads to small-sample inaccuracies. Not 

without surprise, we find that the accuracy of mean values obtained from the Monte Carlo assessment of 

published MAs is questionable, especially considering how tremendously large some of these estimates 

are. Ultimately, we conclude that too much information is lacking to perform adequate benefit transfer 

with the information provided in the publication of each published MA study when mean values are of 

interest.  

We also provide a graphic comparison of the median values obtained from each of the 5 MA 

models in Figures 5 and 6, and in these figures we compare the results for the average acre of wetlands. 

Both figures have a vertical axis that has been logarithmically transformed to allow us to fit all 5 models 

in a single, compact figure. The graphic presentation of the results from all 5 MA models indicates what 

we believe is the most reliable strength of using MA models for evaluating ecosystem service values; that 

                                                      
1 This is one reason why the Brander et al. (2006) study was used in the Phase 1a report rather than the 

more recent Ghermandi et al. (2010) study as including a precisely estimated (significant) study methodology 

variable (for the contingent valuation methodology) allows for more confidence in controlling for welfare measure 

consistency.  
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is, MA models appear to be most valid for ranking sites in terms of the relative value of ecosystem 

services. For example, in Figure 5 we can see that all but the Woodward and Wui (2001) results indicate 

that the average acre of Blackwater NWR supports the greatest (by a substantial margin) value of flood 

control services. The same 4 MA models also indicate that the average acre at Arrowwood NWR or 

Okefenokee NWR consistently provides flood control services of lower value than the other refuges.  

Figure 6 provides a less consistent ranking, relative to the flood control rankings, of water quality 

related ecosystem service values among the 4 case study sites. For water quality related ecosystem 

services, the wetlands of the Sevilleta and Bosque del Apache are consistently ranked as among the most 

valuable and the wetlands of the Okefenokee NWR among the least valuable. However, the relative 

ranking of the wetlands of Arrowwood NWR and Blackwater NWR for providing water quality related 

services are less consistent across MA models. For both of these figures, it is important to note that for all 

models except the PLWLS model the relative ranking across refuges within a model (e.g., in the Brander 

et al. (2006) model) cannot change between the two services, a restriction of the single equation OLS 

approach when interaction terms are not included.  

In comparison to the median per acre values from the Brander et al. (2006) meta-analysis, the 

dataset we have compiled indicates dramatically higher median estimates of ecosystem service flows. At 

the same time, using the best available data, the mean values obtained from the PLWLS estimator are 

generally smaller. Due to the problems with estimating the mean of the dependent variable using the 

Brander et al. (2006) model and due to the problematic exclusion of population as an explanatory 

variable, we believe the results from our dataset are more conceptually appropriate for MABT. 

Additionally, due to the exclusion of non-domestic studies from our dataset and due to the use of the 

PLWLS estimator, we expect to have greater correspondence and therefore reduced transfer error with 

our model and dataset.  

The mean of our PLWLS estimator is what we consider to be our best forecast, conditional on the 

population count used during estimation. An important contribution of our paper is the modeling and 

associated acknowledgement that the population over which welfare estimates are aggregated in primary 

valuation studies is essentially always a choice of the original analyst and dictated neither by the model 

chosen by the analyst nor the context of the site associated with the ecosystem services being valued. 

Studies that utilize an empirical approach to restricting the population over which benefits are aggregated 

are surprisingly rare; Sutherland and Walsh’s (1985) study is the only domestic exception we encountered 

in our literature search. Clearly an important next step is to develop a more formal empirical means for 

choosing the population over which benefits are aggregated.  

Essentially, we follow the existing MA literature in agreeing that methodological covariates can 

be difficult to assign for forecasting ecosystem service values when one is simply interested in knowing 
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how an acre of wetlands impacts the welfare of society. We expect that the estimation of a single number 

that is free of methodological underpinnings is not the goal of MABT, not anytime soon. Rather, we 

reiterate the argument that the best interpretation of the dependent variable obtained from a MA 

regression model is a simulated primary valuation study result. As ecosystem service valuation studies are 

typically conducted in the context of answering a research or policy question, one must choose a specific 

valuation methodology to simulate a primary valuation study. If interest lies in a value that is an average 

of results obtained from a variety of methodologies, we recommend simulating each valuation 

methodology by coding methodological dummy variables to 1 or 0 and then taking the average (perhaps 

with unequal weights) of the final forecasts. We specifically caution against coding dummy variables for 

binary concepts as fractions (e.g., coding them at their sample means); if this caution is not followed, the 

resulting forecasts will be non-linear functions of multiple valuation methodologies that have no clear 

interpretation and no clear means for empirical validation. 

The results of the regressions using our dataset produce numbers with a magnitude most 

comparable to the values estimated by Woodward and Wui (2001). In comparison to the valuation 

forecast results obtained from the median of the Ghermandi et al. (2010) MA model, our OLS values tend 

to be about 50 times higher. The mean values simulated for the Ghermandi et al. (2010) study are 

substantially closer to the PLWLS mean values obtained with our dataset, though substantial differences 

exist. Because we do not have access to information regarding even the average population in the datasets 

associated with the 3 previously published MAs, we cannot confidently say that the majority of the 

variation in benefits is not due to a difference in the population of beneficiaries that was used to make the 

forecast. 

Conclusions 
The process of learning about the behavior of the Locally Weighted Least Squares estimator in 

our sample has led us to conclude that the most telling way to understand the estimator is in the context of 

penalties. Starting from an OLS regression where no observation is penalized, when we consider a local 

regression for site i, observations that are distant (in terms of correspondence) from the central 

observation are penalized. The weights are unity less the penalties determined by the parameterized 

exponential equation described in the appendix. The process of calibration works by fitting a parametric 

variance equation to sample variances and efficient forecasts are made based on patterns identified in the 

calibration process. The results of our PLWLS estimator seem promising, yet the impact of clustered 

observations and a small sample size on the performance of the model along with a reliable means for 

estimating regression coefficient variability due to resampling are still important unanswered questions. 



31 

  

The appropriate use of welfare measures is dictated by the questions one wishes to answer. The 

relative lack of attention to the difference between mean and median values of the dependent variable 

(e.g., Woodward and Wui 2001; Brander, Florax, and Vermaat 2006; Ghermandi et al. 2010; Brander, 

Brouwer, and Wagtendonk 2013) is problematic as these two measures of central tendency are 

appropriate for answering different questions. Median values may be useful for predicting the outcome of 

a vote for which an outcome requires a simple majority. Benefit-cost analysis and in general estimation of 

economic benefits on the other hand typically require that one uses the value of the mean of the dependent 

variable. For models estimated with the dependent variable in log form, estimation of the median value of 

the dependent variable is easy, but this ease comes at the cost of potentially using the wrong value (biased 

downwards) which for benefit-cost analysis will systematically lead to biased decisions that lead to a 

reduction in social welfare as measured by aggregate benefits due to inadequate protection and restoration 

of wetlands that provide important services. 

We are ultimately interested in structural methods of modeling the contributions of wetland 

ecosystem services to human welfare, and the literature as of yet contains only models that are essentially 

reduced form in nature. We use the term structural in the sense that estimated parameters can be 

interpreted as causal and in contrast to a reduced form model where causal claims are potentially wrong 

due to endogeneity.  Smith and Pattanayak (2002) use the term differently, to refer to the origins of the 

benefit transfer model in microeconomic theory, which Bergstrom and Taylor (2006) refer to as a strong 

structural utility theoretic. Our interpretation of the dependent variable as a valuation study result calls 

into question the desire to have a strong structural utility theoretic model derived from an individual 

consumer’s assumed utility function. The reason for this divergence is that estimates of a change in 

welfare potentially have a very different data generating process with different sources of variability 

relative to the underlying changes in welfare that researchers are trying to measure.  

Our model is another reduced form model because endogeneity may be present, but by clarifying 

the interpretation of the dependent variable and also identifying the population and acreage associated 

with a welfare estimate as choices made by the original investigators, we believe that our model has 

features closer to a structural model than earlier attempts. Additionally, because we are primarily 

interested in using our model for forecasting, efficient forecasts may be more important than the causal 

interpretations afforded by structural models. Also relevant to the notion of a structural model is the 

question of whether we are forecasting the results of primary valuation studies or directly forecasting 

ecosystem service values. The former interpretation, which we recommend, also suggests a different 

meaning of causal impacts; the interpretation of a causal partial effect indicated by a regression parameter 

is with respect to the results of a primary valuation study. Ultimately, divorcing estimates of WTP from 

the methodology that uncovers them is more likely to obscure the nature of ecosystem service value 
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estimates than to provide clarity through a reduction in the contextual details that come along with value 

estimates. Concerns that a MABT model can be manipulated to achieve any particular result via changing 

methodological explanatory variables can be assessed by examining the appropriateness of the 

methodologies coded during MABT for answering the question the values are intended for. Our interest in 

the total value of services suggests that stated preference methodologies are the only relevant 

methodology to use for forecasting. 

Future work will likely increase the efficiency of benefit transfers. Efforts to increase efficiency 

can focus on expanding the MA dataset through several avenues: inclusion of non-domestic studies and 

appropriate controls, increasing the sample size by adding additional services to the analysis, and 

increasing the sample size by more carefully reviewing existing studies and relevant technical reports for 

missing information that prohibited their use in the current analysis. Validation and updating of the model 

through future primary valuation studies is also an important aspect of increasing the efficiency of 

MABT. Work is ongoing to identify common domestic wetland sites that have poor correspondence with 

the existing MA dataset, as primary valuation studies of these sites are likely to greatly enhance our 

ability to produce efficient forecasts. Increasing the efficiency of MABT models for wetland sites that are 

both common and understudied is a particularly promising avenue for future primary valuation studies. 

The development of useful applications of MABT models to management decisions may be illustrated 

with a comparison of potential refuge acquisitions by comparing a ranked list of real-estate costs with a 

ranked list of forecasted welfare changes. Rankings such as these may be useful for finding refuge 

acquisitions that are likely to have the greatest benefit to cost ratios. 
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Appendix: A Parametric Locally Weighted Least Squares 

Regression Procedure 

The PLWLS Model Foundation 
Our PLWLS methodology has at its core a GLS-like approach to efficient estimation of 

regression coefficients. The GLS method is widely known to produce an estimate of regression 

parameters that is more efficient than the conventional OLS estimator when the correct weight matrix is 

used (Hayashi 2000, 137). In order to estimate GLS, we require knowledge of the appropriate efficient 

weight matrix to use during estimation, which is usually a diagonal matrix where each element is the 

respective observation’s known inverse error variance. Typically, however the appropriate weight matrix 

is not known and must be estimated. The purpose of the estimator developed below is a new approach to 

the estimation of the appropriate weight matrix for any benefit transfer of interest. The process detailed 

below broadly consists of an initial calibration stage that estimates the parameters that are used in a 

function for estimating the variance of each observation in a sample that is tailored to a specific 

observation, followed by a suite of GLS regressions that utilize the estimated parameters from the 

calibration stage. 

Because we are developing a model based on the correspondence among observations, it is 

important to fix the basic idea of our approach before exploring the detailed steps necessary for 

estimation. Ultimately, we are interested in estimating an efficient regression for each site in our sample. 

Consider a site, 𝑖𝑖, that is the subject of a meta-analysis benefit transfer. The ultimate objective of the 

approach we develop is an efficient estimator of Bi which is intended to be used for forecasting benefits 

for site 𝑖𝑖. Consider the following meta-regression equation for site 𝑖𝑖. 

𝑦𝑦𝑗𝑗 = xj𝐵𝐵𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 (5) 

where 𝑦𝑦𝑗𝑗 is a scalar, measured (by a primary valuation study) value or WTP per acre per person, xj is a 

row-vector of k explanatory variables for site 𝑗𝑗, 𝐵𝐵𝑖𝑖 is the k element population parameter column-vector 

for site 𝑖𝑖, and 𝑒𝑒𝑖𝑖𝑖𝑖 is a scalar, zero mean stochastic population error term associated with the data xj and 𝑦𝑦j 

and the parameter vector, Bi. Following the classical regression approach, we wish to estimate the value 

of 𝐵𝐵𝑖𝑖 that minimizes the sum of squared errors across the sample of 𝑛𝑛 predictions of the dependent 

variable, 𝑦𝑦. 𝐵𝐵𝑖𝑖 is indexed by 𝑖𝑖 to indicate that this parameter is optimized to efficiently forecast the 

dependent variable for a particular site, 𝑖𝑖. Estimates of the population parameter, 𝐵𝐵𝑖𝑖, are represented in the 

following equation as 𝐵𝐵�𝑖𝑖. 
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y�𝑗𝑗 = xj𝐵𝐵�𝑖𝑖 + 𝑒̃𝑒𝑖𝑖𝑖𝑖 (6) 

A tilde over a variable indicates that the variable has been estimated by a regression or similar model. We 

are interested in efficient estimates of 𝐵𝐵𝑖𝑖, that is where we expect 𝑒𝑒𝑖𝑖𝑖𝑖2  to be as low as feasible for the 

available data. Generally, we are interested in cases where 𝑖𝑖 = 𝑗𝑗 , indicating that the particular choice of 𝐵𝐵 

is intended for the data at hand, while cases where 𝑖𝑖 ≠ 𝑗𝑗 are typically not of interest. 

 The most straightforward and familiar estimator of 𝐵𝐵𝑖𝑖for data 𝑦𝑦𝑖𝑖 and x𝑖𝑖 is the OLS estimator, 𝐵𝐵�𝑖𝑖, 

𝐵𝐵�𝑖𝑖 = (𝑿𝑿(𝑖𝑖)
′ 𝑿𝑿(𝑖𝑖))−1𝑿𝑿(𝑖𝑖)

′ 𝑌𝑌(𝑖𝑖) (7) 

𝑿𝑿(𝑖𝑖) is a (𝑛𝑛𝑖𝑖  × 𝑘𝑘𝑖𝑖) matrix contains ni rows of the ki element data row-vectors xj. Analogously, 𝑌𝑌(𝑖𝑖) is a 

(𝑛𝑛𝑖𝑖  × 1) matrix (column vector) of scalar values of 𝑦𝑦𝑗𝑗. The subscript, 𝑗𝑗 may take on values from 1 to ni. 

The subscript, (𝑖𝑖), indicates that a particular data matrix is intended for calculating 𝑦𝑦�𝑖𝑖, that is an estimate 

of the originally measured value of 𝑦𝑦𝑖𝑖. The typical procedure is to choose or weight by some means the 

rows of 𝑿𝑿(𝑖𝑖) and 𝑌𝑌(𝑖𝑖) such that the estimate of 𝑌𝑌𝑖𝑖 is efficient relative to the available information. The 

fundamental intuition behind a weighted regression is that certain observations contain less information 

about the underlying population from which the sample was drawn, and by correctly reducing the weight 

of those less informative observations, we are preserve the relative information content across all 

observations. In contrast, if we knew the appropriate weights but we did not use them, the more 

informative observations would be effectively downweighted relative to the information they contain 

about the population. 

 It is important to distinguish an efficient estimate of 𝐵𝐵 from the particular 𝐵𝐵𝑖𝑖 that is an efficient 

estimator of 𝑌𝑌𝑖𝑖. That is to say we are not necessarily interested in the estimate of 𝐵𝐵 that is most efficient 

on average for all observations, but rather for any given observation we are interested in the parameter 

that is a priori expected to be most efficient for that observation or a set of observations that share 

something in common, such as their vicinity. The distinction between the two reasons for choosing 

estimators is most apparent when data are systematically eliminated from consideration for a particular 

site 𝑖𝑖 by removing said data from the data matrices used to estimate 𝐵𝐵𝑖𝑖. The motivation for eliminating an 

observation is typically that the analyst thinks that observation is relatively uninformative about the site of 

interest due, for example, to an analyst’s qualitative expectations of poor study/site correspondence.  

In order to quantify the idea of study and site correspondence, we assume that an observation’s 

membership in the sub-population centered on site 𝑖𝑖 is a function of observable variables, 𝑎𝑎, referred to 

throughout as correspondence attributes. Specifically, when considering the membership of an 

observation, 𝑗𝑗, in the population centered about site 𝑖𝑖, we are interested in the measure, 𝑔𝑔(𝑎𝑎𝑖𝑖,𝑎𝑎𝑗𝑗;𝛿𝛿), 

where 𝑔𝑔(. ) denotes a weighting function and 𝛿𝛿 is a correspondence parameter that we will estimate. 
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At least two statistical interpretations are available to motivate this procedure. First and foremost, to pair 

the above assumptions with the efficient GLS estimator, we can assume that the error variance for 

observation 𝑗𝑗 in the population centered on observation 𝑖𝑖 is consistently approximated by the function, 

𝑔𝑔(𝑎𝑎𝑖𝑖,𝑎𝑎𝑗𝑗). Second we can alternatively interpret the elements of 𝑔𝑔(𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗) as probability weights that 

adjust each observation’s weight to be consistent with a sampling frequency such that it is as if the 

observation were sampled from the sub-population centered on site 𝑖𝑖. This latter interpretation is 

analogous to using weighted least squares to correct a stratified sample. Sites that are closer to the center 

of the population centered at site 𝑖𝑖 are more likely to be sampled when sampling is focused on site 𝑖𝑖. 

Because we initially start with a sample centered only on the U.S., we use a measure of predicted forecast 

error variance fit as the criterion for selecting the function, g. Below we provide more details regarding 

the estimation procedure and motivation. 

To motivate the interpretation of our approach as a GLS estimator, we must specify the variance-

covariance matrix for the model’s population error term, 𝑢𝑢𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐵𝐵. A straightforward approach 

would be to assume a (𝑛𝑛 × 𝑛𝑛) diagonal error variance matrix,  

𝜴𝜴 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑢𝑢12,𝑢𝑢22, … ,𝑢𝑢𝑛𝑛2].  (8) 

Where 𝐸𝐸[(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐵𝐵)2] = 𝑢𝑢𝑖𝑖2 is assumed to be the known population variance for the error associated with 

observation 𝑖𝑖 from the regression of Y on X and diag[] indicates elements of a diagonal matrix. 

Knowledge of this matrix allows us to calculate the efficient GLS estimator of B,  

𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑿𝑿’ 𝜴𝜴−1 𝑿𝑿)−1 𝑿𝑿’ 𝜴𝜴−1𝑌𝑌. (9) 

Our approach diverges from the conventional GLS estimator because we assume that a potentially unique 

equation exists for each site 𝑖𝑖, according to equation (5). Thus we define for site 𝑖𝑖, the local variance for 

observation 𝑗𝑗, 𝑒𝑒𝑖𝑖𝑖𝑖2 , such that,  

𝐸𝐸[(𝑦𝑦𝑗𝑗 − 𝑥𝑥𝑗𝑗𝐵𝐵𝑗𝑗)2] = 𝑒𝑒𝑖𝑖𝑖𝑖2 .  (10) 

Accordingly, for each site 𝑖𝑖, we can construct a local variance matrix, 𝜴𝜴𝑖𝑖
−1, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑢𝑢𝑖𝑖12 ,𝑢𝑢𝑖𝑖22 , … ,𝑢𝑢𝑖𝑖𝑖𝑖2 � = 𝜴𝜴𝑖𝑖
−1 = 𝜴𝜴𝑖𝑖

−1/2𝜴𝜴𝑖𝑖
−1/2, (11) 

which under the assumed variance structure allows for the consistent GLS estimate of Bi, 

𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 = (𝑿𝑿’ 𝜴𝜴𝒊𝒊
−1𝑿𝑿)−1 𝑿𝑿’ 𝜴𝜴𝒊𝒊

−1𝑌𝑌. (12) 

The alternative interpretation of our estimator is based on the idea that an analyst can correct an 

observation that is overrepresented or underrepresented in the data with an inverse probability or 

frequency weight. Suppose that we know that an observation 𝑗𝑗 under a random sampling mechanism will 

be drawn from the sub-population for site 𝑖𝑖 with probability pij. Suppose we also know that drawing 
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observation 𝑗𝑗 under a random sampling mechanism from the population of all observations is pj. If we 

assume the sample of 𝑛𝑛 observations is drawn from the general population of wetland valuation studies, 

then we can adjust the frequency of site 𝑗𝑗 in the regression for site 𝑖𝑖 by multiplying the row 𝑗𝑗 of our data 

matrices Y and X by �pij pj⁄ � (Dumouchel and Duncan 1983). Accordingly, we treat the correction term 

the same as we would the variance, constructing the weight matrix, 𝜴𝜴𝑖𝑖
−1, 

𝜴𝜴𝑖𝑖
−1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��pi1

p1
�
2

, �pi2
p2
�
2

, … , �pin
pn
�
2
�. (13) 

The fundamental problem with all WLS estimators is the unobservable nature of efficient 

weights. Below we detail an algorithmic approach to estimating weights, allowing for a potentially unique 

regression for each observation in the sample, designed for forecasting the dependent variable and 

providing an understanding of the validity of the forecast based on the correspondence between the 

forecast or policy site and each observation in the sample. The first step in understanding the algorithm 

behind our method is an explanation of how we formalize the idea of correspondence as a function of site 

attributes, discussed next. 

 One of the main advantages of estimating a regression centered on each site in the sample is that 

by doing so we can allow for variation in parameters as a site’s correspondence attributes change relative 

to the sample. The typical regression models used in meta-analysis studies of ecosystem services do not 

estimate the wide variety of interaction effects that may exist among variables. The meta-analyses of 

wetland ecosystem services discussed above, with the exception of Ghermandi et al. (2010) do not discuss 

in much or any depth the possibility that these interaction effects exist. Because we have a complex 

sample, restricting the partial effects of regressors to be constant may lead to bias and inefficiency. The 

method we develop in this chapter is intended to improve on conventional approaches by allowing any 

observation to potentially have unique regression parameters, yet we are not required to estimate a 

potentially inefficient model filled with all possible interaction effects. 

 The process of locally calibrating weights involves the use of differences across cross-sectional 

observations. The econometric analysis of time series datasets frequently involves analysis of the 

difference in a variable over time; however, cross-sectional studies typically lack this feature because for 

cross-section data, no simple analog exists to the chronological ordering of time series variables. While 

we lack information indicating an empirical motivation for ordering observations, we can pay closer 

attention to the differences among observations in our dataset. The procedure we develop utilizes 

information about all 𝑛𝑛2 differences among 𝑛𝑛 observations. For each site, 𝑖𝑖, we can take the absolute 

difference between a correspondence attribute at site 𝑖𝑖 (ai) and site 𝑗𝑗 (aj) and arrange them in a column 

vector that will have 𝑛𝑛 elements, the 𝑖𝑖th element will be zero. In order to allow for multiple 

correspondence attributes we also index attributes by ℎ = 1, … ,𝐻𝐻. Thus for ℎ = 1 we have a1i and a1j. 
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Next, we construct the correspondence attribute difference matrix 𝒅𝒅𝑖𝑖. Equation (14) contains the matrix 

representation of 𝒅𝒅𝑖𝑖. Each column represents a paraticular correspondence attribute, and each row 

represents the difference between an attribute at observation 𝑖𝑖 and an attribute at another observation in 

the dataset. 

di=�

|a1𝑖𝑖 − a11| |a2𝑖𝑖 − a21|
|a1𝑖𝑖 − a12| |a2𝑖𝑖 − a22|

… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻1|
… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻2|

⋮ ⋮
|a1𝑖𝑖 − a1𝑛𝑛| |a2𝑖𝑖 − a2𝑛𝑛|

⋱ ⋮
… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻𝐻𝐻|

� 

 

(14) 

 A barrier arises when considering how H seemingly disparate attributes might be combined into a 

single measure of distance. The primary obstacle overcome by the algorithm below is the identification of 

correspondence coefficients that serve as normalizations on each correspondence attribute, which allows 

for a single measure of distance. Accordingly, we assume that there exists an (𝐻𝐻 × 1) correspondence 

coefficient vector, 𝜹𝜹, composed of H scalar elements, 𝛿𝛿1, … , 𝛿𝛿𝐻𝐻. This vector can be premultiplied by 

the (𝑛𝑛 × 𝐻𝐻) attribute difference matrix 𝒅𝒅𝑖𝑖 to generate the argument for the function, 𝑓𝑓(. ) that returns a 

vector of weights used in the WLS regression for site 𝑖𝑖. Here we use equation 𝑓𝑓(. ) that takes the 

correspondence attribute differences as its argument rather than the similar function, 𝑔𝑔(. ) mentioned 

above. Equation (15) demonstrates this procedure for a single site, 𝑖𝑖. The next section details the 

procedure for identifying the correspondence coefficient vector, 𝜹𝜹. 

𝑓𝑓(𝒅𝒅𝑖𝑖𝜹𝜹) = 
 

𝑓𝑓 � �

|a1𝑖𝑖 − a11| |a2𝑖𝑖 − a21|

|a1𝑖𝑖 − a12| |a2𝑖𝑖 − a22|
… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻1|
… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻2|

⋮ ⋮
|a1𝑖𝑖 − a1𝑛𝑛| |a2𝑖𝑖 − a2𝑛𝑛|

⋱ ⋮

… |a𝐻𝐻𝐻𝐻 − a𝐻𝐻𝐻𝐻|
� �

𝛿𝛿1

𝛿𝛿2
⋮

𝛿𝛿𝐻𝐻

� � 

 

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛀𝛀𝑖𝑖
−1) 

 

 

 

(15) 

Here, diag(.) is an operator that returns a column vector of diagonal elements of a square matrix. When 

diag(.) is applied to a column vector, the result is a sparse matrix with the elements of the column vector 

on the diagonal and off diagonal elements are zero. The bottom line of equation (15) contains the WLS 

regression weights that are the fundamental source of potential divergence of parameter estimates across 

observations. 
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Detailed Exposition of the Calibration Procedure 
The basic task of the calibration step requires estimation of the correspondence parameter vector, 

𝜹𝜹. In order to estimate empirical values for 𝜹𝜹, we employ the Matlab constrained linear optimization 

algorithm, fmincon. While a variety of objective functions are potentially available for optimization, we 

pursue a GLS approach. While true GLS is not feasible for data with unknown variances, iterative 

strategies such as Feasible-GLS are available. The approach detailed below is an alternative to Feasible-

GLS and requires no additional data. The variance of a random variable divided by its own standard 

deviation is equal to 1. Consequently, we choose as our objective function to minimize the sum of the 

squared distance between sample variances divided by their own estimated variance and 1. An analogous 

minimization procedure is to fit the sample variances to the parametric equation that predicts sample 

variances; this particular fit is what we detail below. The vector 𝑾𝑾𝑾𝑾𝑾𝑾(𝑖𝑖) containing 𝑊𝑊𝑊𝑊𝑊𝑊(𝑖𝑖)𝑗𝑗 for 𝑗𝑗 =

1, … ,𝑛𝑛𝑖𝑖 serves as the dependent variable in our main weighted regression equation, and we are interested 

in the case where 𝑗𝑗 = 𝑖𝑖. Equation (16) contains the basic weighted regression model of interest. 

𝛀𝛀𝑖𝑖
−½𝑊𝑊𝑊𝑊𝑊𝑊(𝑖𝑖)𝑖𝑖 = 𝛀𝛀𝑖𝑖

−½𝑋𝑋(𝑖𝑖)𝑖𝑖𝐵𝐵𝑖𝑖 + 𝛀𝛀𝑖𝑖
−½𝑒𝑒(𝑖𝑖)𝑖𝑖  

(16) 

The typical objective function is to choose the value for 𝐵𝐵𝑖𝑖 that minimizes the sum of weighted 

sample residuals. In our model, we have an earlier step, which requires us to estimate the weights to be 

used in the regression for each observation. For each iteration of the first step optimization algorithm, 

correspondence parameters conjectures are used to develop the weights used in the regression. 

Specifically, we utilize the negative exponential function during calibration to specify the correspondence 

weight function, 𝑓𝑓, for the diagonal elements of the weight matrix, 𝛀𝛀𝑖𝑖
−1. 

𝛀𝛀�𝑖𝑖 𝑗𝑗𝑗𝑗−1 = 𝑒𝑒−∑ |𝑎𝑎ℎ𝑖𝑖−𝑎𝑎ℎ𝑗𝑗|𝛿𝛿�ℎ𝐻𝐻
ℎ=1 = 𝑒𝑒−(|𝑎𝑎1𝑖𝑖−𝑎𝑎1𝑗𝑗|𝛿𝛿�1+⋯+|𝑎𝑎𝐻𝐻𝐻𝐻−𝑎𝑎𝐻𝐻𝐻𝐻|𝛿𝛿�𝐻𝐻) (17) 

In equation (17), which is equation 𝑔𝑔(. ) mentioned above, the jj subscript on 𝛀𝛀�𝑖𝑖−1 indicates the jth row 

and jth column of the inverse of an estimate of the diagonal correspondence weight matrix 𝛀𝛀 for site 𝑖𝑖. 

For the final model we estimate, |𝑎𝑎𝐻𝐻𝐻𝐻 − 𝑎𝑎𝐻𝐻𝐻𝐻| is actually estimated by using the Pythagorean Theorem 

with latitude and longitude to estimate geographic distance in 1000’s of kilometers. The conjectured 

values for the correspondence parameters are used to estimate a weighted regression and residuals. If a 

valid model is chosen and the correspondence parameters are correctly chosen, the sample variance of 

weighted residuals can be expected to equal 1 on average, alternatively, the sample average of the 

residuals is expected to have the same variance as the inverse of the weight applied to that observation. 

Sample errors or residuals are found by first using a weighted regression to identify a parameter vector, 
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𝐵𝐵�𝑖𝑖 = (𝑿𝑿(𝑖𝑖)′𝛀𝛀�𝑖𝑖−1𝑿𝑿(𝑖𝑖))−1𝑿𝑿(𝑖𝑖)′𝛀𝛀�𝑖𝑖−1𝑌𝑌(𝑖𝑖) (18) 

And using this parameter to produce an (𝑛𝑛𝑖𝑖 ×  1) unweighted vector of residuals, which when weighted 

will be close to 1 if the appropriate GLS-style weight has been applied in equation (4). 

𝑌𝑌(𝑖𝑖) − 𝑿𝑿(𝑖𝑖)𝐵𝐵�𝑖𝑖 =  𝒆𝒆�(𝑖𝑖) (19) 

The objective function for the calibration step can then be written as it appears in equation (20). We 

further weight the residual from the variance calculation by the weight matrix, 𝛀𝛀�𝑖𝑖−1, as there is less 

information in the sample error variance estimates for observations that are less precisely estimated by 

regression 𝑖𝑖. 

min
{𝜹𝜹∈ℝH:𝜹𝜹≥0}

�[(1𝑛𝑛𝑖𝑖 −
𝑛𝑛

𝑖𝑖=1

𝛀𝛀�𝑖𝑖−1𝒆𝒆�(𝑖𝑖)
2 )′𝛀𝛀�𝑖𝑖−1(1𝑛𝑛𝑖𝑖 − 𝛀𝛀�𝑖𝑖−1𝒆𝒆�(𝑖𝑖)

2 )] 
(20) 

Here 1𝑛𝑛𝑖𝑖 indicates a column vector of 1’s with 𝑛𝑛𝑖𝑖 elements, and the squared term applies to each row of 

the vector of residuals.  

 In order to simplify estimation and to reduce the influence of ad-hoc constraints in our model, we 

require that for all values of 𝑖𝑖 = 1, … , n, the data matrices 𝑿𝑿(𝑖𝑖) and 𝑌𝑌(𝑖𝑖) be identical in size, but with rows 

potentially weighted. Henceforth the (𝑖𝑖) subscript denotes a data matrix that has row 𝑖𝑖 removed, as we do 

not predict the centered observation’s forecast error during calibration to avoid overfitting the model. The 

restriction that no observation can be fully dropped from a regression also entails that 𝑛𝑛𝑖𝑖 = 𝑛𝑛 − 1 for all 𝑖𝑖 

and that elements of 𝐵𝐵�𝑖𝑖 are associated with the same correspondence attribute for all 𝑖𝑖. With the aid of 

substitution, equation (20) can be made more evident. Equation (21) contains an alternative version of the 

objective function to be minimized.  
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�[(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛀𝛀�𝑖𝑖) −
𝑛𝑛

𝑖𝑖=1

𝒆𝒆�(𝑖𝑖)
2 )′𝛀𝛀�𝑖𝑖−1(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛀𝛀�𝑖𝑖) − 𝒆𝒆�(𝑖𝑖)

2 )] 

= ���𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛀𝛀�𝑖𝑖) − 𝒆𝒆�(𝑖𝑖)
2 �′𝛀𝛀�𝑖𝑖−1�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝛀𝛀�𝑖𝑖) − 𝒆𝒆�(𝑖𝑖)

2 ��
𝑛𝑛

𝑖𝑖=1

 
(21) 

 

= ���𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝛀𝛀�𝒊𝒊) − (𝒀𝒀(𝒊𝒊) − 𝑿𝑿(𝒊𝒊)�𝑿𝑿(𝒊𝒊)
′ 𝛀𝛀�𝒊𝒊−𝟏𝟏𝑿𝑿(𝒊𝒊))−𝟏𝟏𝑿𝑿(𝒊𝒊)

′ 𝛀𝛀�𝒊𝒊−𝟏𝟏𝒀𝒀(𝒊𝒊)�
𝟐𝟐�

′
𝛀𝛀� 𝒊𝒊
−𝟏𝟏

�𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝛀𝛀�𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏

− (𝒀𝒀(𝒊𝒊) − 𝑿𝑿(𝒊𝒊)(𝑿𝑿(𝒊𝒊)
′ 𝛀𝛀�𝒊𝒊−𝟏𝟏𝑿𝑿(𝒊𝒊))−𝟏𝟏𝑿𝑿(𝒊𝒊)

′ 𝛀𝛀�𝒊𝒊−𝟏𝟏𝒀𝒀(𝒊𝒊))𝟐𝟐�� 

Here 𝛀𝛀�𝑖𝑖 is a function of the correspondence parameter vector, 𝜹𝜹. The highly non-linear nature in which 

the parameters enter the objective function requires numerical optimization. We employ a set of linear 

constraints through the fmincon Matlab routine for the correspondence parameters, as expressed in 

equation (22). In equation (22), 𝑰𝑰𝐻𝐻 indicates an identity matrix with H diagonal elements, i.e., one for 

each correspondence parameter. 

[𝑨𝑨𝑚𝑚𝑚𝑚𝑚𝑚][𝛿𝛿] ≤ [𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚] 

[𝑨𝑨𝑚𝑚𝑚𝑚𝑚𝑚][𝛿𝛿] ≤ [𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚] 

𝑨𝑨𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑰𝑰𝐻𝐻 , 𝑨𝑨𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑰𝑰𝐻𝐻 

 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = �
0
0
⋮
0

� , 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 = �
100
100
⋮

100

� 

 

(22) 

Due to the linear restrictions defined in (22), parameter estimates will be neither non-negative nor 

large. The former restriction is implemented based on the theoretical notion that an increase in the 

distance between the correspondence attributes is expected to not provide additional information about 

the centered observation. The latter restriction was implemented to avoid searching for extremely large 

parameter values, which was useful for ensuring convergence. When we weight the data by multiplying 

correspondence parameters by correspondence attribute differences in the GLS equation, the maximum 

weight that can be obtained is 1, which for each regression is applied to the centered observation. We 

typically start the parameters in the optimization routine at zero, which results in all 𝑛𝑛 models becoming 

conventional, evenly weighted OLS regressions. As a parameter value increases, the impact of an 

attribute distance on lowering an observation’s weight also increases, as indicated in equation (23). 
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𝜕𝜕 �𝛀𝛀ijj�

𝜕𝜕(𝛿𝛿ℎ) ≤ 0 

𝜕𝜕 �𝛀𝛀ijj�

𝜕𝜕 �𝒅𝒅𝑖𝑖𝑗𝑗ℎ�
≤ 0 

(23) 

Where 𝒅𝒅𝑖𝑖𝑗𝑗ℎ denotes the jth row and hth column of the correspondence attribute distance matrix 𝒅𝒅𝑖𝑖, found 

in equation (15). The equality in the first inequality of equation (23) holds when 𝑖𝑖 = 𝑗𝑗 or when 𝑎𝑎𝑖𝑖ℎ = 𝑎𝑎𝑗𝑗ℎ; 

this partial derivative implies that as a correspondence parameter increases in magnitude for a given 

attribute distance between observations 𝑖𝑖 and 𝑗𝑗, the membership of 𝑗𝑗 in the population centered on 𝑖𝑖 is 

reduced or that the variance of observation 𝑗𝑗 in the neighborhood of observation 𝑖𝑖 increases. Similarly, the 

second inequality in equation (23) is an equality when 𝛿𝛿ℎ = 0 or when 𝑖𝑖 = 𝑗𝑗. 

 

Post Calibration 
The entire optimization procedure developed in the preceding section was used entirely for 

identifying the correspondence parameters, which apply to all 𝑛𝑛 observations and all of their associated 

correspondence distances between the 𝑛𝑛 − 1 remaining observations. From this point the next step is 

estimating regression parameters conditional on the correspondence parameters identified during the 

calibration step. While the centered regression parameters for all observations are implicitly estimated 

during the calibration step, a review of how to obtain these parameters for a given vector of 

correspondence attributes is useful for understanding how parameters are generated for out-of-sample 

forecasts. 

For site 𝑖𝑖, the correspondence attribute distance matrix in equation (15) must be computed, next 

using the functional form specified in equation (17), where 𝑓𝑓(. ) = e−(.), correspondence attribute weights 

can be computed. Next the regression parameters for the centered site 𝑖𝑖 can be computed by using OLS on 

the weighted data or equivalently by using WLS on the unweighted data but with the estimated diagonal 

correspondence weight matrix. 

The process for generating a regression for an out-of-sample observation is precisely the same as 

above, with the exception that that correspondence attribute distance matrix, 𝒅𝒅𝑖𝑖, (and its functional 

dependent, 𝛀𝛀�𝑖𝑖) is replaced by it’s out-of-sample counterpart, 𝒅𝒅~𝑖𝑖, where  ~𝑖𝑖 indicates that the centered 

observation is not in the calibration dataset. 
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𝒅𝒅~𝑖𝑖 =  �

|a1~𝑖𝑖 − a11| |a2~𝑖𝑖 − a21|

|a1~𝑖𝑖 − a12| |a2~𝑖𝑖 − a22|
… |a𝐻𝐻~𝑖𝑖 − a𝐻𝐻1|
… |a𝐻𝐻~𝑖𝑖 − a𝐻𝐻2|

⋮ ⋮
|a1~𝑖𝑖 − a1𝑛𝑛| |a2~𝑖𝑖 − a2𝑛𝑛|

⋱ ⋮
… |a𝐻𝐻~𝑖𝑖 − a𝐻𝐻𝐻𝐻|

� 

 

(24) 

The primary difference between 𝒅𝒅𝑖𝑖 and 𝒅𝒅~𝑖𝑖 is that the latter does not necessarily have zeros in all 

columns of the ith row. Analogously, 𝛀𝛀~𝑖𝑖
−1 differs from 𝛀𝛀𝑖𝑖

−1 in that the ith diagonal element is not 

necessarily equal to 1. The reason for this deviation is straightforward: during calibration the ith row of 𝒅𝒅𝑖𝑖 

is always the distance between observation 𝑖𝑖 and itself, which is identically zero; post-calibration the 

centered observation is not included in the same manner. Because the attribute weight function is the 

negative exponential function, the ith diagonal element of 𝛀𝛀�𝑖𝑖 is 𝑒𝑒−(0∗𝛿𝛿�1+0∗𝛿𝛿�2+⋯+0∗𝛿𝛿�𝐻𝐻) = e−0 = 1. Once 

𝛀𝛀�~𝑖𝑖 has been computed, the forecast for the out of sample observation is computed according to the 

expression in equation (25).  

𝑌𝑌�𝑖𝑖 = 𝑋𝑋𝑖𝑖𝐵𝐵�𝑖𝑖 

𝑌𝑌�~𝑖𝑖 = 𝑋𝑋~𝑖𝑖(𝑿𝑿′𝛀𝛀�~𝑖𝑖
−1𝑿𝑿)−1𝑿𝑿′𝛀𝛀�~𝑖𝑖

−1𝑌𝑌 
(25) 

Notably, in equation (25) full data matrices are used to calculate the final regression parameter, 𝐵𝐵�𝑖𝑖. 

  



47 

  

Figures and Tables 

 
*Woodward and Wui 2001 values correspond to left side axis labels and Brander et al. (2006) and Ghermandi et al. 

(2010) values correspond to right side axis labels, all values 2010 US dollars per average acre per year 

Figure 1: Point Estimates of Annual WTP per Average Acre by NWR Wetlands and Service 
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*Woodward and Wui 2001 values correspond to left side axis labels and Brander et al. (2006) and Ghermandi et al. 

(2010) values correspond to right side axis labels, all values 2010 US dollars for all refuge wetlands per year 

Figure 2: Arrowwood and Sevilleta & Bosque NWR Point Estimates of WTP for Wetland Ecosystem 

Services, Aggregate Annual Values 
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*Woodward and Wui 2001 values correspond to left side axis labels and Brander et al. (2006) and Ghermandi et al. 

(2010) values correspond to right side axis labels, all values 2010 US dollars for all refuge wetlands per year 

 

Figure 3: Blackwater and Okefenokee NWR Point Estimates of WTP for Wetland Ecosystem Services, 

Aggregate Annual Median Values 
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Figure 4: Plots of Correspondence Distance for 4 Case Study NWRs for stated preference water quality valuation. 
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Figure 5: MA Forecast Comparison for Flood Control, Annual Median Value per Acre 
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Figure 6: MA Forecast Comparison for Water Quality, Annual Value per Acre 
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Table 1: Variables Used in Three Published Wetland Ecosystem Services Meta-analyses. 

 Woodward and Wui 
(2001) 

Model C 

Brander et al. (2006) Ghermandi et al. (2010) 
Model B 

La
nd

sc
ap

e 

Log (acres) Log (hectares) 
Absolute value(latitude) 

Latitude2 

% of wetland identified as:  
Mangrove 

Unvegetated sediment 
Salt-brackish marsh 

Fresh marsh 
Woodland 

Log (hectares) 
% of wetland identified as:  

Estuarine 
Marine 

Riverine 
Palustrine 
Lacustrine 

Human made dummy 
Wetland area in 50km radius 

G
eo

g.
 &

 so
ci

o-
ec

on
om

ic
 Coastal indicator Log (GDP per capita) 

Log (population density) 
Study location indicators: 

South America 
Europe 

Asia 
Africa 

Australasia 
Urban 

Ramsar proportion 

Medium-low human pressure 
Medium-high human 

pressure 
High human pressure 

GDP per capita 
Population in 50km radius 

M
et

ho
do

lo
gi

ca
l 

Year of publication 
Valuation method 

indicators: 
Hedonic 

Travel cost 
Replacement cost 
Net factor income 
Producer surplus 

Marginal 
Valuation method indicators: 

Hedonic 
Travel cost 

Replacement cost 
Net factor income 

Contingent valuation 
Production function 

Market prices 
Opportunity cost 

Marginal 
Year of publication 

Se
rv

ic
e 

va
lu

ed
 

Flood control 
Groundwater recharge 

Water quality 
Commercial fishing 
Recreational fishing 

Amenity 
Erosion reduction 

Bird watching 
Non-use appreciation of 

species 

Flood control 
Water supply 
Water quality 

Commercial fishing and 
hunting 

Recreational fishing 
Recreational hunting 

Amenity 
Fuel wood 

Biodiversity 
Material 

Flood control 
Surface/groundwater supply 

Water quality 
Comm. fishing and hunting 

Recreational fishing 
Recreational hunting 

Amenity and aesthetics 
Fuel wood 

Natural habitat, biodiversity 
Harvesting of natural 

materials 
Nonconsumptive recreation 
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St
ud

y 
qu

al
ity

 Published results 
Poor data quality 

Poor theory 
Poor econometrics 

  

Table 2: Variable Values for Arrowwood NWR Flood Control MABT with Each Published Meta-

analysis. 

Arrowwood NWR - Flood Control 
 Woodward and Wui (2001) 

Model C 
Brander et al. (2006) Ghermandi et al. (2010) 

Model B 
 Variable Value Variable Value Variable Value 
 
 Intercept = 1 Intercept = 1 Intercept = 1 

La
nd

sc
ap

e Log acres = 8.43 Log hectares = 7.53 Log hectares = 7.53 

- - Abs. val. Lat. = 47.24 - - 

- - Latitude2 = 2231 - - 

W
et

la
nd

 
ty

pe
 (r

at
io

s)
 

 - - 
Fresh marsh 
Woodland 
All others 

= 0.998 
= 0.002 

= 0 

Palustrine 
Lacustrine 
Riverine 

All others 

= 0.45 
= 0.55 
= 0.003 

= 0 

So
ci

o-
ec

on
om

ic
 

- - Log (GDP per 
capita) = 10.41 Log (GDP per 

capita) = 10.59 

- - Log (Pop. Den.) = -5.89 Log(Pop. in 50km) = 9.99 

- - Ramsar 
Proportion = 0 Human pressure 

indicators = 0 

G
eo

g.
 

in
di

ca
to

rs
 

Coastal = 0 All  = 0 - - 

M
et

ho
d-

ol
og

ic
al

 - - Marginal = 0 Marginal = 0 

Year of 
publication = 52 - - Year of publication = 36 

V
al

ua
tio

n 
m

et
ho

d 
in

di
ca

to
rs

 

All = 0 CV 
All others 

= 1  
=0  - - 

Se
rv

ic
es

 
va

lu
ed

 
in

di
ca

to
rs

 

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  
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St
ud

y 
qu

al
ity

 
in

di
ca

to
rs

 
All = 0 - - - - 
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Table 3: Variable Values for Blackwater NWR Flood Control MABT with Each Published Meta-analysis. 

Blackwater NWR - Flood Control 
 Woodward and Wui 

(2001) Model C 
Brander et al. (2006) Ghermandi et al. (2010) 

Model B 
 Variable Value Variable Value Variable Value 
 
 Intercept = 1 Intercept = 1 Intercept = 1 

La
nd

sc
ap

e Log acres = 10.11 Log hectares = 9.20 Log hectares = 9.20 

- - Abs. val. Lat. = 38.4 - - 

- - Latitude2 = 1474.6 - - 

W
et

la
nd

 ty
pe

 
(r

at
io

s)
 

 - - 

Fresh marsh 
Woodland 

Salt-brackish 
marsh 

All others 

= 0.01 
= 0.40 
= 0.59 

 
= 0 

Estuarine 
Palustrine 
Lacustrine 
Riverine 

= 0.23 
= 0.27 
= 0.003 
= .0006 

So
ci

o-
ec

on
om

ic
 

- - Log (GDP per 
capita) = 10.55 Log (GDP per 

capita) = 10.73 

- - Log (Pop. Den.) = -3.47 Log(Pop. in 50km) = 12.65 

- - Ramsar 
Proportion = 1 Human pressure 

indicators = 0 

G
eo

g.
 

in
di

ca
to

rs
 

Coastal = 0 All  = 0 - - 

M
et

ho
d-

ol
og

ic
al

 - - Marginal = 0 Marginal = 0 

Year of 
publication = 52 - - Year of publication = 36 

V
al

ua
tio

n 
m

et
ho

d 
in

di
ca

to
rs

 

All = 0 CV 
All others 

= 1  
=0  - - 

Se
rv

ic
es

 
va

lu
ed

 
in

di
ca

to
rs

 

Flood 
control 

All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

St
ud

y 
qu

al
ity

 
in

di
ca

to
rs

 

All = 0 - - - - 

  



 

57 

 

Table 4: Variable Values for Okefenokee NWR Flood Control MABT with Each Published Meta-

analysis. 

Okefenokee NWR - Flood Control 
 Woodward and Wui (2001) 

Model C 
Brander et al. (2006) Ghermandi et al. (2010) 

Model B 
 Variable Value Variable Value Variable Value 
 
 Intercept = 1 Intercept = 1 Intercept = 1 

La
nd

sc
ap

e Log acres = 12.84 Log hectares = 11.9 Log hectares = 11.9 

- - Abs. val. Lat. = 30.84 - - 

- - Latitude2 = 950.92 - - 

W
et

la
nd

 
ty

pe
 (r

at
io

s)
 

 - - 
Fresh marsh 
Woodland 
All others 

= 0.12 
= 0.88 

= 0 

Palustrine 
Lacustrine 
Riverine 

All others 

= 0.976 
= 0.024 
= .0004 

= 0 

So
ci

o-
ec

on
om

ic
 

- - Log (GDP per 
capita) = 10.27 Log (GDP per 

capita) = 10.45 

- - Log (Pop. Den.) = -5.60 Log(Pop. in 50km) = 10.95 

- - Ramsar 
Proportion = 1 Human pressure 

indicators = 0 

G
eo

g.
 

in
di

ca
to

rs
 

Coastal = 0 All  = 0 - - 

M
et

ho
d-

ol
og

ic
al

 - - Marginal = 0 Marginal = 0 

Year of 
publication = 52 - - Year of publication = 36 

V
al

ua
tio

n 
m

et
ho

d 
in

di
ca

to
rs

 

All = 0 CV 
All others 

= 1  
=0  - - 

Se
rv

ic
es

 
va

lu
ed

 
in

di
ca

to
rs

 

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

St
ud

y 
qu

al
ity

 
in

di
ca

to
rs

 

All = 0 - - - - 
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Table 5: Variable Values for Sevilleta and Bosque del Apache NWRs Flood Control MABT with Each 

Published Meta-analysis. 

Sevilleta & Bosque del Apache NWRs - Flood Control 
 Woodward and Wui (2001) 

Model C 
Brander et al. (2006) Ghermandi et al. (2010) 

Model B 
 Variable Value Variable Value Variable Value 
 
 Intercept = 1 Intercept = 1 Intercept = 1 

La
nd

sc
ap

e Log acres = 8.54 Log hectares = 7.63 Log hectares = 7.63 

- - Abs. val. Lat. = 34.05 - - 

- - Latitude2 = 1159.6 - - 

W
et

la
nd

 
ty

pe
 (r

at
io

s)
 

 - - 
Fresh marsh 
Woodland 
All others 

= 0.79 
= 0.21 

= 0 

Palustrine 
Lacustrine 
Riverine 

All others 

= 0.575 
= 0.062 
= 0.363 

= 0 

So
ci

o-
ec

on
om

ic
 

- - Log (GDP per 
capita) = 10.24 Log (GDP per 

capita) = 10.42 

- - Log (Pop. Den.) = -5.45 Log(Pop. in 50km) = 10.24 

- - Ramsar 
Proportion = 0 Human pressure 

indicators = 0 

G
eo

g.
 

in
di

ca
to

rs
 

Coastal = 0 All  = 0 - - 

M
et

ho
d-

ol
og

ic
al

 - - Marginal = 0 Marginal = 0 

Year of 
publication = 52 - - Year of publication = 36 

V
al

ua
tio

n 
m

et
ho

d 
in

di
ca

to
rs

 

All = 0 CV 
All others 

= 1  
=0  - - 

Se
rv

ic
es

 
va

lu
ed

 
in

di
ca

to
rs

 

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

Flood control 
All others 

= 1  
= 0  

St
ud

y 
qu

al
ity

 
in

di
ca

to
rs

 

All = 0 - - - - 
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Table 6 MA Data Summary 

Variable Mean Variance 
n=82   

Dependent   
Value/1000ac/pop† 24.29416996 13584.72966 

   
Study/Site   

Acres valued† 154934.3668 2.29501E+11 
Population† 3531250.744 5.66455E+13 

   
Methodological (1/0)   
Valuation Approach   
Revealed preference 0.18293 0.15131 

Stated preference 0.73171 0.19874 
Joint valuation (1,2,3) 1.1098 0.17299 

Service Valued   
Water quality 0.12195 0.1084 

Flood protection 0.060976 0.057964 
Total value 0.5 0.25309 

Recreation, general 0.12195 0.1084 
Habitat 0.085366 0.079042 

Recreation, fishing 0.02439 0.024089 
Recreation, hunting 0.15854 0.13505 

Interaction_use 0.073171 0.068654 
Interaction_passive 0.20732 0.16637 

   
Context   

GDP(state)† 31205.5105 37717998.95 
Coastal (1/0) 0.12195 0.1084 

GDP*local_pop† 25825016098 2.01947E+21 
Local_pop:local_wet† 47.06399473 0.057448 

† mean and variance in levels, but variable used in log form 
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Table 7: Arrowwood NWR MABT Monte Carlo Quantiles 

 Arrowwood NWR Predicted 
per-acre value, 

eE[Xβ] 

Simulated distribution of expected per-acre value 

5th percentile 50th percentile 95th percentile 

Fl
oo

d 
C

on
tro

l 

Woodward and Wui  1532.83 4.56 1528.94 513829.36 

Brander et al.  2.65 0.0000005 2.61 14011026.33 

Ghermandi et al. 17.48 0.19 17.56 1634.44 
Precision weighted 

average 17.49       

Unweighted average 517.66       

W
at

er
 Q

ua
lit

y 

Woodward and Wui  1625.99 4.89 1621.53 544059.38 

Brander et al.  4.33 0.0000008 4.28 23459222.04 

Ghermandi et al. 23.48 0.25 23.58 2176.20 
Precision weighted 

average 23.49       

Unweighted average 551.27       
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Table 8: Blackwater NWR MABT Monte Carlo Quantiles 

 
 

Blackwater NWR 
 

Predicted 
per-acre value, 

eE[Xβ] 

Simulated distribution of expected per-acre value 

5th percentile 50th percentile 95th percentile 

Fl
oo

d 
C

on
tro

l 

Woodward and Wui  844.86 1.90 843.77 370704.19 

Brander et al.  13.91 0.0000057 13.75 34432273.25 

Ghermandi et al. 46.16 0.42 46.43 5155.70 
Precision weighted 

average 46.17       

Unweighted average 301.64       

W
at

er
 Q

ua
lit

y 

Woodward and Wui  896.22 2.05 893.67 392006.84 

Brander et al.  22.70 0.0000090 22.38 58489215.98 

Ghermandi et al. 62.00 0.56 62.36 6918.91 
Precision weighted 

average 62.03       

Unweighted average 326.97       
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Table 9: Okefenokee NWR MABT Monte Carlo Quantiles 

 Okefenokee NWR Predicted 
per-acre value, 

eE[Xβ] 

Simulated distribution of expected per-acre value 

5th percentile 50th percentile 95th percentile 

Fl
oo

d 
C

on
tro

l 

Woodward and Wui  435.00 0.89 433.94 209566.46 

Brander et al.  4.96 0.0000037 4.91 6702403.62 

Ghermandi et al. 5.27 0.05 5.29 550.86 
Precision weighted 

average 5.27       

Unweighted average 148.41       

W
at

er
 Q

ua
lit

y 

Woodward and Wui  461.42 0.97 460.82 221840.58 

Brander et al.  8.09 0.0000058 8.01 11151922.26 

Ghermandi et al. 7.07 0.07 7.11 741.71 
Precision weighted 

average 7.07       

Unweighted average 158.86       
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Table 10: Sevilleta & Bosque del Apache NWRs MABT Monte Carlo Quantiles 

 Sevilleta & Bosque 
del Apache NWRs 

Predicted 
per-acre value, 

eE[Xβ] 

Simulated distribution of expected per-acre value 

5th percentile 50th percentile 95th percentile 

Fl
oo

d 
C

on
tro

l 

Woodward and Wui  1487.34 4.39 1483.62 501931.60 

Brander et al.  6.07 0.0000041 6.00 8991305.62 

Ghermandi et al. 18.44 0.20 18.51 1666.25 
Precision weighted 

average 18.44       

Unweighted average 503.95       

W
at

er
 Q

ua
lit

y 

Woodward and Wui  1577.75 4.71 1572.97 531797.40 

Brander et al.  9.91 0.0000065 9.77 15247340.97 

Ghermandi et al. 24.76 0.28 24.89 2227.39 
Precision weighted 

average 24.76       

Unweighted average 537.47       
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Table 11: Flood Control Monte Carlo Mean and Variance 

Flood 
control 

dollars per acre per year 

Refuge Mean, E[exp(Xβ)] Var(exp(Xβ)) 

Arrowwood 
NWR 

Woodward 1.20E+05 Woodward 1.67E+07 
Brander 1.04E+11 Brander 3.15E+21 

Ghermandi 258.391783 Ghermandi 21.91413 
    

Blackwater 
NWR 

Woodward 1.00E+05 Woodward 2.15E+07 
Brander 1.32E+11 Brander 8.83E+21 

Ghermandi 848.180639 Ghermandi 290.9219 
    

Okefenokee 
NWR 

Woodward 6.16E+04 Woodward 1.17E+07 
Brander 4.73E+09 Brander 1.93E+18 

Ghermandi 89.7147602 Ghermandi 3.29932 
    

Sevilleta & 
Bosque del 

Apache 
NWRs 

Woodward 1.18E+05 Woodward 1.65E+07 
Brander 7.30E+09 Brander 3.58E+18 

Ghermandi 261.248864 Ghermandi 18.64035 
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Table 12: Water Quality Monte Carlo Mean and Variance 

Water 
quality 

dollars per acre per year 

Refuge Mean, E[exp(Xβ)]  Var(exp(Xβ))   
Arrowwood 

NWR 
Woodward 1.31E+05 Woodward 2.65E+07 

Brander 2.40E+11 Brander 1.59E+22 
Ghermandi 343.298878 Ghermandi 34.22148 

        
Blackwater 

NWR 
Woodward 1.05E+05 Woodward 1.81E+07 

Brander 2.91E+11 Brander 4.25E+22 
Ghermandi 1127.29233 Ghermandi 513.977242 

        
Okefenokee 

NWR 
  

Woodward 6.64E+04 Woodward 1.54E+07 
Brander 9.37E+09 Brander 8.79E+18 

Ghermandi 119.018048 Ghermandi 4.797655909   
    

Sevilleta & 
Bosque del 

Apache 
NWRs 

 

Woodward 1.28E+05 Woodward 2.61E+07 
Brander 1.54E+10 Brander 2.72E+19 

Ghermandi 348.017512 Ghermandi 31.16060726 
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Table 13: Estimated WTP per Average Acre per Year and for Refuge Wetlands per Year 

` 
median value per 

average acre NWI wetland acres median value per 
refuge 

W
oodw

ard and W
ui 2001 

Arrowwood NWR Flood control $1,533 4,595 $7,044,000 
Water quality $1,626 4,595 $7,472,000 

Blackwater NWR Flood control $845 24,502 $20,700,000 
Water quality $896 24,502 $21,959,000 

Okefenokee NWR Flood control $435 375,778 $163,462,000 
Water quality $461 375,778 $173,393,000 

Sevilleta & Bosque 
NWRs 

Flood control $1,487 5,106 $7,594,000 
Water quality $1,578 5,106 $8,056,000 

B
rander et al. 2006 

Arrowwood NWR Flood control $2.65 4,595 $12,200 
Water quality $4.33 4,595 $19,900 

Blackwater NWR Flood control $13.91 24,502 $341,000 
Water quality $22.70 24,502 $556,000 

Okefenokee NWR Flood control $4.96 375,778 $1,863,000 
Water quality $8.09 375,778 $3,042,000 

Sevilleta & Bosque 
NWRs 

Flood control $6.07 5,106 $31,000 
Water quality $9.91 5,106 $50,600 

G
herm

andi et al. 2010  

Arrowwood NWR Flood control $17.48 4,595 $80,300 
Water quality $23.48 4,595 $107,900 

Blackwater NWR Flood control $46.16 24,502 $1,131,000 
Water quality $62.00 24,502 $1,519,000 

Okefenokee NWR Flood control $5.27 375,778 $1,979,000 
Water quality $7.07 375,778 $2,659,000 

Sevilleta & Bosque 
NWRs 

Flood control $18.44 5,106 $94,100 
Water quality $24.76 5,106 $126,400 
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Table 14: OLS MA Regression Model Results 
Variable OLS Coefficient standard error T-statistic P-value 
Intercept 24.147  19.863  1.216 0.23 

Study/Site 
Acres valued† -0.583* 0.306* -1.904 0.06 
Population† -0.41*** 0.148*** -2.761 0.01 

Methodological (1/0) 
Valuation Approach 

Revealed preference -4.401* 2.319* -1.898 0.06 
Stated preference 0.864  1.305  0.662 0.51 

Joint valuation (1,2,3) -5.977*** 1.435*** -4.164 0 
Service Valued 

Water quality 5.969** 2.864** 2.084 0.04 
Flood protection 5.438* 2.861* 1.9 0.06 

Total value 6.534** 2.836** 2.304 0.02 
Recreation, general 10.667*** 2.627*** 4.061 0 

Habitat 6.564** 3.093** 2.122 0.04 
Recreation, fishing 5.287** 2.178** 2.428 0.02 
Recreation, hunting 5.011* 2.628* 1.907 0.06 

Interaction_use -1.211** 0.562** -2.153 0.04 
Interaction_passive -0.705  0.56  -1.258 0.21 

      
Context 

GDP(state)† -2.681  2.076  -1.291 0.2 
Coastal (1/0) 1.214** 0.566** 2.144 0.04 

GDP*local_pop† 0.038  0.029  1.309 0.2 
Local_pop:local_wet† 2.394** 1.124** 2.13 0.04 

R2 = 0.81 
Significance levels: ***<0.01, **<0.05, *<0.1 
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Table 15: PLWLS Estimated Correspondence Parameters 

Correspondence Attribute Estimated Correspondence 
Parameter 

Flood control 1.365992 
GDP 1.276706 

Water quality 0.760224 
Coastal 0.218638 

Distance 103km 0.194442 
Population 0.133756 

Acres 0 
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Table 16: Arrowwood NWR Stated Preference Water Quality, Ten Highest Correspondence Observations 

Arrowwood NWR Stated 
Pref. Water quality $42,500 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 917 936,090 2.7697 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 917 936,090 2.7697 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 917 936,090 2.7697 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water 
quality, use 

value 
$27,000 1162 1,275,514 1.8876 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
bequest value $27,000 1162 1,275,514 1.8876 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
exist. value $27,000 1162 1,275,514 1.8876 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
option value $27,000 1162 1,275,514 1.8876 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
total value $27,000 1162 1,275,514 1.8876 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 645 630,561 1.3689 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 721 630,561 1.3488 
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Table 17: Blackwater NWR Stated Preference Water Quality, Ten Highest Correspondence Observations 

Blackwater NWR Stated 
Pref. Water quality $44,000 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1180 936,090 2.8578 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1180 936,090 2.8578 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1180 936,090 2.8578 

Beran 1995 Stated 
pref. Total value $43,300 695 1,258,753 1.9196 

Petrolia & Kim 
2011 

Stated 
pref. Total value $36,800 1702 2,146,273 1.7119 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.6123 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.6123 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.6123 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.6123 

Johnston et al. 2002 Stated 
pref. Total value $38,800 433 73,423 1.4913 
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Table 18: Okefenokee NWR Stated Preference Water Quality, Ten Highest Correspondence Observations 

Okefenokee NWR Stated 
Pref. Water quality $36,400 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1632 936,090 2.8787 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1632 936,090 2.8787 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 1632 936,090 2.8787 

MacDonald, 
Bergstrom, & 
Houston 1998 

Stated 
pref. Habitat $29,700 319 2,793,672 1.5584 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water 
quality, use 

value 
$27,000 3298 1,275,514 1.4882 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
bequest value $27,000 3298 1,275,514 1.4882 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
exist. value $27,000 3298 1,275,514 1.4882 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
option value $27,000 3298 1,275,514 1.4882 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
total value $27,000 3298 1,275,514 1.4882 

Beran 1995 Stated 
pref. Total value $43,300 326 1,258,753 1.4581 
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Table 19: Sevilleta & Bosque del Apache NWRs Stated Preference Water Quality, Ten Highest 

Correspondence Observations 

Sevilleta & Bosque 
del Apache NWRs 

Stated 
Pref. Water quality $32,900 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 2040 936,090 1.936 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 2040 936,090 1.936 

Bishop et al. 2000 Stated 
pref. Water quality $36,200 2040 936,090 1.936 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water 
quality, use 

value 
$27,000 1662 1,275,514 1.8982 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
bequest value $27,000 1662 1,275,514 1.8982 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
exist. value $27,000 1662 1,275,514 1.8982 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
option value $27,000 1662 1,275,514 1.8982 

Sutherland & 
Walsh 1985 

Stated 
pref. 

Water quality 
total value $27,000 1662 1,275,514 1.8982 

Sanders, Walsh, & 
McKean 1991 

Revealed 
pref. Recreation $29,600 566 2,889,964 1.3836 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total use 
value $29,600 566 2,889,964 1.3836 
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Table 20: Arrowwood NWR Stated Preference Flood control, Ten Highest Correspondence Observations 

Arrowwood NWR Stated 
Pref. Flood control $42,500 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Leitch and Hoyde 
1996 

Damage 
avoidance Flood control $26,700 98 638,800 3.8413 

Leitch and Hoyde 
1996 

Damage 
avoidance 

Flood control 
& habitat $26,700 145 638,800 3.8062 

Roberts and Leitch 
1997 

Damage 
avoidance 

Flood control 
& habitat $31,300 233 106,406 3.6005 

Roberts and Leitch 
1997 

Damage 
avoidance Flood control $31,300 235 106,406 3.5993 

Costanza, Farber, & 
Maxwell 1989 

Damage 
avoidance Flood control $23,800 2116 94,393 1.3931 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 645 630,561 1.371 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 721 630,561 1.3509 

Poor 1999 Stated 
pref. Total value $33,200 739 1,541,253 1.2821 

Beran 1995 Stated 
pref. Total value $43,300 2205 1,258,753 1.2542 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total use 
value $29,600 1034 2,889,964 1.1417 
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Table 21: Blackwater NWR Stated Preference Flood control, Ten Highest Correspondence Observations 

Blackwater NWR Stated 
Pref. Flood control $44,000 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Leitch and Hoyde 
1996 

Damage 
avoidance Flood control $26,700 1991 638,800 2.9085 

Roberts and Leitch 
1997 

Damage 
avoidance 

Flood control 
& habitat $31,300 1867 106,406 2.8671 

Roberts and Leitch 
1997 

Damage 
avoidance Flood control $31,300 1872 106,406 2.864 

Leitch and Hoyde 
1996 

Damage 
avoidance 

Flood control 
& habitat $26,700 2191 638,800 2.7972 

Costanza, Farber, & 
Maxwell 1989 

Damage 
avoidance Flood control $23,800 1689 94,393 2.5647 

Beran 1995 Stated 
pref. Total value $43,300 695 1,258,753 1.937 

Petrolia & Kim 
2011 

Stated 
pref. Total value $36,800 1702 2,146,273 1.7274 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.627 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.627 

Bauer, Cyr, & 
Swallow 2004 

Stated 
pref. Total value $34,800 512 408,000 1.627 
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Table 22: Okefenokee NWR Stated Preference Flood control, Ten Highest Correspondence Observations 

Okefenokee NWR Stated 
Pref. Flood control $36,400 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Leitch and Hoyde 
1996 

Damage 
avoidance Flood control $26,700 2217 638,800 3.0917 

Roberts and Leitch 
1997 

Damage 
avoidance Flood control $31,300 2079 106,406 3.0558 

Roberts and Leitch 
1997 

Damage 
avoidance 

Flood control 
& habitat $31,300 2082 106,406 3.0541 

Leitch and Hoyde 
1996 

Damage 
avoidance 

Flood control 
& habitat $26,700 2453 638,800 2.953 

Costanza, Farber, & 
Maxwell 1989 

Damage 
avoidance Flood control $23,800 839 94,393 2.1704 

MacDonald, 
Bergstrom, & 
Houston 1998 

Stated 
pref. Habitat $29,700 319 2,793,672 1.5883 

Beran 1995 Stated 
pref. Total value $43,300 326 1,258,753 1.4861 

Petrolia & Kim 
2011 

Stated 
pref. Total value $36,800 870 2,146,273 1.422 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 1596 630,561 1.3848 

Phaneuf & Herriges 
1999 

Revealed 
pref. Recreation $32,300 1674 630,561 1.3639 
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Table 23: Sevilleta & Bosque del Apache NWRs Stated Preference Flood control, Ten Highest 

Correspondence Observations 

Sevilleta & Bosque 
del Apache NWRs 

Stated 
Pref. Flood control $32,900 0 km 3,531,251 N/A 

Author-date Method Service 
valued 

GDP per 
capita 

Euclidean 
distance 

Study 
pop. 

Regression 
Weight 

Leitch and Hoyde 
1996 

Damage 
avoidance Flood control $26,700 1604 638,800 3.1907 

Leitch and Hoyde 
1996 

Damage 
avoidance 

Flood control 
& habitat $26,700 1714 638,800 3.123 

Roberts and Leitch 
1997 

Damage 
avoidance Flood control $31,300 1563 106,406 3.0947 

Roberts and Leitch 
1997 

Damage 
avoidance 

Flood control 
& habitat $31,300 1580 106,406 3.0848 

Costanza, Farber, & 
Maxwell 1989 

Damage 
avoidance Flood control $23,800 1600 94,393 1.7147 

Sanders, Walsh, & 
McKean 1991 

Revealed 
pref. Recreation $29,600 566 2,889,964 1.3919 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total use 
value $29,600 566 2,889,964 1.3919 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total exist. 
value $29,600 566 2,889,964 1.3919 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total option 
value $29,600 566 2,889,964 1.3919 

Sanders, Walsh, & 
Loomis 1990 

Stated 
pref. 

Total bequest 
value $29,600 566 2,889,964 1.3919 
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Table 24: OLS and PLWLS Forecasts for 4 NWRs, Annual dollars per 1000 Acres per 1000 People per 

Year 

2010 US dollars per 
1000 acres per 1000 

people per year OLS PLWLS 

Site 
Service 
Valued 

Median Mean Median Mean 
exp(XBi) exp(XBi) exp(XBi) exp(XBi) 

Arrowwood 
NWR 

WQ $170 $520 $370 $450 
FC $100 $310 $110 $130 

Blackwater 
NWR 

WQ $720 $2,210 $290 $330 
FC $420 $1,300 $490 $550 

Okefenokee 
NWR 

WQ $160 $480 $80 $90 
FC $90 $280 $180 $210 

Sevilleta & 
Bosque del 

Apache 
NWRs 

WQ $320 $970 $810 $980 

FC $190 $570 $210 $260 
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Table 25: OLS and PLWLS Aggregate Values for 4 NWRs 

Aggregate Annual Value 2010 US Dollars per Refuge per Year 

Site 
Service 
Valued acres 

OLS OLS PLWLS 
median 

PLWLS 
mean median mean 

Arrowwood 
NWR 

WQ 4,595 
2,767,000 8,508,000 6,043,000 7,229,000 

FC 1,626,000 5,000,000 1,830,000 2,165,000 

Blackwater 
NWR 

WQ 24,502 
62,294,000 191,523,000 25,479,000 28,748,000 

FC 36,606,000 112,547,000 42,653,000 47,530,000 

Okefenokee 
NWR 

WQ 375,778 208,374,000 640,647,000 101,817,000 120,588,000 
FC 122,450,000 376,474,000 238,576,000 279,353,000 

Sevilleta & 
Bosque del 

Apache 
NWRs 

WQ 5,106 
5,682,000 17,468,000 14,551,000 17,661,000 

FC 3,339,000 10,265,000 3,838,000 4,625,000 
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Table 26: Comparison of 5 MA Models for 4 NWRs, Flood Control 
2010 US Dollars per Year for NWR Wetlands  

Arrowwood NWR 
Flood control 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 7,043,776 12,177 80,325 1,626,115 1,830,089 
Mean 553,429,493 4.780E+14 1,187,381 4,999,561 2,165,016 

Blackwater NWR 
Flood control 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 20,700,411 340,817 1,130,993 36,606,278 42,653,249 
Mean 2,450,105,399 3.228E+15 20,781,772 112,546,849 47,529,586 

Okefenokee NWR 
Flood control 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 163,463,577 1,863,861 1,980,352 122,449,919 238,575,511 
Mean 2.32E+10 1.78E+15 33,712,864 376,473,987 279,353,226 

Sevilleta & Bosque del Apache NWRs 
Flood control 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 7,594,007 30,992 94,150 3,338,566 3,837,809 
Mean 603,359,646 3.73E+13 1,333,875 10,264,508 4,624,627 
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Table 27 Comparison of 5 MA Models for 4 NWRs, Water Quality 

2010 US Dollars per Year for NWR Wetlands  
Arrowwood NWR 

Water quality 
 Woodward  Brander Ghermandi  OLS PLWLS 

Median 7,471,872 19,898 107,897 2,767,365 6,043,124 
Mean 600,924,752 1.102E+15 1,577,553 8,508,016 7,229,323 

Blackwater NWR 
Water quality 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 21,958,813 556,186 1,519,098 62,294,439 25,478,779 
Mean 2,581,881,606 7.131E+15 27,620,452 191,523,451 28,747,552 

Okefenokee NWR 
Water quality 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 173,391,641 3,040,047 2,656,753 208,373,728 101,816,900 
Mean 2.50E+10 3.52E+15 44,724,404 640,646,704 120,588,184 

Sevilleta & Bosque del Apache NWRs 
Water quality 

 Woodward  Brander Ghermandi  OLS PLWLS 
Median 8,055,619 50,598 126,419 5,681,530 14,550,536 
Mean 655,118,693 7.85E+13 1,776,895 17,467,567 17,661,387 
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