Survival of larval lamprey to electrofishing, suction dredging, anesthesia, and handling in the PNW

Christina T. Uh
Jeff Jolley
Greg Silver
Tim Whitesel

US Fish and Wildlife Service
Portland State University
August 18, 2015
Lamprey in the Pacific NW

- Historically abundant throughout the NW, but have been in decline for several decades.

- Strong cultural significance:
 - Yakima, Umatilla, Nez Perce, and Warm Springs nations initiated restoration and conservation movement.

- Good indicators of ecosystem health and can compose a large portion of an ecosystem’s biomass.

- Larvae are important filter feeders and spawned out adults provide essential nutrients back to the system.
Life cycle

- Resembles that of anadromous salmon, but with specific key differences;
 - Ammocoete (larval stage)
 - Macropthalmia (smolt stage)
 - Adult
- Many studies focus on the adult stage with limited attention on the larval life stage.
Techniques

Backpack Electrofishing

- AbP-2 electrofisher, ETS electrofishing
- Specifically designed for larval e-fishing.
- 2 settings: tickle and stun:
 - 3:1 pulse pattern @125 volts and 25% duty cycle
 - Standard pulse of 30 pulses/sec @125 volts and 25% duty cycle
Techniques

Deepwater Electrofishing and Suction Dredging

• The bell of the deepwater electrofisher is lowered from a boat to the river bottom.

• Settings are similar to that of the AbP-2 electrofisher’s tickle setting, with no stun setting.

• 1 min electricity, 2 mins suction.
Objectives

- As research efforts increase, concern has been given to the effects of sampling and handling on the larval life stage.
 - What is the survival rate of fish after they are subjected to deepwater or backpack electrofishing at 96hrs?
 - Does hematocrit respond to e-fishing? If so, will levels differ among treatments?
What is hematocrit?

- Blood hematocrit is the ratio of the volume occupied by red blood cells to the total volume of the whole blood after centrifugation.

- AKA “packed cell volume” (PCV).
How do we get Hematocrit?

- Blood is drawn from the caudal artery into heparinized hematocrit tubes until filled and are sealed with wax.
- Tubes are placed in centrifuge and spun for 5 mins.
Treatments

• ECNFH Population – Not e-fished, not stressed (control)

• Backpack e-fisher w/ anesthesia

• Deepwater e-fisher/suction dredged w/ no anesthesia

• Deepwater e-fisher/suction dredged w/ anesthesia

✓ = hematocrit samples taken

 All treatments consisted of a 96 hr survival holding period
Methods – ECNFH control

- Lamprey were separated from holding tanks at random (n= 27).
- 17 larvae were bled for hematocrit samples.
- 10 were transported to CRFPO and held for survival trials.
Methods – Backpack e-fisher

• Collected in N. Fork of Eagle Creek, Estacada, OR using typical e-fisher protocol & settings
 • Group 1: n=15 anesthetized using MS-222 and length was measured.
 • Group 2: n=15 placed directly into transport bucket, no anesthesia.
• All (n=30) were transported to CRFPO for survival trials.
Methods – Deepwater e-fisher

- Collected at the Wind River using usual deepwater e-fisher protocol & settings
 - Group 1: n=15 anesthetized using MS-222, length was measured.
 - Group 2: n=15 placed directly into transport bucket, no anesthesia.
 - Group 3: n=15 bled for hematocrit at time 0, 10, and 30 min after capture.
- Groups 1 & 2: (n=30) transported to CRFPO for survival trials.
Methods – Survival holding configuration

- Fish were held in treatment specific totes containing 2-3 rocks, and aerated with bubblers.
- Totes were placed inside an iced cooler for water temperature control.
- Ambient temperature was regulated at approx. 11°C.
- Daily observation for 96 hrs.
Results - survival

- Survival trials concluded at 96 hrs.
- Daily observations indicated healthy fish.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>% survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNFH Control</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>N. Fork Eagle creek MS</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>N. Fork Eagle creek no MS</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Wind River MS</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Wind River no MS</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>
Results - hematocrit

- Shapiro Wilk’s test: sample sizes are normally distributed.
- ANOVA: No significant difference among hematocrit means.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Count</th>
<th>Average % hema.</th>
<th>Variance</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECNFH Control</td>
<td>16</td>
<td>23.50</td>
<td>9.07</td>
<td>0.75</td>
</tr>
<tr>
<td>Deepwater, Time 0</td>
<td>5</td>
<td>21.68</td>
<td>11.21</td>
<td>1.50</td>
</tr>
<tr>
<td>Deepwater, Time 10</td>
<td>5</td>
<td>21.00</td>
<td>53.50</td>
<td>3.27</td>
</tr>
<tr>
<td>Deepwater, Time 30</td>
<td>5</td>
<td>25.20</td>
<td>73.70</td>
<td>3.84</td>
</tr>
</tbody>
</table>
Results — other observations

- Some internal hemorrhaging.

- 4 individuals developed fungus (likely *Saprolegnia*) covering heads, mouths, and tails.

- 2 individuals positive for *Aeromonas hydrophila*.

- Both *Saprolegnia* and *Aeromonas hydrophila* are ubiquitous in the environment and are often considered opportunistic bacteria/fungi.

- Surface water temperature during sampling was approx. 18-20°C.
Summary and implications

- 100% survival rate.

- Stress levels from electrofishing & handling did not differ from a non-stressed control group.

- No short term negative effects.

- How sampling contributes to lamprey susceptibility to fungus and/or bacteria is unclear.

- There are other ways to measure stress in fish.

- Water temperature and stress relationships are unclear.
Thank You

- Kenneth Lujan – LCR Fish Health Center
- Dr. Jason Podrabsky – Portland State University
- Caroline Peterschmidt – USFWS Eagle Creek NFH
- Sean Hansen – USFWS CRFPO
- Brook Silver – USFWS CRFPO
- Bill Brignon – USFWS CRFPO
- Larry Fishler – USFWS CRFPO

Contact Info:
Christina Uh
Portland State University (undergrad)
USFWS Columbia River Fisheries Program Office
1211 SE Cardinal Ct. Suite 100
Vancouver, WA 98683
Christina_Uh@fws.gov