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PREFACE 

The process of setting waterfowl hunting regulations is conducted annually in the United States (U.S.; Blohm 
1989) and involves a number of meetings where the status of waterfowl is reviewed by the agencies responsible 
for setting hunting regulations. In addition, the U.S. Fish and Wildlife Service (USFWS) publishes proposed 
regulations in the Federal Register to allow public comment. This document is part of a series of reports 
intended to support development of harvest regulations for the 2022 hunting season. Specifcally, this report 
is intended to provide waterfowl managers and the public with information about the use of adaptive harvest 
management (AHM) for setting waterfowl hunting regulations in the U.S. This report provides the most 
current data, analyses, and decision-making protocols. However, adaptive management is a dynamic process 
and some information presented in this report will difer from that in previous reports. 

Citation: U.S. Fish and Wildlife Service. 2021. Adaptive Harvest Management: 2022 Hunting Season. 
U.S. Department of Interior, Washington, D.C. 133 pp. Available online at http://www.fws.gov/birds/ 
management/adaptive-harvest-management/publications-and-reports.php 

This report contains annual estimates of waterfowl abundance, harvest rates, and optimal regulatory strate-
gies. Due to an extensive volume of data encompassing multiple years and geographic areas, data tables may 
be large and complex. Readers that may need help reading and interpreting the data, or that may need 
data presented in an alternative format to facilitate reading and interpretation, should contact the author at 
scott boomer@fws.gov. 
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1 EXECUTIVE SUMMARY 

In 1995 the U.S. Fish and Wildlife Service (USFWS) implemented the adaptive harvest management (AHM) 
program for setting duck hunting regulations in the United States (U.S.). The AHM approach provides a 
framework for making objective decisions in the face of incomplete knowledge concerning waterfowl population 
dynamics and regulatory impacts. 

The coronavirus disease 2019 (COVID-19) pandemic prevented the USFWS and their partners from perform-
ing the Waterfowl Breeding Population and Habitat Survey (WBPHS) and estimating waterfowl breeding 
populations and habitat conditions in 2020 and 2021 (except in Alaskan strata 1–11). As a result, AHM 
protocols have been adjusted to inform duck hunting regulations based on model predictions of breeding pop-
ulations and habitat conditions. In most cases, system models specifc to each AHM decision framework have 
been used to predict breeding population sizes from the available information (e.g., 2019–20 observations). 
However, for some system state variables we have used updated time series models to forecast 2020–2021 
values based on the most recent information. 

The AHM protocol is based on the population dynamics and status of two mallard (Anas platyrhynchos) 
stocks and a suite of waterfowl stocks in the Atlantic Flyway. Mid-continent mallards are defned as those 
breeding in the WBPHS strata 13–18, 20–50, and 75–77 plus mallards breeding in the states of Michigan, 
Minnesota, and Wisconsin (state surveys). The prescribed regulatory alternative for the Mississippi and 
Central Flyways depends exclusively on the status of these mallards. Western mallards are defned as those 
breeding in WBPHS strata 1–12 (hereafter Alaska) and in the states of California, Oregon, Washington, and 
the Canadian province of British Columbia (hereafter southern Pacifc Flyway). The prescribed regulatory 
alternative for the Pacifc Flyway depends exclusively on the status of these mallards. In 2018, the Atlantic 
Flyway and the USFWS adopted a multi-stock AHM protocol based on 4 populations of eastern waterfowl 
[American green-winged teal (Anas crecca), wood ducks (Aix sponsa), ring-necked ducks (Aythya collaris), 
and goldeneyes (both Bucephala clangula and B. islandica combined)]. The regulatory choice for the Atlantic 
Flyway depends exclusively on the status of these waterfowl populations. 

Mallard population models are based on the best available information and account for uncertainty in popula-
tion dynamics and the impact of harvest. Model-specifc weights refect the relative confdence in alternative 
hypotheses and are updated annually using comparisons of predicted to observed population sizes. For 
mid-continent mallards, current model weights favor the weakly density-dependent reproductive hypothesis 
(>99%) and the additive-mortality hypothesis (72%). Unlike mid-continent mallards, we consider a single 
functional form to predict western mallard and eastern waterfowl population dynamics but consider a wide 
range of parameter values each weighted relative to the support from the data. 

For the 2022 hunting season, the USFWS is considering similar regulatory alternatives as 2021. The nature of 
the restrictive, moderate, and liberal alternatives has remained essentially unchanged since 1997, except that 
extended framework dates have been ofered in the moderate and liberal alternatives since 2002. Harvest 
rates associated with each of the regulatory alternatives have been updated based on band-recovery data 
from pre-season banded birds. The expected harvest rates of adult males under liberal hunting seasons are 
0.11, and 0.14 for mid-continent and western mallards, respectively. In the Atlantic Flyway, expected harvest 
rates under the liberal alternative are 0.12, 0.12, 0.13, and 0.03 for American green-winged teal, wood ducks, 
ring-necked ducks, and goldeneyes, respectively. 

Optimal regulatory strategies for the 2022 hunting season were calculated using: (1) harvest-management 
objectives specifc to each stock; (2) current regulatory alternatives; and (3) current population models and 
their relative weights. Based on liberal regulatory alternatives selected for the 2021 hunting season, a 2021 
prediction of 8.62 million mid-continent mallards, 2.94 million ponds in Prairie Canada, 1.17 million western 
mallards, observed in Alaska (0.64 million) and predicted for the southern Pacifc Flyway (0.53 million), 1.02 
million observed wood ducks, and 0.34 million American green-winged teal, 0.71 million ring-necked ducks, 
and 0.59 million goldeneyes predicted for the eastern survey area and Atlantic Flyway, the optimal choice for 
the 2022 hunting season in all four Flyways is the liberal regulatory alternative. 
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AHM concepts and tools have been successfully applied toward the development of formal adaptive harvest 
management protocols that inform American black duck (Anas rubripes), northern pintail (Anas acuta), and 
scaup (Aythya afnis, A. marila combined) harvest decisions. 

For black ducks, the optimal country-specifc regulatory strategies for the 2022 hunting season were calculated 
using: (1) an objective to achieve 98% of the maximum, long-term cumulative harvest; (2) current country-
specifc black duck regulatory alternatives; and (3) updated model parameters and weights. Based on a liberal 
regulatory alternative selected by Canada and a moderate regulatory alternative selected by the U.S. for the 
2021 hunting season and the 2021 model prediction of 0.54 million breeding black ducks and 0.39 million 
breeding mallards predicted for the core survey area, the optimal regulatory choices for the 2022 hunting 
season are the liberal regulatory alternative in Canada and the moderate regulatory alternative in the United 
States. 

For pintails, the optimal regulatory strategy for the 2022 hunting season was calculated using: (1) an objective 
of maximizing long-term cumulative harvest; (2) current pintail regulatory alternatives; and (3) current 
population models and their relative weights. Based on a liberal regulatory alternative with a 1-bird daily 
bag limit selected for the 2021 hunting season and the 2021 model prediction of 2.50 million pintails predicted 
to settle at a mean latitude of 55.47 degrees, the optimal regulatory choice for the 2022 hunting season for 
all four Flyways is the liberal regulatory alternative with a 1-bird daily bag limit. 

For scaup, the optimal regulatory strategy for the 2022 hunting season was calculated using: (1) an objective 
to achieve 95% of the maximum, long-term cumulative harvest; (2) current scaup regulatory alternatives; 
and (3) updated model parameters and weights. Based on a restrictive regulatory alternative selected for the 
2021 hunting season and a 2021 model prediction of 3.53 million scaup, the optimal regulatory choice for the 
2022 hunting season for all four Flyways is the restrictive regulatory alternative. 
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2 BACKGROUND 

The annual process of setting duck-hunting regulations in the U.S. is based on a system of resource monitor-
ing, data analyses, and rule-making (Blohm 1989). Each year, monitoring activities such as aerial surveys, 
preseason banding, and hunter questionnaires provide information on population size, habitat conditions, 
and harvest levels. Data collected from these monitoring programs are analyzed each year, and proposals for 
duck-hunting regulations are developed by the Flyway Councils, States, and USFWS. After extensive public 
review, the USFWS announces regulatory guidelines within which States can set their hunting seasons. 

In 1995, the USFWS adopted the concept of adaptive resource management (Walters 1986) for regulating 
duck harvests in the U.S. This approach explicitly recognizes that the consequences of hunting regulations 
cannot be predicted with certainty and provides a framework for making objective decisions in the face of 
that uncertainty (Williams and Johnson 1995). Inherent in the adaptive approach is an awareness that 
management performance can be maximized only if regulatory efects can be predicted reliably. Thus, adap-
tive management relies on an iterative cycle of monitoring, assessment, and decision-making to clarify the 
relationships among hunting regulations, harvests, and waterfowl abundance (Johnson et al. 2015). 

In regulating waterfowl harvests, managers face four fundamental sources of uncertainty (Nichols et al. 1995a, 
Johnson et al. 1996, Williams et al. 1996): 

(1) environmental variation – the temporal and spatial variation in weather conditions and other key 
features of waterfowl habitat; an example is the annual change in the number of ponds in the Prairie 
Pothole Region, where water conditions infuence duck reproductive success; 

(2) partial controllability – the ability of managers to control harvest only within limits; the harvest resulting 
from a particular set of hunting regulations cannot be predicted with certainty because of variation in 
weather conditions, timing of migration, hunter efort, and other factors; 

(3) partial observability – the ability to estimate key population attributes (e.g., population size, reproduc-
tive rate, harvest) only within the precision aforded by extant monitoring programs; and 

(4) structural uncertainty – an incomplete understanding of biological processes; a familiar example is 
the long-standing debate about whether harvest is additive to other sources of mortality or whether 
populations compensate for hunting losses through reduced natural mortality. Structural uncertainty 
increases contentiousness in the decision-making process and decreases the extent to which managers 
can meet long-term conservation goals. 

AHM was developed as a systematic process for dealing objectively with these uncertainties. The key com-
ponents of AHM include (Johnson et al. 1993, Williams and Johnson 1995): 

(1) a limited number of regulatory alternatives, which describe Flyway-specifc season lengths, bag limits, 
and framework dates; 

(2) a set of population models describing various hypotheses about the efects of harvest and environmental 
factors on waterfowl abundance; 

(3) a measure of reliability (probability or “weight”) for each population model; and 

(4) a mathematical description of the objective(s) of harvest management (i.e., an “objective function”), 
by which alternative regulatory strategies can be compared. 

These components are used in a stochastic optimization procedure to derive a regulatory strategy. A regula-
tory strategy specifes the optimal regulatory choice, with respect to the stated management objectives, for 
each possible combination of breeding population size, environmental conditions, and model weights (Johnson 
et al. 1997). The setting of annual hunting regulations then involves an iterative process: 

9 



(1) each year, an optimal regulatory choice is identifed based on resource and environmental conditions, 
and on current model weights; 

(2) after the regulatory decision is made, model-specifc predictions for subsequent breeding population size 
are determined; 

(3) when monitoring data become available, model weights are increased to the extent that observations of 
population size agree with predictions, and decreased to the extent that they disagree; and 

(4) the new model weights are used to start another iteration of the process. 

By iteratively updating model weights and optimizing regulatory choices, the process should eventually 
identify which model is the best overall predictor of changes in population abundance. The process is optimal 
in the sense that it provides the regulatory choice each year necessary to maximize management performance. 
It is adaptive in the sense that the harvest strategy “evolves” to account for new knowledge generated by a 
comparison of predicted and observed population sizes. 

3 ADJUSTMENTS TO THE 2021 REGULATORY PROCESS 

Due to the coronavirus disease 2019 (COVID-19) pandemic, the USFWS and their partners were unable 
to perform the WBPHS and estimate waterfowl breeding populations as well as evaluate breeding habitat 
conditions in 2020–21. As a result, the information requirements, assessment methodologies, and decision 
protocols that typically defne the annual regulatory process have required some modifcations. The lack of an 
observable population size has immediate implications for learning through AHM. Model predictions for 2021 
population responses cannot be compared to WBPHS estimates to update model weights. Because of this 
lack of updating, the USFWS and the Flyway councils have agreed to use optimal harvest policies calculated 
with model weights and model parameters based on the most recent information available to inform waterfowl 
harvest decisions for the 2021 regulations process. These policies represent optimal decisions based on our 
most recent observations and understanding of system dynamics. In the absence of 2021 breeding population 
information, the USFWS and Flyway councils have agreed to use predictions of breeding population sizes and 
habitat conditions to determine regulatory decisions for the 2022-23 hunting season. Current system models 
for which we have AHM decision frameworks were used to predict 2021 population sizes as a function of 2020 
predictions of breeding populations and habitat conditions, along with harvest and harvest rate estimates 
observed during the 2020–21 hunting seasons. For some state variables (e.g., Canadian ponds) or 2020 
unobservable information (e.g., Canadian harvest), we used formal time series analysis methods (Hyndman 
and Athanasopoulos 2018) to forecast these values. We provide the results of these forecasts in the body of 
this report and include the analytical details in the attached appendices. 

4 WATERFOWL STOCKS AND FLYWAY MANAGEMENT 

Since its inception AHM has focused on the population dynamics and harvest potential of mallards, especially 
those breeding in mid-continent North America. Mallards constitute a large portion of the total U.S. duck 
harvest, and traditionally have been a reliable indicator of the status of many other species. Geographic 
diferences in the reproduction, mortality, and migrations of waterfowl stocks suggest that there may be 
corresponding diferences in optimal levels of sport harvest. The ability to regulate harvests of mallards 
originating from various breeding areas is complicated, however, by the fact that a large degree of mixing 
occurs during the hunting season. The challenge for managers, then, is to vary hunting regulations among 
Flyways in a manner that recognizes each Flyway’s unique breeding-ground derivation of waterfowl stocks. 
Of course, no Flyway receives waterfowl exclusively from one breeding area; therefore, Flyway-specifc harvest 
strategies ideally should account for multiple breeding stocks that are exposed to a common harvest. 
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Figure 1 – Waterfowl Breeding Population and Habitat Survey (WBPHS) strata and state, provincial, and 
territorial survey areas currently assigned to the mid-continent and western stocks of mallards and eastern 
waterfowl stocks for the purposes of adaptive harvest management. 

The optimization procedures used in AHM can account for breeding populations of waterfowl beyond the 
mid-continent region, and for the manner in which these ducks distribute themselves among the Flyways 
during the hunting season. An optimal approach would allow for Flyway-specifc regulatory strategies, which 
represent an average of the optimal harvest strategies for each contributing breeding stock weighted by the 
relative size of each stock in the fall fight. This joint optimization of multiple stocks requires: (1) models of 
population dynamics for all recognized stocks; (2) an objective function that accounts for harvest-management 
goals for all stocks in the aggregate; and (3) decision rules allowing Flyway-specifc regulatory choices. At 
present, however, a joint optimization of western, mid-continent, and eastern stocks is not feasible due to 
computational hurdles. However, our preliminary analyses suggest that the lack of a joint optimization does 
not result in a signifcant decrease in management performance. 

Currently, two stocks of mallards (mid-continent and western) and stocks of four diferent species of eastern 
waterfowl populations (Atlantic Flyway multi-stock; hereafter ’multi-stock’) are recognized for the purposes 
of AHM (Figure 1). We use a constrained approach to the optimization of these stocks’ harvest, in which 
the regulatory strategy for the Mississippi and Central Flyways is based exclusively on the status of mid-
continent mallards and the Pacifc Flyway regulatory strategy is based exclusively on the status of western 
mallards. Historically, the Atlantic Flyway regulatory strategy was based exclusively on the status of eastern 
mallards. In 2018, the Atlantic Flyway and the USFWS adopted a multi-stock AHM framework. As a result, 
the Atlantic Flyway regulatory strategy is based exclusively on the status of American green-winged teal, 
wood ducks, ring-necked ducks, and goldeneyes breeding in the Atlantic Flyway states and eastern Canada. 
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Figure 2 – Population estimates of mid-continent mallards observed in the WBPHS (strata: 13–18, 20–50, and 
75–77) from 1992–2019 and the Great Lakes region (Michigan, Minnesota, and Wisconsin) from 1992–2019 and 
2021. Error bars represent one standard error. The 2020–21 values are based on model predictions. 

5 WATERFOWL POPULATION DYNAMICS 

5.1 Mid-Continent Mallard Stock 

Mid-continent mallards are defned as those breeding in WBPHS strata 13–18, 20–50, and 75–77, and in 
the Great Lakes region (Michigan, Minnesota, and Wisconsin; see Figure 1). Estimates of this population 
have varied from 6.3 to 11.9 million since 1992 (Table H.1, Figure 2). For 2021, we used each model in the 
mid-continent mallard model set to predict the 2021 breeding population size and used the updated 2019 
model weights to calculate a weighted average breeding population size of 7.89 million (SE = 1.43 million). 
In addition, we used Michigan and Wisconsin observations, and imputed values for Minnesota to estimate 
a 2021 breeding population of Great Lakes region mallards equal to 0.73 million (SE = 0.09 million), see 
Appendix (D) for details. The total 2021 mid-continent mallard breeding population is predicted to be 8.62 
million (SE = 1.43 million). 

Details describing the set of population models for mid-continent mallards are provided in Appendix H. The 
set consists of four alternatives, formed by the combination of two survival hypotheses (additive vs. compen-
satory hunting mortality) and two reproductive hypotheses (strongly vs. weakly density dependent). Relative 
weights for the alternative models of mid-continent mallards changed little until all models under-predicted 
the change in population size from 1998 to 1999, perhaps indicating there is a signifcant factor afecting 
population dynamics that is absent from all four models (Figure 3). Updated model weights suggest greater 
evidence for the additive-mortality models (72%) over those describing hunting mortality as compensatory 
(28%). For most of the time frame, model weights have strongly favored the weakly density-dependent re-
productive models over the strongly density-dependent ones, with current model weights greater than 99% 
and less than 1%, respectively. The reader is cautioned, however, that models can sometimes make reliable 
predictions of population size for reasons having little to do with the biological hypotheses expressed therein 
(Johnson et al. 2002). 
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Figure 3 – Top panel: population estimates of mid-continent mallards observed in the WBPHS compared to 
mid-continent mallard model set predictions (weighted average based on 2019 model weight updates) from 1996 
to 2019. Error bars represent 95% confdence intervals. Bottom panel: mid-continent mallard model weights 
(SaRw = additive mortality and weakly density-dependent reproduction, ScRw = compensatory mortality and 
weakly density-dependent reproduction, SaRs = additive mortality and strongly density-dependent reproduction, 
ScRs = compensatory mortality and strongly density-dependent reproduction). Model weights were assumed to 
be equal in 1995 and model weight updates were not calculated for 2020–21. 

5.2 Western Mallard Stock 

Western mallards consist of 2 substocks and are defned as those birds breeding in Alaska (WBPHS strata 
1–12) and those birds breeding in the southern Pacifc Flyway (California, Oregon, Washington, and British 
Columbia combined; see Figure 1). Estimates of these subpopulations have varied from 0.28 to 0.84 million 
in Alaska since 1990 and 0.43 to 0.64 million in the southern Pacifc Flyway since 2010 (Table I.1, Figure 4). 
In 2021, the USFWS was able to complete WBPHS operations for strata 1–11 in Alaska. To complete 
the Alaska BPOP estimate for 2021, we used formal imputation procedures to estimate mallard abundance 
from strata 12 (see Appendix D for details), resulting in a BPOP estimate equal to 0.64 million (SE = 0.06 
million). We used the western mallard models and Bayesian estimation frameworks to predict a median 
breeding-population size of 0.53 million (SE = 0.09 million) from the southern Pacifc Flyway and a total 
western mallard breeding population equal to 1.17 million (SE = 0.11 million). 

Details concerning the set of population models for western mallards are provided in Appendix I. To predict 
changes in abundance we used a discrete logistic model, which combines reproduction and natural mortality 
into a single parameter, r, the intrinsic rate of growth. This model assumes density-dependent growth, 
which is regulated by the ratio of population size, N, to the carrying capacity of the environment, K (i.e., 
equilibrium population size in the absence of harvest). In the traditional formulation of the logistic model, 
harvest mortality is completely additive and any compensation for hunting losses occurs as a result of density-
dependent responses beginning in the subsequent breeding season. To increase the model’s generality we 
included a scaling parameter for harvest that allows for the possibility of compensation prior to the breeding 
season. It is important to note, however, that this parameterization does not incorporate any hypothesized 
mechanism for harvest compensation and, therefore, must be interpreted cautiously. We modeled Alaska 
mallards independently of those in the southern Pacifc Flyway because of difering population trajectories 
(see Figure 4) and substantial diferences in the distribution of band recoveries. 

We used Bayesian estimation methods in combination with a state-space model that accounts explicitly for 
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Figure 4 – Population estimates of western mallards observed in Alaska (WBPHS strata 1–12) and the southern 
Pacifc Flyway (California, Oregon, Washington, and British Columbia combined) from 1990 to 2021. Error bars 
represent one standard error. The 2020 values for Alaska and the 2020–2021 values for the southern Pacifc 
Flyway are based on model predictions. 

both process and observation error in breeding population size (Meyer and Millar 1999). Breeding population 
estimates of mallards in Alaska are available since 1955, but we had to limit the time series to 1990–2019 
because of changes in survey methodology and insufcient band-recovery data. The logistic model and 
associated posterior parameter estimates provided a reasonable ft to the observed time series of Alaska 
population estimates. The estimated median carrying capacity was 0.96 million and the intrinsic rate of 
growth was 0.31. The posterior median estimate of the scaling parameter was 1.25. Breeding population 
and harvest-rate data were available for California-Oregon mallards for the period 1992–2019. Because the 
British Columbia survey did not begin until 2006 and the Washington survey was redesigned in 2010, we 
imputed data in a Markov chain Monte Carlo (MCMC) framework from the beginning of the British Columbia 
and Washington surveys back to 1992 (see details in Appendix I) to make the time series consistent for the 
southern Pacifc Flyway. The logistic model also provided a reasonable ft to these data. The estimated 
median carrying capacity was 0.82 million, and the intrinsic rate of growth was 0.26. The posterior median 
estimate of the scaling parameter was 0.51. 

The AHM protocol for western mallards is structured similarly to that used for mid-continent mallards, in 
which an optimal harvest strategy is based on the status of a single breeding stock (Alaska and southern 
Pacifc Flyway substocks) and harvest regulations in a single Flyway. Although the contribution of mid-
continent mallards to the Pacifc Flyway harvest is signifcant, we believe an independent harvest strategy 
for western mallards poses little risk to the mid-continent stock. Further analyses will be needed to confrm 
this conclusion, and to better understand the potential efect of mid-continent mallard status on sustainable 
hunting opportunities in the Pacifc Flyway. 
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5.3 Atlantic Flyway Multi-Stock 

For the purposes of the Atlantic Flyway multi-stock AHM framework, eastern waterfowl stocks are defned 
as those breeding in eastern Canada and Maine (USFWS fxed-wing surveys in WBPHS strata 51-53, 56, and 
62-70; CWS helicopter plot surveys in WBPHS strata 51-52, 63-64, 66-68, and 70-72) and Atlantic Flyway 
states from New Hampshire south to Virginia (AFBWS; Heusmann and Sauer 2000). These areas have 
been consistently surveyed since 1998. Breeding population size estimates for American green-winged teal, 
ring-necked ducks, and goldeneyes are derived annually by integrating USFWS and CWS survey data from 
eastern Canada and Maine (WBPHS strata 51-53, 56, and 62-72; (Zimmerman et al. 2012, U.S. Fish and 
Wildlife Service 2019). Insufcient counts of American green-winged teal, ring-necked ducks, and goldeneyes 
in the AFBWS preclude the inclusion of those areas in the population estimates for those species. Breeding 
population size estimates for wood ducks in the Atlantic Flyway (Maine south to Florida) are estimated by 
integrating data from the AFBWS and the Breeding Bird Survey (BBS; Zimmerman et al. 2015). Insufcient 
counts of wood ducks from the USFWS and CWS surveys in Maine and Canada preclude incorporating those 
survey results into breeding population estimates. Estimates of the breeding population size for American 
green-winged teal have varied from 0.30 to 0.46 million, wood ducks varied from 0.93 to 1.03 million, ring-
necked ducks varied from 0.59 to 0.92 million, and goldeneyes varied from 0.44 to 0.85 million since 1998 
(Table J.1, Figure 5). Estimated breeding-population size in 2021 was 1.02 million (SE = 0.13 million) 
for wood ducks. For the other species in 2021, we used the multi-stock population models and Bayesian 
estimation frameworks to predict a median breeding population size of 0.34 million (SE = 0.10 million) 
for American green-winged teal, 0.71 million (SE = 0.17 million) for ring-necked ducks, and 0.59 million 
(SE = 0.20 million) for goldeneyes. 

Details concerning the set of models used in Atlantic Flyway multi-stock AHM are provided in Appendix J. 
Similar to the methods used in western mallard AHM, we used a discrete logistic model to represent eastern 
waterfowl population and harvest dynamics and a state-space, Bayesian estimation framework to estimate 
the population parameters and process variation. We modeled each stock independently and found that the 
logistic model and associated posterior parameter estimates provided a reasonable ft to the observed time 
series of eastern waterfowl stocks. The estimated median carrying capacities were 0.53, 1.55, 0.87, and 0.71 
for American green-winged teal, wood ducks, ring-necked ducks, and goldeneyes, respectively. The posterior 
median estimates of intrinsic rate of growth were 0.43, 0.39, 0.40, and 0.23 for American green-winged teal, 
wood ducks, ring-necked ducks, and goldeneyes, respectively. 

6 HARVEST-MANAGEMENT OBJECTIVES 

The basic harvest-management objective for mid-continent mallards is to maximize cumulative harvest over 
the long term, which inherently requires perpetuation of a viable population. Moreover, this objective is 
constrained to avoid regulations that could be expected to result in a subsequent population size below the 
goal of the North American Waterfowl Management Plan (NAWMP). According to this constraint, the value 
of harvest decreases proportionally as the diference between the goal and expected population size increases. 
This balance of harvest and population objectives results in a regulatory strategy that is more conservative 
than that for maximizing long-term harvest, but more liberal than a strategy to attain the NAWMP goal 
(regardless of efects on hunting opportunity). The current objective for mid-continent mallards uses a 
population goal of 8.5 million birds, which consists of 7.9 million mallards from the WBPHS (strata 13–18, 
20–50, and 75–77) corresponding to the mallard population goal in the 1998 update of the NAWMP (less the 
portion of the mallard goal comprised of birds breeding in Alaska) and a goal of 0.6 million for the combined 
states of Michigan, Minnesota, and Wisconsin. 

The harvest management objectives for western mallards and eastern waterfowl stocks do not consider 
NAWMP goals or other established targets for desired population sizes. The management objective for 
western mallards is to maximize long-term cumulative (i.e., sustainable) harvest, and the objective for east-
ern waterfowl stocks is to attain 98% of the maximum, long-term cumulative harvest for the aggregate of the 
four species. 
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Figure 5 – Population estimates of American green-winged teal (AGWT), wood ducks (WODU), ring-necked 
ducks (RNDU), and goldeneyes (GOLD) observed in eastern Canada (WBPHS strata 51–53, 56, 62–72) and U.S. 
(Atlantic Flyway states) from 1998 to 2019. Error bars represent one standard error. The SE of the goldeneyes 
estimate for 2013 is not reported due to insufcient counts. The 2020–21 values are based on model predictions 
except for wood ducks where we used available observations through 2021 to estimate population sizes with the 
integrated population model. 
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7 REGULATORY ALTERNATIVES 

7.1 Evolution of Alternatives 

When AHM was frst implemented in 1995, three regulatory alternatives characterized as liberal, moderate, 
and restrictive were defned based on regulations used during 1979–1984, 1985–1987, and 1988–1993, respec-
tively. These regulatory alternatives also were considered for the 1996 hunting season. In 1997, the regulatory 
alternatives were modifed to include: (1) the addition of a very-restrictive alternative; (2) additional days 
and a higher duck bag limit in the moderate and liberal alternatives; and (3) an increase in the bag limit of 
hen mallards in the moderate and liberal alternatives. In 2002, the USFWS further modifed the moderate 
and liberal alternatives to include extensions of approximately one week in both the opening and closing 
framework dates. During the 2019–2020 regulatory process, closing dates for all four Flyways were set to 31 
January for all regulatory alternatives to comply with the John D. Dingell, Jr. Conservation, Management, 
and Recreation Act. 

In 2003, the very-restrictive alternative was eliminated at the request of the Flyway Councils. Expected 
harvest rates under the very-restrictive alternative did not difer signifcantly from those under the restrictive 
alternative, and the very-restrictive alternative was expected to be prescribed for <5% of all hunting seasons. 
Also in 2003, at the request of the Flyway Councils the USFWS agreed to exclude closed duck-hunting seasons 
from the AHM protocol when the population size of mid-continent mallards (as defned in 2003: WBPHS 
strata 1–18, 20–50, and 75–77 plus the Great Lakes region) was ≥5.5 million. Based on our original assessment, 
closed hunting seasons did not appear to be necessary from the perspective of sustainable harvesting when 
the mid-continent mallard population exceeded this level. The impact of maintaining open seasons above this 
level also appeared negligible for other mid-continent duck species, as based on population models developed 
by Johnson (2003). 

In 2008, the mid-continent mallard stock was redefned to exclude mallards breeding in Alaska, necessitating 
a re-scaling of the closed-season constraint. Initially, we attempted to adjust the original 5.5 million closure 
threshold by subtracting out the 1985 Alaska breeding population estimate, which was the year upon which 
the original closed season constraint was based. Our initial re-scaling resulted in a new threshold equal to 
5.25 million. Simulations based on optimal policies using this revised closed season constraint suggested that 
the Mississippi and Central Flyways would experience a 70% increase in the frequency of closed seasons. At 
that time, we agreed to consider alternative re-scalings in order to minimize the efects on the mid-continent 
mallard strategy and account for the increase in mean breeding population sizes in Alaska over the past 
several decades. Based on this assessment, we recommended a revised closed season constraint of 4.75 million 
which resulted in a strategy performance equivalent to the performance expected prior to the re-defnition of 
the mid-continent mallard stock. Because the performance of the revised strategy is essentially unchanged 
from the original strategy, we believe it will have no greater impact on other duck stocks in the Mississippi 
and Central Flyways. However, complete- or partial-season closures for particular species or populations 
could still be deemed necessary in some situations regardless of the status of mid-continent mallards. 

For the development of the multi-stock AHM framework in the Atlantic Flyway, the USFWS and Atlantic Fly-
way decided to keep the same overall bag limits and season lengths that were used for eastern mallard AHM. 
Species-specifc regulations are then based on harvest strategies informed by existing decision frameworks 
(e.g., black duck AHM). 

At the time this report was prepared, the regulatory packages for the 2022-23 seasons had not been fnalized 
by the U.S. Fish and Wildlife Service. However, we do not expect any changes from the 2021-22 packages. 
Therefore, optimal strategies were formulated using the 2021-22 packages and are referred to as “current” 
packages in subsequent text. Details of the regulatory alternatives for each Flyway are provided in Table 1. 
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Table 1 – Current regulatory alternatives for the duck-hunting season. 

REGULATION FLYWAY 

Atlantica Mississippi Centralb Pacifcc 

Shooting Hours one-half hour before sunrise to sunset 

Opening Date 

Restrictive October 1 Saturday nearest September 24 Saturday nearest 
October 1 

Moderate 
Saturday nearest September 24 

Liberal 

Closing Date 

Restrictive 

Moderate January 31 

Liberal 

Season Length (days) 

Restrictive 30 30 39 60 

Moderate 45 45 60 86 

Liberal 60 60 74 107 

Bag Limit (total / mallardd / hen mallard) 

Restrictive 3 / - / - 3 / 2 / 1 3 / 3 / 1 4 / 3 / 1 

Moderate 6 / - / - 6 / 4 / 1 6 / 5 / 1 7 / 5 / 2 

Liberal 6 / - / - 6 / 4 / 2 6 / 5 / 2 7 / 7 / 2 
a The states of Maine, Massachusetts, Connecticut, Pennsylvania, New Jersey, Maryland, Delaware, and North 
Carolina are permitted to exclude Sundays, which are closed to hunting, from their total allotment of season days. 

b The High Plains Mallard Management Unit is allowed 12, 23, and 23 extra days in the restrictive, moderate, and 
liberal alternatives, respectively. 

c The Columbia Basin Mallard Management Unit is allowed 7 extra days in the restrictive and moderate alternatives. 
d For the Atlantic Flyway, the mallard bag limit is not prescribed by the regulatory alternative under the Multi-stock 
AHM protocol. 
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7.2 Regulation-Specifc Harvest Rates 

Harvest rates of mallards associated with each of the open-season regulatory alternatives were initially pre-
dicted using harvest-rate estimates from 1979–1984, which were adjusted to refect current hunter numbers 
and contemporary specifcations of season lengths and bag limits. In the case of closed seasons in the United 
States, we assumed rates of harvest would be similar to those observed in Canada during 1988–1993, which 
was a period of restrictive regulations both in Canada and the United States. All harvest-rate predictions 
were based only in part on band-recovery data, and relied heavily on models of hunting efort and success 
derived from hunter surveys (Appendix C in U.S. Fish and Wildlife Service 2002). As such, these predictions 
had large sampling variances and their accuracy was uncertain. 

In 2002, we began using Bayesian statistical methods for improving regulation-specifc predictions of harvest 
rates, including predictions of the efects of framework-date extensions. Essentially, the idea is to use existing 
(prior) information to develop initial harvest-rate predictions (as above), to make regulatory decisions based 
on those predictions, and then to observe realized harvest rates. Those observed harvest rates, in turn, are 
treated as new sources of information for calculating updated (posterior) predictions. Bayesian methods are 
attractive because they provide a quantitative, formal, and an intuitive approach to adaptive management. 

Annual harvest rate estimates for mid-continent and western mallards and eastern stocks of American green-
winged teal and wood ducks are updated with band-recovery information from a cooperative banding program 
between the USFWS and CWS, along with state, provincial, and other participating partners. Recovery rate 
estimates from these data are adjusted with reporting rate probabilities resulting from recent reward band 
studies (Boomer et al. 2013, Garrettson et al. 2013). For mid-continent mallards, we have empirical estimates 
of harvest rate from the recent period of liberal hunting regulations (1998–2020). Bayesian methods allow us 
to combine these estimates with our prior predictions to provide updated estimates of harvest rates expected 
under the liberal regulatory alternative. Moreover, in the absence of experience (so far) with the restrictive 
and moderate regulatory alternatives, we reasoned that our initial predictions of harvest rates associated with 
those alternatives should be re-scaled based on a comparison of predicted and observed harvest rates under 
the liberal regulatory alternative. In other words, if observed harvest rates under the liberal alternative were 
10% less than predicted, then we might also expect that the mean harvest rate under the moderate alternative 
would be 10% less than predicted. The appropriate scaling factors currently are based exclusively on prior 
beliefs about diferences in mean harvest rate among regulatory alternatives, but they will be updated once 
we have experience with something other than the liberal alternative. A detailed description of the analytical 
framework for modeling mallard harvest rates is provided in Appendix K. 

Our models of regulation-specifc harvest rates also allow for the marginal efect of framework-date extensions 
in the moderate and liberal alternatives. A previous analysis by the U.S. Fish and Wildlife Service (2001) 
suggested that implementation of framework-date extensions might be expected to increase the harvest rate of 
mid-continent mallards by about 15%, or in absolute terms by about 0.02 (SD = 0.01). Based on the observed 
harvest rates during the 2002–2020 hunting seasons, the updated (posterior) estimate of the marginal change 
in harvest rate attributable to the framework-date extension is 0.003 (SD = 0.006). The estimated efect of 
the framework-date extension has been to increase harvest rate of mid-continent mallards by about 3% over 
what would otherwise be expected in the liberal alternative. However, the reader is strongly cautioned that 
reliable inference about the marginal efect of framework-date extensions ultimately depends on a rigorous 
experimental design (including controls and random application of treatments). 

Current predictions of harvest rates of adult-male mid-continent mallards associated with each of the regu-
latory alternatives are provided in Table 2. Predictions of harvest rates for the other age and sex cohorts are 
based on the historical ratios of cohort-specifc harvest rates to adult-male rates (Runge et al. 2002). These 
ratios are considered fxed at their long-term averages and are 1.5407, 0.7191, and 1.1175 for young males, 
adult females, and young females, respectively. We make the simplifying assumption that the harvest rates 
of mid-continent mallards depend solely on the regulatory choice in the Mississippi and Central Flyways. 

Based on available estimates of harvest rates of mallards banded in California and Oregon during 1990–1995 
and 2002–2007, there was no apparent relationship between harvest rate and regulatory changes in the Pacifc 
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Flyway. This is unusual given our ability to document such a relationship in other mallard stocks and in other 
species. We note, however, that the period 2002–2007 was comprised of both stable and liberal regulations 
and harvest rate estimates were based solely on reward bands. Regulations were relatively restrictive during 
most of the earlier period and harvest rates were estimated based on standard bands using reporting rates 
estimated from reward banding during 1987–1988. Additionally, 1993–1995 were transition years in which 
full-address and toll-free bands were being introduced and information to assess their reporting rates (and 
their efects on reporting rates of standard bands) is limited. Thus, the two periods in which we wish to 
compare harvest rates are characterized not only by changes in regulations, but also in estimation methods. 

Consequently, we lack a sound empirical basis for predicting harvest rates of western mallards associated 
with current regulatory alternatives other than liberal in the Pacifc Flyway. In 2009, we began using 
Bayesian statistical methods for improving regulation-specifc predictions of harvest rates (see Appendix K). 
The methodology is analogous to that currently in use for mid-continent mallards except that the marginal 
efect of framework date extensions in moderate and liberal alternatives is inestimable because there are no 
data prior to implementation of extensions. In 2008, we specifed prior regulation-specifc harvest rates of 
0.01, 0.06, 0.09, and 0.11 with associated standard deviations of 0.003, 0.02, 0.03, and 0.03 for the closed, 
restrictive, moderate, and liberal alternatives, respectively. The prior for the liberal regulation was then 
updated in 2011 with a harvest rate of 0.12 and standard deviation of 0.04. The harvest rates for the liberal 
alternative were based on empirical estimates realized under the current liberal alternative during 2002– 
2007 and determined from adult male mallards banded with reward and standard bands adjusted for band 
reporting rates in the southern Pacifc Flyway. The development of priors was based on banding information 
from California and Oregon data only. Recently, we assessed the band-recovery data from Washington, Idaho, 
and British Columbia and found that the addition of these bands had a negligible infuence on harvest rate 
estimates of western mallards. As a result, we have included Washington, Idaho, and British Columbia band-
recovery information in our annual updates to western mallard harvest rate distributions. Harvest rates for 
the moderate and restrictive alternatives were based on the proportional (0.85 and 0.51) diference in harvest 
rates expected for mid-continent mallards under the respective alternatives. Finally, harvest rate for the 
closed alternative was based on what we might realize with a closed season in the United States (including 
Alaska) and a very restrictive season in Canada, similar to that for mid-continent mallards. A relatively 
large standard deviation (CV = 0.3) was chosen to refect greater uncertainty about the means than that 
for mid-continent mallards (CV = 0.2). Current predictions of harvest rates of adult male western mallards 
associated with each regulatory alternative are provided in Table 2. 

The harvest rates expected under the liberal season for the four populations associated with the Atlantic 
Flyway’s multi-stock AHM were based on the average observed harvest rate from 1998–2014 for each species. 
The harvest rates for American green-winged teal and wood ducks were based on preseason banding and 
dead recovery data adjusted for reporting rates similar to mid-continent and western mallards. Because the 
discrete logistic model used for these species does not include age or sex structure, banding data for all cohorts 
were pooled to estimate an overall harvest rate. Insufcient banding data precluded the estimation of harvest 
rates for ring-necked ducks and goldeneyes in the Atlantic Flyway based on band recovery information, so 
harvest estimates from the Harvest Information Program were used to monitor harvest levels for these species 

Table 2 – Predictions of harvest rates of adult male, mid-continent and western mallards expected with appli-
cation of the current regulatory alternatives in the Mississippi, Central and Pacifc Flyways. 

Mid-continent Western 

Regulatory Alternative Mean SD Mean SD 

Closed (U.S.) 

Restrictive 

Moderate 

Liberal 

0.009 

0.055 

0.094 

0.110 

0.002 

0.013 

0.022 

0.016 

0.008 

0.070 

0.117 

0.137 

0.018 

0.017 

0.029 

0.027 
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in the multi-stock framework. Specifcally, we estimated a fall population size from the discrete logistic model 
and calculated a harvest rate as the total harvest divided by the fall population size for ring-necked ducks 
and goldeneyes. The estimated harvest rates for each species under each regulation are listed in Table 3. 

8 OPTIMAL REGULATORY STRATEGIES 

The adoption of the preferred alternative specifed in SEIS 2013 (U.S. Department of the Interior 2013) re-
sulted in a new decision process based on a single regulatory meeting in the fall of year t to inform regulations 
for the next year’s hunting season in year t + 1 (Appendix B). As a result, regulatory decisions are made in 
advance of observing the status of waterfowl breeding populations (BPOP) and habitat conditions during the 
spring prior to the upcoming hunting season. With the implementation of the SEIS, pre-survey regulatory 
decisions introduce a lag in the AHM process where model weight updating and state-dependent decision 
making are now governed by the previous year’s monitoring information. Given that the original AHM pro-
tocols and decision frameworks were structured to inform decisions based on current monitoring information 
(i.e., post-survey), several technical adjustments and a new optimization framework were developed to sup-
port a pre-survey decision process. We revised the optimization procedures used to derive harvest policies 
by structuring the decision process based on the information that is available at the time of the decision, 
which includes the previous year’s observation of the system, the previous year’s regulation, and the latest 
update of model weights. Based on this new formulation, the prediction of future system states and harvest 
values now account for all possible outcomes from previous decisions, and as a result, the optimal policy is 
now conditional on the previous year’s regulation. We modifed the optimization code used for each AHM 
decision framework in order to continue to use stochastic dynamic programming (Williams et al. 2002) to 
derive optimal harvest policies while accounting for the pre-survey decision process (Johnson et al. 2016). 
Adjustments to these optimization procedures necessitated considerations of how closed season constraints 
and diferent objective functions were represented. Currently, we have implemented the closed season con-
straints and utility devaluation for mid-continent mallards conditional on the last observed state. With the 
cooperation of the Harvest Management Working Group, we are exploring alternative ways to implement 
these constraints that would be more consistent with the intent of the original specifcation (i.e., post-survey 
decision framework). A comparison of optimization and simulation results from pre- and post-survey AHM 
protocols suggested that the adjustments to the optimization procedures to account for changes in decision 
timing were not expected to result in major changes in expected management performance (Boomer et al. 
2015). Updated optimization code was developed with the MDPSOLVE© (Fackler 2011) software tools 
implemented in MATLAB (2016). 

Using stochastic dynamic programming (Williams et al. 2002) to evaluate a pre-survey decision process, 
we calculated the optimal regulatory strategy for the Mississippi and Central Flyways based on: (1) the 
dual objectives of maximizing long-term cumulative harvest and achieving a population goal of 8.5 million 
mid-continent mallards; (2) current regulatory alternatives and the closed-season constraint; and (3) current 
mid-continent mallard population models and associated weights. The resulting regulatory strategy includes 
options conditional on the regulatory alternative selected the previous hunting season (Figure 6). Note that 

Table 3 – Predictions of harvest rates of American green-winged teal (AGWT), wood ducks (WODU), ring-necked 
ducks (RNDU), and goldeneyes (GOLD) expected under closed, restrictive, moderate, and liberal regulations in 
the Atlantic Flyway. 

Regulatory Alternative AGWT WODU RNDU GOLD 

Closed (U.S.) 0.017 0.006 0.025 0.005 

Restrictive 0.057 0.075 0.058 0.008 

Moderate 0.089 0.091 0.097 0.015 

Liberal 0.117 0.124 0.131 0.029 
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Figure 6 – Mid-continent mallard pre-survey harvest policies derived with updated optimization methods that 
account for changes in decision timing associated with adaptive harvest management protocols specifed in the 
SEIS 2013. Harvest policies were calculated with current regulatory alternatives (including the closed-season 
constraint), mid-continent mallard models and weights, and the dual objectives of maximizing long-term cumu-
lative harvest and achieving a population goal of 8.5 million mallards. 

prescriptions for closed seasons in this strategy represent resource conditions that are insufcient to support 
one of the current regulatory alternatives, given current harvest-management objectives and constraints. 
However, closed seasons under all of these conditions are not necessarily required for long-term resource pro-
tection, and simply refect the NAWMP population goal and the nature of the current regulatory alternatives. 
Assuming that harvest management adhered to this strategy (and that current model weights accurately re-
fect population dynamics), breeding-population size would be expected to average 7.14 million (SD = 1.60 
million). Based on a liberal regulatory alternative selected for the 2021 hunting season, the predicted 2021 
breeding population size of 8.62 million mid-continent mallards and 2.94 million ponds predicted in Prairie 
Canada, the optimal choice for the 2022 hunting season in the Mississippi and Central Flyways is the liberal 
regulatory alternative (Table 4). 

We calculated the optimal regulatory strategy for the Pacifc Flyway based on: (1) an objective to maximize 
long-term cumulative harvest; (2) current regulatory alternatives; and (3) current population models and 
parameter estimates. The resulting regulatory strategy includes options conditional on the regulatory alter-
native selected the previous hunting season (Figure 7). We simulated the use of this regulatory strategy to 
determine expected performance characteristics. Assuming that harvest management adhered to this strategy 
(and that current model parameters accurately refect population dynamics), breeding-population size would 
be expected to average 0.55 million (SD = 0.05 million) in Alaska and 0.55 million (SD = 0.03 million) in the 
southern Pacifc Flyway. Based on a liberal regulatory alternative selected for the 2021 hunting season, an 
observed 2021 breeding population size of 0.64 million mallards for Alaska, and a predicted population size 
of 0.53 million for the southern Pacifc Flyway, the optimal choice for the 2022 hunting season in the Pacifc 
Flyway is the liberal regulatory alternative (Table 5). 

We calculated the optimal regulatory strategy for the Atlantic Flyway based on: (1) an objective to achieve 
98% of the maximum, long-term cumulative harvest for the aggregate of the four species; (2) current reg-
ulatory alternatives; and (3) current population models and parameter estimates. The resulting regulatory 
strategy includes options conditional on the regulatory alternative selected the previous hunting season (Fig-
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Table 4 – Optimal regulatory strategya for the Mississippi and Central Flyways for the 2022 hunting season 
predicated on a liberal alternative selected the previous year (2021). This strategy is based on the current 
regulatory alternatives (including the closed-season constraint), mid-continent mallard models and weights, and 
the dual objectives of maximizing long-term cumulative harvest and achieving a population goal of 8.5 million 
mallards. The shaded cell indicates the regulatory prescription for the 2022 hunting season. 

Pondsc 

BPOPb 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 

≤4.50 C C C C C C C C C C C C C C C C C C C 

4.75 R R R R R R R R R R R R R R R R R R R 

5.00 R R R R R R R R R R R R R R R R R R R 

5.25 R R R R R R R R R R R R R R R R R R R 

5.50 R R R R R R R R R R R R R R R R R R R 

5.75 R R R R R R R R R R R R R R R R R R R 

6.00 R R R R R R R R R R R R R R R R R R R 

6.25 R R R R R R R R R R R R R R R R R R R 

6.50 R R R R R R R R R R R R R R R R M L L 

6.75 R R R R R R R R R R R R R M L L L L L 

7.00 R R R R R R R R R R M L L L L L L L L 

7.25 R R R R R R R R M L L L L L L L L L L 

7.50 R R R R R R L L L L L L L L L L L L L 

7.75 R R R M L L L L L L L L L L L L L L L 

8.00 R R L L L L L L L L L L L L L L L L L 

8.25 M L L L L L L L L L L L L L L L L L L 

8.50 L L L L L L L L L L L L L L L L L L L 

≥8.75 L L L L L L L L L L L L L L L L L L L 

a C = closed season, R = restrictive, M = moderate, L = liberal. 
b Mallard breeding population size (in millions) observed in the WBPHS (strata 13–18, 20–50, 75–77) and Michigan, 
Minnesota, and Wisconsin. 

c Ponds (in millions) observed in Prairie Canada in May. 
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Figure 7 – Western mallard pre-survey harvest policies derived with updated optimization methods that account 
for changes in decision timing associated with adaptive harvest management protocols specifed under the SEIS 
2013. This strategy is based on current regulatory alternatives, updated (1990–2020) western mallard population 
models and parameter estimates, and an objective to maximize long-term cumulative harvest. 

Table 5 – Optimal regulatory strategya for the Pacifc Flyway for the 2022 hunting season predicated on a 
liberal alternative selected the previous year (2021). This strategy is based on current regulatory alternatives, 
updated (1990–2020) western mallard population models and parameter estimates, and an objective to maximize 
long-term cumulative harvest. The shaded cell indicates the regulatory prescription for 2022. 

Southern Alaska BPOPb 

Pacifc Flyway 
BPOPc 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 ≥0.75 

0.05 C C C C C C C R L L L L L L L 

0.10 C C C C C C M L L L L L L L L 

0.15 C C C C R L L L L L L L L L L 

0.20 C C C L L L L L L L L L L L L 

0.25 C R L L L L L L L L L L L L L 

0.30 R L L L L L L L L L L L L L L 

0.35 L L L L L L L L L L L L L L L 

0.40 L L L L L L L L L L L L L L L 

0.45 L L L L L L L L L L L L L L L 

0.50 L L L L L L L L L L L L L L L 

0.55 L L L L L L L L L L L L L L L 

0.60 L L L L L L L L L L L L L L L 

0.65 L L L L L L L L L L L L L L L 

0.70 L L L L L L L L L L L L L L L 

≥0.75 L L L L L L L L L L L L L L L 

a C = closed season, R = restrictive, M = moderate, L = liberal. 
b Estimated number of mallards (in millions) observed in Alaska (WBPHS strata 1–12). 
c Estimated number of mallards (in millions) observed in the southern Pacifc Flyway (California, Oregon, Washington, and 
British Columbia combined). 
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Figure 8 – A graphical representation of the Atlantic Flyway multi-stock pre-survey harvest policies derived 
with updated optimization methods that account for changes in decision timing associated with adaptive harvest 
management protocols specifed under the SEIS 2013. This strategy is based on current regulatory alterna-
tives, updated (1998–2020) population models and parameter estimates, and an objective to achieve 98% of the 
maximum, long-term cumulative harvest of the aggregate stocks. The classifcation trees are a statistical repre-
sentation of the policies and do not depict all possible combinations of breeding population states and regulatory 
alternatives. 

ure 8). We simulated the use of this regulatory strategy to determine expected performance characteristics. 
Assuming that harvest management adhered to this strategy (and that the population models accurately 
refect population dynamics), breeding-population sizes would be expected to average 0.37 (SD = 0.03), 1.01 
(SD = 0.06), 0.56 (SD = 0.04), and 0.62 (SD = 0.10) million for American green-winged teal, wood ducks, 
ring-necked ducks, and goldeneyes, respectively. Based on a liberal regulatory alternative selected for the 2021 
hunting season, an estimated wood duck population of 1.02 million, and predicted 2021 breeding population 
sizes of 0.34 million American green-winged teal, 0.71 million ring-necked ducks, and 0.59 million goldeneyes, 
the optimal choice for 2022 hunting season in the Atlantic Flyway is the liberal regulatory alternative (see 
Table 6). 

9 APPLICATION OF ADAPTIVE HARVEST MANAGEMENT 
CONCEPTS TO OTHER STOCKS 

The USFWS is working to apply the principles and tools of AHM to improve decision-making for several 
other stocks of waterfowl. Below, we provide AHM updates for the 2022 hunting season that are currently 
informing American black duck, northern pintail, and scaup harvest management decisions. 

9.1 American Black Duck 

Federal, state, and provincial agencies in the U.S. and Canada agreed that an international harvest strategy 
for black ducks is needed because the resource is valued by both countries and both countries have the 
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Table 6 – Optimal regulatory strategya for the Atlantic Flyway for the 2022 hunting season. This strategy 
is based on current regulatory alternatives, species-specifc population models and parameter estimates, and an 
objective to achieve 98% of the maximum, long-term cumulative harvest of the aggregate stocks. Predicated on 
a liberal alternative selected the previous year (2021), the shaded cells indicate current breeding population sizes 
and the regulatory prescription for 2022. 

Speciesb Population (in millions) 

AGWT WODU RNDU GOLD Regulation 

0.276 0.877 0.684 0.576 L 

0.276 0.877 0.684 0.695 L 

0.276 0.877 0.830 0.576 L 

0.276 0.877 0.830 0.695 L 

0.276 1.136 0.684 0.576 L 

0.276 1.136 0.684 0.695 L 

0.276 1.136 0.830 0.576 L 

0.276 1.136 0.830 0.695 L 

0.364 0.877 0.684 0.576 L 

0.364 0.877 0.684 0.695 L 

0.364 0.877 0.830 0.576 L 

0.364 0.877 0.830 0.695 L 

0.364 1.136 0.684 0.576 L 

0.364 1.136 0.684 0.695 L 

0.364 1.136 0.830 0.576 L 

0.364 1.136 0.830 0.695 L 

a C = closed season, M = moderate, R = restrictive, L = liberal. 
b AGWT = American green-winged teal, WODU = wood duck, RNDU = ring-necked duck, GOLD = goldeneyes. 
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ability to infuence the resource through harvest. The partners also agreed a harvest strategy should be 
developed with an AHM approach based on the integrated breeding-ground survey data (Zimmerman et al. 
2012, U.S. Fish and Wildlife Service 2019). Finally, the strategy should also provide a formal approach to 
determining appropriate harvest levels and fair allocation of the harvest between countries (Conroy 2010). 

The overall goals of the Black Duck International Harvest strategy include: 

(1) maintain a black duck population that meets legal mandates and provides consumptive and non-
consumptive use commensurate with habitat carrying capacity; 

(2) maintain societal values associated with the hunting tradition; and 

(3) maintain equitable access to the black duck resource in Canada and the U.S. 

The objectives of the harvest strategy are to achieve 98% of the long-term cumulative harvest and to share 
the allocated harvest (i.e., parity) equitably between countries. Historically, the realized allocation of harvest 
between Canada and the U.S. has ranged from 40% to 60% in either country. Recognizing the historical 
allocation and acknowledging incomplete control over harvest, parity is achieved through a constraint which 
discounts combinations of country-specifc harvest rates that are expected to result in allocation of harvest 
that is >50% in one country. The constraint applies a mild penalty on country-specifc harvest options 
that result in one country receiving >50% but <60% of the harvest allocation and a stronger discount on 
combinations resulting in one country receiving >60% of the harvest allocation (Figure 9). The goals and 
objectives of the black duck AHM framework were developed through a formal consultation process with 
representatives from the CWS, USFWS, Atlantic Flyway Council and Mississippi Flyway Council. 

Country-specifc harvest opportunities were determined from a set of expected harvest rate distributions 
defned as regulatory alternatives. Canada has developed 4 regulatory alternatives (liberal, moderate, re-
strictive and closed); and the U.S. has developed 3 (moderate, restrictive, closed; Figure 10). Expected 
harvest rates under each regulatory alternative are updated annually using Bayesian methods and modeling 

Figure 9 – Functional form of the harvest parity constraint designed to allocate allowable black duck harvest 
equally between the U.S. and Canada. The value of p is the proportion of harvest allocated to one country, and 
U is the utility of a specifc combination of country-specifc harvest options in achieving the objective of black 
duck adaptive harvest management. 
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Figure 10 – Predictive harvest rate distributions for adult male black ducks expected under the application of 
the current regulatory alternatives in Canada (left) and the U.S. (right). 

the mean harvest rate and variance using a beta-binomial distribution. The beta-binomial distribution is 
updated annually conditional on the country specifc regulatory alternative implemented the previous year. 
Since the implementation of black duck AHM, neither the closed alternative (in either country) or the re-
strictive alternative in Canada have been implemented. Therefore, we assume a prior distribution with mean 
harvest rate of 0.01 (±0.001 SE) and 0.021 (±0.0013 SE) for the closed and Canadian restrictive alternatives, 
respectively. The closed alternative requires either country to prohibit black duck harvest. The expected har-
vest rates (and associated variances) for the 2022 Canadian liberal and U.S. moderate alternatives are based 
on prior distributions and banding data resulting in relatively broad, posterior harvest rate distributions 
(see Figure 10). Canada and the U.S. will determine, independently, appropriate regulations designed to 
achieve their prescribed harvest targets as identifed under the regulatory alternatives. Regulations will vary 
independently between countries based on the status of the population and optimal strategy as determined 
through the AHM protocol. 

The AHM model is based on spring breeding-ground abundance as estimated by the integrated Eastern 
Waterfowl Survey from the core survey area. The core survey area is comprised of USFWS survey strata 51, 
52, 63, 64, 66, 67, 68, 70, 71, and 72. The American black duck population measure is based on “indicated 
pairs”, defned as 1 individual observed equals 1 indicated pair whereas a group of 2 is assumed to represent 
1.5 indicated pairs. Fall age ratios are estimated using harvest age ratios derived from the USFWS and CWS 
parts collection surveys, adjusted for diferential vulnerability. Age- and sex-specifc harvest rates are based 
on direct recoveries of black ducks banded in Canada, 1990–2020, adjusted by country- and band inscription-
specifc reporting rates. Direct and indirect band recoveries of adult and juvenile male and female black ducks 
banded in Canada, 1990–2020, were used to estimate age- and sex-specifc annual survival rates. 

The black duck AHM framework is based on two hypotheses regarding black duck population ecology. The 
frst hypothesis states that black duck population growth is limited by competition with mallards during the 
breeding season. As the efect of mallard competition (c2 ) increases, black duck productivity decreases which 
then limits black duck population growth. The second hypothesis states that black duck population growth 
is limited by harvest because hunting mortality is additive to natural mortality. As the efect of harvest 
mortality, or additivity (a1 ) increases, annual survival decreases and limits black duck population growth. 
The current AHM framework incorporates each of these hypotheses into a single parametric (i.e., regression) 
model. Estimates of each parameter (i.e., mallard competition and additive hunting mortality) are updated 
with current year’s monitoring data (Figure 11) and are used to establish annual harvest regulations. In 2021, 
the c2 parameter was impacted by a minor correction in model structure. Thus, the change in c2 in 2021 
relative to previous years does not refect any known changes in system dynamics. For 2021, we used the 
black duck integrated population model with the most recent information to predict a breeding population 
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of 0.54 million. We then forecasted the 2021 eastern mallard population with recent data (see Appendix E) 
which resulted in a predicted value equal to 0.39 million. 

Optimal country-specifc regulatory strategies for the 2022 hunting season were calculated using: (1) the 
black duck harvest objective (98% of long-term cumulative harvest); (2) current, country-specifc regulatory 
alternatives (see Figure 10); (3) current parameter estimates for mallard competition and additive mortality 
(see Figure 11); (4) 2021 median predictions of 0.54 million breeding black ducks and 0.39 million breeding 
mallards in the core survey area; and (5) the country-specifc 2021 regulations (liberal in Canada and moderate 
in the U.S). The optimal regulatory choices are the liberal alternative in Canada and moderate alternative 
in the U.S. (Table 7). 

9.2 Northern Pintails 

In 2010, the Flyway Councils and the USFWS established an adaptive management framework to inform 
northern pintail harvest decisions. The current protocol is based on: (1) an explicit harvest management 
objective; (2) regulatory alternatives that do not permit partial seasons (i.e., shorter pintail season within the 
general duck season) or 3-bird daily bag limits; (3) a formal optimization process using stochastic dynamic 
programming (Williams et al. 2002); (4) harvest allocation on a national rather than Flyway-by-Flyway basis, 
with no explicit attempt to achieve a particular allocation of harvest among Flyways; and (5) current system 
models. Details describing the historical development of the technical and policy elements of the northern 
pintail adaptive management framework can be found in the northern pintail harvest strategy document 
(U.S. Fish and Wildlife Service 2010). 

The harvest-management objective for the northern pintail population is to maximize long-term cumulative 
harvest, which inherently requires perpetuation of a viable population. This objective is specifed under 
a constraint that provides for an open hunting season when the observed breeding population is ≥1.75 
million birds (based on the lowest observed breeding population size since 1985 of 1.79 million birds in 2002). 
The single objective and constraint, in conjunction with the regulatory alternatives were determined after 
an intensive consultation process with the waterfowl management community. The resulting management 
objective serves to integrate and balance multiple competing objectives for pintail harvest management, 
including minimizing closed seasons, eliminating partial seasons, maximizing seasons with liberal season 
length and greater than 1-bird daily bag limit, and minimizing large changes in regulations. 

The adaptive management protocol considers a range of regulatory alternatives for pintail harvest manage-
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Figure 11 – Updated median estimates of black duck harvest additivity (a1 ; top panel) and mallard competition 
(c2 ; bottom panel) parameters over time. Error bars represent 95% credibility intervals. 
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Table 7 – Black duck optimal regulatory strategiesa for Canada and the United States for the 2022 hunting 
season predicated on a liberal alternative selected by Canada and a moderate alternative selected by the United 
States the previous year (2021). This strategy is based on current regulatory alternatives, the black duck model, 
and the objective of achieving 98% of the maximum, long-term cumulative harvest and to share the allocated 
harvest (i.e., parity) equitably between countries. The shaded cell indicates the regulatory prescription for each 
country in 2022. 

Canada MALLb 

ABDUb 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05 C C C C C C C C C C C C C C C C C R 

0.10 R C C C C C C C C C C C C C C C C R 

0.15 M M R R R R C C C C C C C C C C R R 

0.20 L L M M M R R R R R R R R R R R R M 

0.25 L L L M M M M M R R R R R R R M M M 

0.30 L L L L L M M M M M M M M M M M M L 

0.35 L L L L L L L M M M M M M M M M L L 

0.40 L L L L L L L L L L L M M M L L L L 

0.45 L L L L L L L L L L L L L L L L L L 

0.50 L L L L L L L L L L L L L L L L L L 

0.55 L L L L L L L L L L L L L L L L L L 

0.60 L L L L L L L L L L L L L L L L L L 

0.65 L L L L L L L L L L L L L L L L L L 

0.70 L L L L L L L L L L L L L L L L L L 

0.75 L L L L L L L L L L L L L L L L L L 

0.80 L L L L L L L L L L L L L L L L L L 

United States MALLb 

ABDUb 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

0.05 C C C C C C C C C C C C C C C C C R 

0.10 R C C C C C C C C C C C C C C C C R 

0.15 R R R R R R C C C C C C C C C C R R 

0.20 M M R R R R R R R R R R R R R R R R 

0.25 M M M M R R R R R R R R R R R R R R 

0.30 M M M M M R R R R R R R R R R R R R 

0.35 M M M M M M R M R R R R R R R R R M 

0.40 M M M M M M M M M R R M R M R R M M 

0.45 M M M M M M M M M M M M M M M M M M 

0.50 M M M M M M M M M M M M M M M M M M 

0.55 M M M M M M M M M M M M M M M M M M 

0.60 M M M M M M M M M M M M M M M M M M 

0.65 M M M M M M M M M M M M M M M M M M 

0.70 M M M M M M M M M M M M M M M M M M 

0.75 M M M M M M M M M M M M M M M M M M 

0.80 M M M M M M M M M M M M M M M M M M 

a C = closed season, R = restrictive, M = moderate, L = liberal. 
b Mallard and black duck breeding population sizes (in millions). 
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Table 8 – Substitution rules in the Central and Mississippi Flyways for joint implementation of northern pintail 
and mallard harvest strategies. The mid-continent mallard AHM strategy stipulates the maximum season length 
for pintails in the Central and Mississippi Flyways. The substitutions are used when the mid-continent mallard 
season length is less than liberal. For example, if the pintail strategy calls for a liberal season length with a 2-bird 
daily bag limit, but the mid-continent mallard strategy calls for a restrictive season length, the recommended 
pintail regulation for the Central and Mississippi Flyways would be restrictive in length with a 3-bird daily bag 
limit. 

Pintail Mid-continent mallard adaptive harvest management season length 

Regulation Closed Restrictive Moderate Liberal 

Closed Closed Closed Closed Closed 

Liberal 1 Closed Restrictive 3 Moderate 3 Liberal 1 

Liberal 2 Closed Restrictive 3 Moderate 3 Liberal 2 

ment that includes a closed season, 1-bird daily bag limit, or 2-bird daily bag limit. The maximum pintail 
season length depends on the general duck season framework (characterized as liberal, moderate, or restrictive 
and varying by Flyway) specifed by mallard or multi-stock AHM. An optimal pintail regulation is calculated 
under the assumption of a liberal mallard or multi-stock season length in all Flyways. However, if the season 
length of the general duck season determined by mallard or multi-stock AHM is less than liberal in any 
of the Flyways, then an appropriate pintail daily bag limit would be substituted for that Flyway. Thus, a 
shorter season length dictated by mallard or multi-stock AHM would result in an equivalent season length 
for pintails, but with increased bag limit if the expected harvest remained within allowable limits. 

Regulatory substitution rules have been developed for the Central and Mississippi Flyways, where the general 
duck season length is driven by the mid-continent mallard AHM protocol (Table 8). These substitutions were 
determined by fnding a pintail daily bag limit whose expected harvest was less than or equal to that called for 
under the national recommendation. Thus, if the national pintail harvest strategy called for a liberal 2-bird 
bag limit, but the mid-continent mallard season length was moderate, the recommended pintail regulation 
for the Central and Mississippi Flyways would be moderate in length with a 3-bird bag limit. Because 
season lengths more restrictive than liberal are expected infrequently in the Atlantic and Pacifc Flyways 
under current eastern multi-stock and western mallard AHM strategies, substitution rules have not yet been 
developed for these Flyways. If shorter season lengths were called for in the Pacifc or Atlantic Flyway, then 
similar rules would be specifed for these Flyways and used to identify the appropriate substitution. In all 
cases, a substitution produces a lower expected harvest than the harvest allowed under the pintail strategy. 

The current AHM protocol for pintails considers two population models. Each model represents an alternative 
hypothesis about the efect of harvest on population dynamics: one in which harvest is additive to natural 
mortality, and another in which harvest is compensatory to natural mortality. The compensatory model 
assumes that the mechanism for compensation is density-dependent post-harvest (winter) survival. The 
models difer only in how they incorporate the winter survival rate. In the additive model, winter survival 
rate is a constant, whereas winter survival is density-dependent in the compensatory model. A complete 
description of the model set used to predict pintail population change can be found in Appendix L. Model 
weights for the pintail model set have been updated annually since 2007 by comparing model predictions with 
observed survey results. As of 2021, model weights favor the hypothesis that harvest mortality is additive 
(57.5%). For 2021, we used the pintail model set to calculate a weighted average of 2.50 million (SE = 0.48 
million) on the observed scale. We updated the latitude model with recent data (see Appendix F) to forecast 
the 2021 pintail breeding distribution (latitude) which resulted in a predicted value equal to 55.47 (SE = 1.85) 
degrees. 

An optimal regulatory strategy for the 2022 hunting season was calculated for northern pintails using: (1) an 
objective to maximize long-term cumulative harvest; (2) current regulatory alternatives and the closed-season 
constraint; and (3) current population models and model weights. The resulting regulatory strategy includes 
options conditional on the regulatory alternative selected the previous hunting season (Figure 12). Based on 
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Figure 12 – Northern pintail pre-survey harvest policies derived with updated optimization methods that account 
for changes in decision timing associated with adaptive harvest management protocols specifed in the SEIS 2013. 
This strategy is based on current regulatory alternatives, current population models and their weights, and an 
objective to maximize long-term cumulative harvest. 

a liberal, 1-bird daily bag limit, regulatory alternative selected for the 2021 hunting season, a predicted 2021 
breeding population size of 2.50 million pintails, and a forecasted mean latitude of 55.47 degrees, the optimal 
regulatory choice for the 2022 hunting season for all four Flyways is the liberal regulatory alternative with a 
1-bird daily bag limit (Table 9). 

9.3 Scaup 

The USFWS implemented an AHM decision-making framework to inform scaup harvest regulations in 2008 
(Boomer and Johnson 2007). Prior to the implementation of the SEIS 2013, the scaup AHM protocol frst 
derived optimal harvest levels which were then used to determine the recommended regulatory package. Each 
year, an optimization was performed to identify the optimal harvest level based on updated scaup population 
parameters. The harvest regulation was then determined by comparing the optimal harvest level to the 
harvest thresholds corresponding to restrictive, moderate, and liberal packages (see Boomer et al. 2007). Due 
to the changes in decision timing associated with the SEIS, these procedures are not possible because decision 
makers would have to condition their regulatory decision on the harvest levels observed during the previous 
hunting season and this information would not be available. As a result, the decision variable (harvest) in 
the scaup optimization was changed from harvest levels to a set of packages with associated expected harvest 
levels in the updated optimization methods. We used the thresholds identifed in Boomer et al. (2007) to 
specify expected harvest levels for each package (Table 10). To account for partial controllability of the scaup 
harvest, we assumed that the harvest under each package could be represented with a normal distribution 
with the mean set to the expected harvest level, assuming a coefcient of variation equal to 20%. 

Initial scaup regulatory alternatives associated with restrictive, moderate, and liberal packages were developed 
based on a simulation of an optimal policy derived under an objective to achieve 95% of the maximum, 
long-term cumulative harvest (Boomer et al. 2007). This objective resulted in a strategy less sensitive to 
small changes in population size compared to a strategy derived under an objective to achieve 100% of 
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Table 9 – Northern pintail optimal regulatory strategya for the 2022 hunting season predicated on a liberal 
season and a 1-bird daily bag limit selected the previous year (2021). This strategy is based on current regulatory 
alternatives, northern pintail models and weights, and the objective of maximizing long-term cumulative harvest 
constrained to provide for an open hunting season when the observed breeding population is ≥1.75 million birds. 
The shaded cell indicates the regulatory prescription for 2022. 

Mean latitudec 

BPOPb 53 53.2 53.4 53.6 53.8 54 54.2 54.4 54.6 54.8 55 55.2 55.4 55.6 55.8 56 56.2 56.4 56.6 56.8 57 

≤ 1.7 C C C C C C C C C C C C C C C C C C C C C 

1.8 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

1.9 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.3 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.4 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.5 L2 L2 L2 L2 L2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 

2.6 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 

2.7 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 

2.8 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 

2.9 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 

≥3 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 

a C = closed season, L1 = liberal season with 1-bird daily bag limit, L2 = liberal season with 2-bird daily bag limit. 
b Observed northern pintail breeding population size (in millions) from the WBPHS (strata 1–18, 20–50, 75–77). 
c Mean latitude (in degrees) is the average latitude of the WBPHS strata weighted by population size. 
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Table 10 – Regulatory alternativesa and total expected harvest levels corresponding to the closed, restrictive, 
moderate, and liberal packages considered in the scaup adaptive harvest management decision framework. 

Package Atlantic Mississippi Central Pacifc Expected Harvestc 

Closed 0.04 

Restrictive 20(2)/40(1)b 45(2)/15(1)b 39(2)/35(1)b 86(2) 0.20 

Moderate 60(2) 60(3) 74(3) 86(3) 0.35 

Liberal 60(4) 60(4) 74(6) 107(7) 0.60 
a Season length in days (daily bag limit); these alternatives assume an overall liberal adaptive harvest management 
framework as determined by the status of mallards or multiple stocks in the Atlantic Flyway. 

b Multiple day and daily bag limit combinations refer to hybrid seasons which allow for diferent daily bag limits over a 
continuous season length. 

c Total harvest in millions (Canada and United States combined). 

the maximum, long-term cumulative harvest and allowed for some harvest opportunity at relatively low 
population sizes. The USFWS worked with the Flyways to specify Flyway-specifc regulatory alternatives 
to achieve the allowable harvest thresholds corresponding to each package. At this time, the USFWS also 
agreed to consider “hybrid season” options that would be available to all Flyways for the restrictive and 
moderate packages. Hybrid seasons allow daily bag limits to vary for certain continuous portions of the scaup 
season length. In 2008, restrictive, moderate, and liberal scaup regulatory alternatives were defned and 
implemented in all four Flyways. Subsequent feedback from the Flyways led the USFWS to further clarify 
criteria associated with the establishment of “hybrid seasons” and to allow additional modifcations of the 
alternatives for each Flyway resulting in updated regulatory alternatives that were adopted in 2009. Because 
of the considerable uncertainty involved with predicting scaup harvest, the USFWS and the Flyways agreed 
to keep these packages in place for at least 3 years. In 2013, the moderate packages for the Mississippi and 
Central Flyways were modifed to include a 3-bird daily bag limit. 

The lack of scaup demographic information over a sufcient time frame and at a continental scale precludes 
the use of a traditional balance equation to represent scaup population and harvest dynamics. As a result, we 
used a discrete-time, stochastic, logistic-growth population model to represent changes in scaup abundance, 
while explicitly accounting for scaling issues associated with the monitoring data. Details describing the 
modeling and assessment framework that has been developed for scaup can be found in Appendix M and in 
Boomer and Johnson (2007). 

We updated the scaup assessment based on the current model formulation and data extending from 1974 
through 2020 and predicted the 2020–21 breeding population sizes. The 2021 breeding population prediction 
is equal to a median 3.53 million (SE = 0.56 ). As in past analyses, the state-space formulation and Bayesian 
analysis framework provided reasonable fts to the observed breeding population and total harvest estimates 
with realistic measures of variation. The posterior mean estimate of the intrinsic rate of increase (r) is 0.13 
while the posterior mean estimate of the carrying capacity (K ) is 8.87 million birds. The posterior mean 
estimate of the scaling parameter (q) is 0.76, ranging between 0.69 and 0.85 with 95% probability. 

An optimal regulatory strategy for the 2022 hunting season was calculated for scaup using: (1) an objective to 
achieve 95% of the maximum, long-term cumulative harvest; (2) current regulatory alternatives; and (3) the 
current population model and updated parameter estimates. The resulting regulatory strategy includes op-
tions conditional on the regulatory alternative selected the previous hunting season (Table 11). We simulated 
the use of this regulatory strategy to determine expected performance characteristics. Assuming that har-
vest management adhered to this strategy (and that current model parameters accurately refect population 
dynamics), breeding-population size would be expected to average 5.01 million (SD = 0.89 million). Based 
on a restrictive regulatory alternative selected for the 2021 hunting season and a predicted 2021 breeding 
population size of 3.53 million scaup, the optimal regulatory choice for the 2022 hunting season for all four 
Flyways is the restrictive regulatory alternative (see Table 11). 
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Table 11 – Scaup optimal regulatory strategya for the 2022 hunting season. This strategy is based on the 
current scaup population model and an objective to achieve 95% of the maximum, long-term cumulative harvest. 
Predicated on a restrictive regulatory alternative selected the previous year (2021), the shaded cell indicates the 
regulatory prescription for the 2022 hunting season. 

Previous Regulation 

BPOPb Closed Restrictive Moderate Liberal 

≤2.7 C C C C 

2.8 C C C C 

2.9 C C C C 

3.0 R C C C 

3.1 R R C C 

3.2 R R R C 

3.3 R R R C 

3.4 R R R R 

3.5 R R R R 

3.6 R R R R 

3.7 R R R R 

3.8 R R R R 

3.9 R R R R 

4.0 R R R R 

4.1 R R R R 

4.2 M R R R 

4.3 M M R R 

4.4 M M R R 

4.5 M M M R 

4.6 M M M M 

4.7 M M M M 

4.8 M M M M 

4.9 M M M M 

5.0 M M M M 

5.1 M M M M 

5.2 M M M M 

5.3 M M M M 

5.4 M M M M 

5.5 M M M M 

5.6 L M M M 

5.7 L M M M 

5.8 L L M M 

5.9 L L L M 

6.0 L L L M 

≥6.1 L L L L 

a C = closed season, R = restrictive, M = moderate, L = liberal. 
b Estimated scaup breeding population (in millions) observed in the WBPHS (strata 1–18, 20–50, 75–77). 
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10 EMERGING ISSUES IN ADAPTIVE HARVEST MANAGE-
MENT 

Learning occurs passively with current AHM protocols as annual comparisons of model predictions to ob-
servations from monitoring programs are used to update model weights and relative beliefs about system 
responses to management (Johnson et al. 2002) or as model parameters are updated based on an assessment 
of the most recent monitoring data (Boomer and Johnson 2007, Johnson et al. 2007). However, learning can 
also occur as decision-making frameworks are evaluated to determine if objectives are being achieved, have 
changed, or if other aspects of the decision problem are adequately being addressed. Often the feedback re-
sulting from this process results in a form of “double-loop” learning (Lee 1993) that ofers the opportunity to 
adapt decision-making frameworks in response to a shifting decision context, novel or emerging management 
alternatives, or a need to revise assumptions and models that may perform poorly or need to account for new 
information. Adaptive management depends on this iterative process to ensure that decision-making proto-
cols remain relevant in evolving biological and social systems. Throughout the waterfowl harvest management 
community, substantial progress has been made to outline the important issues that must be considered in 
the revision of each AHM protocol (Johnson et al. 2015). In response to these large-scale issues, the HMWG 
has been focusing eforts on the evolving needs of AHM and the role of the working group in planning for 
and executing the double-loop learning phase of AHM in relation to various decision-making frameworks. 

In addition, the HMWG has been discussing the technical challenges involved with dealing with large-scale 
habitat and environmental change on the decision-making frameworks used to inform waterfowl harvest 
management. We anticipate that large-scale system change will exacerbate most forms of uncertainty that 
afect waterfowl AHM, but we believe that the elements of the current AHM framework provide the necessary 
structure for coping with these changing systems (Nichols et al. 2011). 

The 2020 HMWG meeting focused on revisions to northern pintail AHM, time-dependent solutions to op-
timization problems, and problem framing of harvest management issues related to non-mallard stocks at 
continental scales (U.S. Fish and Wildlife Service 2020). The HMWG discussed changes to HMWG priorities 
and planned for a mid-summer conference call among working group members to discuss progress and current 
fscal-year, HMWG priorities. After this year’s July conference call, the HMWG proposed an updated set of 
fscal year (FY2022) priorities for 2022 (Appendix C). 
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Appendix A Harvest Management Working Group Members 

This list includes only permanent members of the Harvest Management Working Group. Not listed here are 
numerous persons from federal and state agencies that assist the Working Group on an ad-hoc basis. 
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Laurel, Maryland 20708-4017 

phone: 301-497-5684; fax: 301-497-5871 
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U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service 
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e-mail: tom cooper@fws.gov e-mail:bill uihlein@fws.gov 

Pam Toschik (Region 5) Brian Smith (Region 6) 

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service 

300 Westgate Center Drive P.O. Box 25486-DFC 
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fax: 301-497-5871 

e-mail: kathy feming@fws.gov 

Pat Devers (Headquarters) 
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U.S. Fish & Wildlife Service 

11510 American Holly Drive 

Laurel, MD 20708 

phone: 571-565-0199 

fax: 301-497-5871 

e-mail: pat devers@fws.gov 

Vacant (Headquarters) 
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U.S. Fish & Wildlife Service 
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fax: 

e-mail: 

Canadian Wildlife Service Representatives: 
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phone: 819-938-5418 

fax: 
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CT Dept. of Environmental Protection 
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fax: 916-414-6486 

e-mail: amedee brickey@fws.gov 
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U.S. Fish & Wildlife Service 

11510 American Holly Drive 

Laurel, Maryland 20708-4017 
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fax: 301-497-5871 

e-mail: 
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Todd Sanders (Headquarters) 

Pacifc Flyway Representative 

U.S. Fish & Wildlife Service 

1211 SE Cardinal Court, Suite 100 

Vancouver, WA 98683 

phone: 360-604-2562 

fax: 360-604-2505 

e-mail: todd sanders@fws.gov 

Jim Leafor 

Canadian Wildlife Service 

Suite 150, 123 Main Street 

Winnipeg, MB R3C 4W2 

phone: 204-983-5258 

fax: 

e-mail: jim.leafoor@canada.ca 

Josh Stiller (Atlantic Flyway) 

NYS Dept. of Environmental Conservation 

625 Broadway 

42 

mailto:jim.leafloor@canada.ca
mailto:sanders@fws.gov
mailto:scott@fws.gov
mailto:brickey@fws.gov
mailto:e-mail:christian.roy3@canada.ca
mailto:devers@fws.gov
mailto:fleming@fws.gov
mailto:taylor@fws.gov


391 Route 32 North Franklin, CT 06254 Albany, N.Y. 12233 
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Appendix B 2022-2023 Regulatory Schedule 

 SCHEDULE OF BIOLOGICAL INFORMATION AVAILABILITY, REGULATIONS MEETINGS AND 
FEDERAL REGISTER PUBLICATIONS FOR THE 2022–23 HUNTING SEASON

April 6, 2021 - Video-teleconference PROPOSED RULEMAKING (PRELIMINARY)
SRC Meeting WITH STATUS INFORMATION

and ISSUES

August 15 - September 15, 2021
Flyway Tech And Council Meetings

HUNTER ACTIVITY and HARVEST REPORT

March 2022 (at North American Conference)
Flyway Council Mtgs

February 25, 2022
FINAL SEASON FRAMEWORKS

June 1, 2022
ALL HUNTING SEASONS SELECTIONS
(Season Selections Due To USFWS April 30)

September 15, 2021

MEETING SCHEDULE FEDERAL REGISTER SCHEDULE

December 10, 2021

(30 Day Comment Period)

FALL and WINTER SURVEY

SURVEY & ASSESSMENT SCHEDULE

SUPPLEMENTAL PROPOSALS

August 20, 2021
AHM REPORT w/OPTIMAL ALTERNATIVES,

PROPOSED SEASON FRAMEWORKS

September 1, 2022 and later
ALL HUNTING SEASONS

September 28-29, 2021 - Video-teleconference

December 15, 2021–January 31, 2022

REGULATORY ALTERNATIVES, and

SPRING POPULATION SURVEYS
March–June, 2021

August 15, 2021
WATERFOWL STATUS REPORT

WEBLESS and CRANE STATUS
INFORMATION, DOVE and WOODCOCK

July 10, 2021

INFORMATION for CRANES  

SRC Regulatory Meeting

and WATERFOWL

Figure B.1 – Schedule of biological information availability, regulation meetings, and Federal Register  
publications for the 2022–2023 hunting season. 

44 



Appendix C 

Proposed FY2022 Harvest Management Working Group Priorities 

Table C.1 – Priority rankings and project leads identifed for the technical work proposed at the 2020 Harvest 
Management Working Group meeting and updated during the summer of 2021. 

Priority Level Status Participants 

Highest Priorities (Urgent and Important) 

Northern Pintail AHM revision On-going Flyway Councils, DMBM, 
USGS 

Reconsideration of North American duck harvest management 

Evaluation of Experimental two-tier license system 

Development of an Eastern mallard harvest strategy 

Re-invigorating institutional support for AHM 

On-going 

On-going 

On-going 

On-going 

Flyway Councils, DMBM 

Central Flyway, DMBM 

Atlantic Flyway, DMBM 

DMBM, HMWG commu-
nications team 

Long-range Priorities (Non-urgent, but Very Important) 

Time-dependent optimal solutions to address system change (e.g., 
habitat change; hunter dynamics; climate change). 

Western mallard AHM revision 

On-going 

On-going 

USGS, BADS 

Pacifc Flyway, BADS 

Additional Priorities 

Waterfowl Banding Needs Assessment On-going BADS, USGS, 
Councils 

Flyway 

Waterfowl harvest potential assessment methods case study de-
velopment 

On-going Atlantic 
DMBM 

Flyway Ofce, 
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Spring 2021 Forecasting Canadian Ponds:

G. Scott Boomer

Branch of Assessment and Decision Support
Division of Migratory Bird Management

U.S. Fish and Wildlife Service
scott_boomer@fws.gov

19 August 2021

Abstract

Due to the COVID-19 pandemic, waterfowl habitat conditions (ponds) were not directly observed
in the spring of 2021. As a result, waterfowl harvest regulations will have to be informed
with information based on predictions of breeding population sizes and habitat conditions. We
developed an estimation and forecasting framework to predict the number of Canadian ponds in
the spring of 2021 based on information that is available to decision makers during the regulations
process. We summarized annual, total precipitation for prairie Canada and used this variable as
a predictor in an autoregressive integrated moving average (ARIMA) estimation framework to
develop a model to forecast the number of Canadian ponds in 2021. The top ranked model that
was best supported by the data included a 1st order moving average term [ARIMA (0,0,1)]. Based
on 338 millimeters of precipitation observed in 2021 and the top ranked model, the 2021 forecast
of the number of Canadian ponds is 2.94 million (95% PI = 1.14 – 4.73).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to participate in the Waterfowl Breeding Population and Habitat Survey (WBPHS) to
estimate the 2021 waterfowl breeding populations as well as evaluate breeding habitat conditions. As
a result, the promulgation of waterfowl harvest regulations in 2021 will require some modifications
to the adaptive harvest management (AHM) decision protocols that typically govern the regulatory
process. For example, observed breeding population estimates are used to determine optimal levels
of harvest. In the absence of this information, the USFWS proposes to base 2021 regulatory decisions
on predictions of breeding population sizes and habitat conditions. Current system models for which
we have AHM decision frameworks will be used to predict 2021 population sizes based on previous
predictions of breeding population sizes and habitat conditions, along with harvest, and harvest
rates observed in 2020. Under the mid-continent mallard AHM decision framework, we use a 1st
order autoregressive time series model to predict the number of Canadian ponds as a function of
the number of ponds observed the previous year. Because this model was based on data from 1961 –
2001 we updated the original pond model that was developed for mid-continent mallard AHM with
more recent information, including an additional predictor (total precipitation) that is available at the
time decision makers will be considering regulatory decisions. The resulting estimation framework
predicts the number of Canadian ponds as a function of the number of ponds observed since 2019
and a measure of the total annual precipitation observed in prairie Canada.

Data
We are interested in predicting the number of Canadian ponds for the 2021 breeding season from
historical pond observations since 2019 and the total amount of recorded precipitation from a sample
of prairie weather stations from 1 June 2019 through 31 May 2021. Based on earlier work (Pospahala
et al. 1974, Johnson et al. 1997), we selected weather stations from the Canadian prairies with continual
observations of daily precipitation totals from 1961–2021 (Table 1). We then summarized the number
of Canadian ponds observed in the traditional survey area of the Waterfowl Breeding Population
and Habitat Survey (U.S. Fish and Wildlife Service 2019). We then summed the total precipitation
recorded at the prairie weather stations from the 365 day period extending from 1 June to 31 May on
the year of the WBPHS (i.e., the 2019 total precipitation value would be the sum of daily precipitation
values observed from 1 June 2018 through 31 May 2019).

From 1961–2021, total precipitation in the Canadian prairies varied from a low of 271 mm in 2018
and a high of 563 mm in 1974 (Figure 1). The observed precipitation in 2021 was 338 mm.
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Table 1: Weather stations used to summarize total annual precipitation observed in prairie Canada
from 1961–2021

Province Station_Name Station_ID Start_year End_year
Alberta EDMONTON INT’L A 1865 1959 2012
Alberta EDMONTON INT’L A 50149 2012 2021
Alberta MEDICINE HAT A 2273 1883 2008
Alberta MEDICINE HAT RCS 30347 2000 2021
Manitoba BRANDON A 3471 1941 2012
Manitoba BRANDON RCS 49909 2012 2021
Manitoba WINNIPEG RICHARDSON INT’L A 3698 1938 2008
Manitoba WINNIPEG A CS 27174 1996 2021
Saskatchewan REGINA INT’L A 3002 1959 2013
Saskatchewan REGINA RCS 28011 2012 2021
Saskatchewan SASKATOON DIEFENBAKER INT’L A 3328 1883 2012
Saskatchewan SASKATOON RCS 47707 2000 2021

ponds
precipitation

1960 1980 2000 2020
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300
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Figure 1: The number of ponds (millions) and total annual precipitation (mm) observed in prairie
Canada from 1961–2021.

We first examined autocorrelation plots to evaluate the information in the Canadian pond time
series (Figure 2) and used an augmented Dickey-Fuller test from the tseries R package (Trapletti and
Hornik 2019) to analyze the time series for stationarity. The results from this test suggest there is
evidence to reject the null hypothesis so we conclude that the data are stationary.
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ggtsdisplay(window(cp_ts,end=2019)[,"ponds"],ylab="Canadian ponds")
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Figure 2: Autocorrelation plots of Canadian ponds (millions) observed in prairie Canada from
1961–2019.

#ggPacf(bwt_ts)

adf.test(window(cp_ts,end=2019)[,"ponds"],alternative="stationary",k=0)

## Warning in adf.test(window(cp_ts, end = 2019)[, "ponds"], alternative =

## "stationary", : p-value smaller than printed p-value

##

## Augmented Dickey-Fuller Test

##

## data: window(cp_ts, end = 2019)[, "ponds"]

## Dickey-Fuller = -5.3609, Lag order = 0, p-value = 0.01

## alternative hypothesis: stationary

To confirm this result, we used a KPSS test that can account for a trend.

kpss.test(window(cp_ts,end=2019)[,"ponds"],null="Trend")

## Warning in kpss.test(window(cp_ts, end = 2019)[, "ponds"], null = "Trend"): p-

## value greater than printed p-value
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##

## KPSS Test for Trend Stationarity

##

## data: window(cp_ts, end = 2019)[, "ponds"]

## KPSS Trend = 0.10376, Truncation lag parameter = 3, p-value = 0.1

For the KPSS test, the null hypothesis is that the time series is stationary. Our test results provides
little evidence to reject the null hypothesis that the pond time series is stationary, suggesting that we
will not have to consider differencing in our analysis.

Time Series Analysis
We are interested in predicting the number of Canadian ponds for the 2021 breeding season as a
function of the number of ponds observed since 2019 and the total amount of recorded precipitation
from prairie weather stations from 1 June 2020 through 31 May 2021. We revisited the original
formulation of the Canadian pond model developed for the mid-continent mallard AHM program
(Johnson et al. 1997). The predictive equation used to project the number of Canadian ponds (P)
included

𝑃𝑡 = 𝛽0 + 𝛼𝑃𝑡−1 + 𝛽1𝑃𝑟𝑒𝑐𝑖𝑝𝑡 + 𝜖𝑡

where, 𝛽0 is the intercept, 𝛼 is the autoregressive term, 𝛽1 is the slope term for the precipitation
covariate and error term 𝜖 is the assumed to be white noise.

We analyzed the updated information with an autoregressive integrated moving average (ARIMA)
estimation framework, using the R function auto.arima from the forecast R package (Hyndman et al.
2020, Hyndman and Khandakar 2008) to determine the appropriate number of lags and levels of
differencing (Hyndman and Athanasopoulos 2018) for the final specification of our ARIMA regression
model.

fit<-auto.arima(window(cp_ts,end=2019)[,"ponds"],

xreg=window(cp_ts,end=2019)[,"precipitation"],

stepwise=FALSE,

approximation=FALSE,

seasonal=FALSE,

trace=TRUE)

##

## ARIMA(0,0,0) with zero mean : 161.5068

## ARIMA(0,0,0) with non-zero mean : 163.3993

## ARIMA(0,0,1) with zero mean : 152.119

## ARIMA(0,0,1) with non-zero mean : 153.6019

## ARIMA(0,0,2) with zero mean : 153.751

## ARIMA(0,0,2) with non-zero mean : 155.6254

## ARIMA(0,0,3) with zero mean : 155.8635

## ARIMA(0,0,3) with non-zero mean : 157.9997

## ARIMA(0,0,4) with zero mean : 157.1322

## ARIMA(0,0,4) with non-zero mean : 159.6507

## ARIMA(0,0,5) with zero mean : 159.1683

## ARIMA(0,0,5) with non-zero mean : 161.6738

## ARIMA(1,0,0) with zero mean : 152.4232

## ARIMA(1,0,0) with non-zero mean : 154.4094
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## ARIMA(1,0,1) with zero mean : 153.8641

## ARIMA(1,0,1) with non-zero mean : 155.6688

## ARIMA(1,0,2) with zero mean : 155.8828

## ARIMA(1,0,2) with non-zero mean : 157.6111

## ARIMA(1,0,3) with zero mean : 158.0459

## ARIMA(1,0,3) with non-zero mean : 160.3997

## ARIMA(1,0,4) with zero mean : 159.407

## ARIMA(1,0,4) with non-zero mean : 161.965

## ARIMA(2,0,0) with zero mean : 154.0319

## ARIMA(2,0,0) with non-zero mean : 155.9521

## ARIMA(2,0,1) with zero mean : 156.247

## ARIMA(2,0,1) with non-zero mean : 158.1479

## ARIMA(2,0,2) with zero mean : 158.3529

## ARIMA(2,0,2) with non-zero mean : 160.1859

## ARIMA(2,0,3) with zero mean : 160.304

## ARIMA(2,0,3) with non-zero mean : Inf

## ARIMA(3,0,0) with zero mean : 155.6994

## ARIMA(3,0,0) with non-zero mean : 157.4428

## ARIMA(3,0,1) with zero mean : 157.6636

## ARIMA(3,0,1) with non-zero mean : 159.3361

## ARIMA(3,0,2) with zero mean : 158.8419

## ARIMA(3,0,2) with non-zero mean : Inf

## ARIMA(4,0,0) with zero mean : 156.8177

## ARIMA(4,0,0) with non-zero mean : 158.8691

## ARIMA(4,0,1) with zero mean : 159.152

## ARIMA(4,0,1) with non-zero mean : 161.5277

## ARIMA(5,0,0) with zero mean : 159.0008

## ARIMA(5,0,0) with non-zero mean : 161.4971

##

##

##

## Best model: Regression with ARIMA(0,0,1) errors

print(fit)

## Series: window(cp_ts, end = 2019)[, "ponds"]

## Regression with ARIMA(0,0,1) errors

##

## Coefficients:

## ma1 xreg

## 0.4205 0.0087

## s.e. 0.1038 0.0004

##

## sigma^2 estimated as 0.7136: log likelihood=-72.84

## AIC=151.68 AICc=152.12 BIC=157.92

The results from the testing in the auto.arima function suggest that the ARIMA estimation does
not require differencing or the consideration of lags in predictors (i.e., autoregressive terms). In
contrast to the previous autoregressive model developed for mid-continent mallard AHM, we can
now use a 1st order moving average model [ARIMA (0,0,1)] to forecast changes in the number of
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Canadian ponds as function of observed total precipitation. The residuals from the selected model
suggest that the ARIMA errors do not deviate from white noise (Figure 3) and (Figure 4).
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Figure 3: Regression and ARIMA residuals from the selected model [ARIMA(0,0,1)].
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Figure 4: Residual diagnostics from the selected model [ARIMA(0,0,1)].

##

## Ljung-Box test

##

## data: Residuals from Regression with ARIMA(0,0,1) errors

## Q* = 4.5471, df = 8, p-value = 0.8047

##

## Model df: 2. Total lags used: 10

2021 Forecast
The selected regression model predicts ponds in the next time step as a function of the observed
precipitation and residuals from previous predictions based on a 1st order moving average model
[ARIMA (0,0,1)] (Hyndman and Athanasopoulos 2018). We can use this model to forecast the number
of Canadian ponds with the available precipitation information for 2021 (1 June 2020–May 2021)
which is currently 338 millimeters of precipitation.

cp_2021 <- forecast(fit, xreg=window(cp_ts,start=2020)[,"precipitation"],h=2)

summary(cp_2021)

##

## Forecast method: Regression with ARIMA(0,0,1) errors

##

## Model Information:
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## Series: window(cp_ts, end = 2019)[, "ponds"]

## Regression with ARIMA(0,0,1) errors

##

## Coefficients:

## ma1 xreg

## 0.4205 0.0087

## s.e. 0.1038 0.0004

##

## sigma^2 estimated as 0.7136: log likelihood=-72.84

## AIC=151.68 AICc=152.12 BIC=157.92

##

## Error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01886045 0.8302826 0.6745656 -8.634856 22.91599 0.6661257

## ACF1

## Training set 0.05283315

##

## Forecasts:

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 2020 3.402836 2.320280 4.485393 1.747209 5.058464

## 2021 2.938804 1.764418 4.113191 1.142735 4.734874

cat("Forecast Standard Errors:",sep="\n")

## Forecast Standard Errors:

print((cp_2021$upper[,1]-cp_2021$lower[,1])/(2*qnorm(.5+cp_2021$level[1]/200)))

## Time Series:

## Start = 2020

## End = 2021

## Frequency = 1

## [1] 0.8447234 0.9163789

autoplot(cp_2021) + xlab("Year") + ylab("Canadian Ponds") +ggtitle("")
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Figure 5: The 2021 forecast of Canadian ponds from an ARIMA(0,0,1) regression model.

#print(cp_2021)

mean_abs_2020 <- format(round(as.numeric(cp_2021$mean[1]),2),nsmall=2)

mean_abs_2021 <- format(round(as.numeric(cp_2021$mean[2]),2),nsmall=2)

upper_abs_2020<-round(cp_2021$upper[1,2],2)

lower_abs_2020<-round(cp_2021$lower[1,2],2)

upper_abs_2021<-round(cp_2021$upper[2,2],2)

lower_abs_2021<-round(cp_2021$lower[2,2],2)

#print(mean_abs)

Based on these numbers, the forecast for the number of Canadian ponds in the spring of 2021 is
2.94 million with a 95% prediction interval ranging from 1.14 to 4.73 million (Figure 5).
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Abstract

Due to the COVID-19 pandemic, waterfowl breeding populations were not directly observed in
the spring of 2020. In the spring of 2021, state partners from Alaska, Michigan, and Wisconsin
were able to resume waterfowl breeding population surveys, unfortuneately, Minnesota was
unable to complete waterfowl breeding survey operations in 2021, and Alaska was not able to
complete their entire survey (strata 12 was inaccessible because of travel restrictions). As a result,
waterfowl harvest regulations will have to be informed with incomplete breeding population
information from the Great Lakes states and Alaska. We developed an estimation framework
to impute Great Lakes and Alaska mallard breeding population numbers for missing estimates
in 2020-2021 based on historical breeding population observations from 1991–2021. We used a
state space modeling approach to separate the observation process from a simple population
model that calculated annual population changes for each state while explicity accounting for
the inherent covariation between historical, annual population estimates. We implemented this
modeling framework in a Bayesian estimation framework to impute missing abundance estimates
of Great Lakes region and Alaska mallards in 2020–21. Based on our imputation, the estimate of
the number of Great Lakes mallards in 2020 is 0.68 million (SE = 0.08) and in 2021 is 0.73 million
(SE = 0.09). The estimate of Alaska mallards in 2020 is 0.49 million (SE = 0.09) and the estimate of
Alaska mallards from strata 12 in 2021 is 13020 (SE = 10269).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to participate in the Waterfowl Breeding Population and Habitat Survey (WBPHS) to
estimate the 2020–21 waterfowl breeding populations as well as evaluate breeding habitat conditions.
As a result, the promulgation of waterfowl harvest regulations in 2021 will require some modi�cations
to the decision protocols that typically govern the regulatory process. For example, observed breeding
population estimates are used to determine waterfowl harvest regulations. In the absence of this
information, the USFWS proposes to base 2021 regulatory decisions on predictions of breeding
population sizes and habitat conditions. Current system models for which we have AHM decision
frameworks will be used to predict 2021 population sizes based on the breeding population sizes,
habitat conditions, harvest, and harvest rates observed from 2019–20. However, several populations
of interest do not have predictive modeling frameworks that can be used to develop population
estimates for the 2021 breeding population. We are grateful that our state partners (Alaska, Michigan,
and Wisconsin) were able to resume survey operations and estimate mallard breeding population
sizes. Unfortunately, Minnesota was unable to resume survey operations in 2021, and Alaska was
unable to survey one strata (strata 12, Old Crow Flats) because travel between Canada and the U.S.
was restricted. As a result, we developed an estimation framework to impute population estimates for
the 2020–21 breeding population of Great Lakes (GL) region and Alaska (AK) mallards as a function
of historical data.

Analytical Approach
The principle of su�cient statistics provides the theoretical means to impute missing values of a
typical time series data set along with associated measures of uncertainty (Link 1999). State space
models allows us to model the observation process based on the details of survey design-based
estimation procedures. We can then develop an expression of population change to formally model
how true, latent abundances will change over time. Because the parameters of this model can be used
to calculate changes in breeding population, we can use the model to �ll-in or impute the missing
values for the years survey estimates are not available. Bayesian estimation methods are ideally
suited for this approach, because the formal acknowledgment of uncertainty for the observation and
population change process can be easily represented. This approach is analogous to a Kalman �lter,
which treats the complete data set with the imputed values as the observation part of the model,
where these estimates with their measures of variability can then be used to model the population
change process. For this process to work e�ciently, some regression, random e�ect, or time series
structure is needed to inform the imputations. Since you need to model these gaps, there has to
be assumptions of how the data relate to each other contemporaneously and over time. The most
reasonable way to do this is to use the model, while the sampling error must be added into the
estimates since they represent the observation process. We chose to use a simple representation of
population change with a random walk, where imputed values are drawn from a multivariate normal
distribution (on the log scale). Based on this approach, we can formally incorporate any correlation
structure between annual changes in population sizes between each state. Through this process, our
random walk is then governed by the historical relationships between state population estimates.
These relationships can be represented with

𝑦𝑡 = 𝑌𝑡 + 𝑒𝑡 𝑒𝑡 ∼ N(0, 𝑣𝑡 ) (1)
𝑌𝑡 = 𝑌𝑡−1 + 𝑢𝑡 𝑢𝑡 ∼ MVN(0,𝑈 ). (2)

(3)
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where the 𝑦𝑡s are the survey estimates with their survey sample variances, 𝑣𝑡 , and the 𝑢𝑡s are the
process errors that are modeled with 𝑈 , which is the variance-covariance matrix of the di�erence
series, not the series itself on the log scale.

Great Lakes Breeding Population
After canceling the breeding population surveys for the Great Lakes States in 2020, all but Minnesota
surveys were resumed in 2021 because of continued complications associated with the COVID-19
pandemic. The contribution of this state towards overall estimates of Great Lake mallard abundance
is non-negligible, so we needed to impute Minnesota contributions to estimate the total Great Lakes
mallard population. Similarly, surveys in Alaska were canceled in 2020, but all surveys for Alaska
mallards were completed in 2021 except for strata 12, Old Crow Flats, which is located in Canada.
Although the contribution of data from this strata to overall estimates in Alaska is typically small, we
still felt it necessary to impute this data, given the availability of other strata to inform prediction. For
all missing data, we interpolated missing estimates using relations from contemporaneous estimates
from other strata.

As a general approach we built a hierarchical model with the observation equations consisting of
the survey sample estimates and their sampling error. For the multi-variate log-normal model, we
estimated the the signi�cant correlations among state estimates and incorporated this information
into the speci�cation of the variance-covariance matrix.

# Great Lakes mallards = strata 1 = MI, 2 = MN, 3 = WI

# Years 1990+

tPop <-

# readr::read_csv("../extdata/lake_states_bpop.csv", na = c("", "NA")) %>%

readr::read_csv("extdata/lake_states_bpop.csv", na = c("", "NA")) %>%
filter(Stratum %in% 1:3 & Yr > 1990) %>%
arrange(Stratum, Yr) %>%
mutate(

Str = Stratum,

lnPop = ifelse(Pop == 0, NA, log(Pop)),
lnSE = ifelse(Pop == 0, NA, SE / Pop),

)

nStr <- nlevels(factor(tPop$Str))
nYr <- nlevels(factor(tPop$Yr))

# Stratum by year log-population matrix. NA are missing

tlnPop <- tPop %>%
mutate(

Str = factor(Str, 1:3)
) %>%
arrange(Str, Yr) %>%
select(Yr, Str, lnPop) %>%
pivot_wider(

id_cols = c("Yr"),
names_from = "Str",

values_from = "lnPop",

values_fill = NA

)
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lnPop <- matrix(unlist(tlnPop[, -1]), nrow = nStr, ncol = nYr, byrow = TRUE)

# Stratum by year log-population SE matrix. NA are missing

tlnSE <- tPop %>%
mutate(

Str = factor(Str, 1:3)
) %>%
arrange(Str, Yr) %>%
select(Yr, Str, lnSE) %>%
pivot_wider(

id_cols = c("Yr"),
names_from = "Str",

values_from = "lnSE",

values_fill = NA

)

lnSE <- matrix(unlist(tlnSE[, -1]), nrow = nStr, ncol = nYr, byrow = TRUE)

tPop = tPop %>%
mutate(State = ifelse(Stratum==1,"MI", ifelse(Stratum==2,"MN","WI")))

tmpPop<-dcast(tPop,Yr~State,value.var = "Pop")

tmpSE<-dcast(tPop,Yr~State,value.var = "SE")

tmpdf<-cbind(tmpPop[,1:2],tmpSE[2],tmpPop$MN,tmpSE$MN,tmpPop$WI,tmpSE$WI)
colnames(tmpdf)<-c("Yr","Pop","SE","Pop","SE","Pop","SE")
kable(tmpdf,longtable = T, booktabs = T, digits=0,caption =

"Great Lakes mallard breeding population estimates from 1991--2021.") %>%
add_header_above(c("","Michigan"=2,"Minnesota"=2,"Wisconsin"=2)) %>%
kable_styling(latex_options = c("repeat_header"))

Table 1: Great Lakes mallard breeding population estimates from 1991–2021.

Michigan Minnesota Wisconsin
Yr Pop SE Pop SE Pop SE

1991 289332 68647 224953 28832 172423 18677
1992 385767 103848 360870 43621 249727 34391
1993 437215 73544 305838 31102 174531 21424
1994 420534 86317 426455 66240 283401 38144
1995 524070 120690 319433 48124 242166 24760
1996 378175 73945 314816 53461 314413 38716
1997 489350 89687 407413 65771 180967 25250
1998 522987 95784 368450 61513 186891 27776
1999 466095 112774 316394 51651 248446 32391
2000 427185 103243 318134 36857 453979 53808
2001 324204 54882 320560 39541 183452 24041
2002 323207 60933 366625 46264 378543 44045
2003 298881 45057 280517 34556 261332 30988
2004 341985 65347 375313 57591 229174 28171
2005 258101 43747 238500 28595 317224 42967
2006 244648 42528 160715 24230 219494 3054862 



Table 1: Great Lakes mallard breeding population estimates from 1991–2021. (continued)

Michigan Minnesota Wisconsin
Yr Pop SE Pop SE Pop SE

2007 337723 61938 242481 30020 210219 30343
2008 200505 40997 297565 27787 188429 23850
2009 258869 42809 236436 36539 200497 27251
2010 338298 58261 241884 33940 199107 23486
2011 258568 46602 283329 49845 187862 23068
2012 439268 168742 224965 45057 196950 27796
2013 288384 40540 293239 58463 181200 21663
2014 230120 33445 256996 55366 158747 21438
2015 237752 25972 206230 37498 176200 23589
2016 278110 51061 250204 42850 164147 23697
2017 298120 33793 213644 32704 180930 22927
2018 251362 44279 295370 46578 216652 28131
2019 179170 19379 286357 35570 204296 54461
2020 NA NA NA NA NA NA
2021 309993 58313 NA NA 147371 19687

Correlations of the Changes

# There are a lot more correlations of the differences.

# That is validation of the RW model!

dlnPop <- diff(t(lnPop))

tmp <- as_tibble(dlnPop)
colnames(tmp) <- 1:3
# ggpairs(tmp)

#IC <- invcor(dlnPop, cutoff = 0.04)

# based on email from M. Otto (6 August 2021); set to 0.0 to estimate the correlations

IC <- invcor(dlnPop, cutoff = 0.0)

print(100*IC, digits = 0, na.print = "")

## [,1] [,2] [,3]

## [1,] 100 1 1

## [2,] 1 100 14

## [3,] 1 14 100

#

ICSig <- cbind(
row(IC)[!is.na(IC)],
col(IC)[!is.na(IC)]

)

ICSig <- ICSig[ICSig[, 1] > ICSig[, 2] , ]
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# Make the process tau matrix with the fixed zeros

UTau <- matrix(0, nrow = nStr, ncol = nStr)

diag(UTau) <- NA

UTau[ICSig] <- NA

# Get the upper diagonal

UTau[ICSig[,2:1]] <- NA

Find the values to interpolate

Regression with the error
This is a hierarchical model on the log scale.

# Get significance level from the West report

cMdl <- "GL_StrataMVlnN"

Data <- list(
NITau = 0.001,

NIG = 0.01,

nStr = nStr,

nYr = nYr,

lnPop = lnPop,

lnTau = lnSE ^ -2,

ICSig = t(ICSig),
nICSig = nrow(ICSig),
UTau = UTau

)

# Parameters to model

# Monitoring LnDist is a lot of variables. Get working first

Parms <- c("UISD",
"SigCor",

"Tau",

paste("lnPop[", MissYrStr[, 1], ",", MissYrStr[, 2], "]", sep = ""))

# Initial values

InitFcn <- function(iChain) {

# Make sure the matrix is PD.

while (TRUE) {

UISD <- abs(rnorm(nStr, 1, .001))

SigCor <- rnorm(nrow(ICSig), 0, .0001)

InvVar <- matrix(0, nrow = nStr, ncol = nStr)

diag(InvVar) <- UISD ^ 2

InvVar[ICSig] <- InvVar[ICSig[, 2:1]] <- SigCor *
UISD[ICSig[, 1]] *
UISD[ICSig[, 2]]

Var <- solve(InvVar)
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EV <- eigen(Var, symmetric = TRUE)

if (all(EV$values > 0))

break
USD <- sqrt(diag(Var))

}

list(UIDiag = UISD ^ 2,

SigCor = SigCor)

}

# Simulation parameters

nChain <- 4

nSim <- 5000 # Number of simulations desired

setnsims(nChain * nSim)

## [1] 4000

getnsims()

## [1] 20000

nThin <- 1

pctBurn <- 50

nBurn <- nThin * nSim * pctBurn / (100 - pctBurn)

DebugMe <- FALSE

# set.seed(Save.Seed)

Inits <- sapply(1:nChain, InitFcn, simplify = FALSE)

# JAGS model

# BUGSMdl <- paste(readLines(paste(

# "../extdata/", cMdl, "/", cMdl, ".mdl", sep = ""

# )),

# collapse = "\n")

BUGSMdl <- paste(readLines(paste(
"extdata/", cMdl, "/", cMdl, ".mdl", sep = ""

)),

collapse = "\n")

# Run JAGS

unlink("runjagsfiles_*")
save(

cMdl,

nChain,

nSim,

nThin,

pctBurn,

nBurn,
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DebugMe,

Data,

Inits,

InitFcn,

Parms,

# cParm,

# nParm,

BUGSMdl,

# file = paste("../data/", cMdl, ".Setup.RData", sep = "")

file = paste("data/", cMdl, ".Setup.RData", sep = "")

)

Run Model

# Run the MCMC if the Rsave file does not exist

# MCMCSave <- paste("../data/", cMdl, ".RData", sep = "")

MCMCSave <- paste("data/", cMdl, ".RData", sep = "")

require(rjags)
if (!file.exists(MCMCSave)) {

runjags.options(force.summary = TRUE)

runjags.getOption("force.summary")
if (exists("MCMC"))

rm(MCMC)
MCMC <- run.jags(

model = BUGSMdl,

monitor = c(Parms, "deviance", "pd"),

data = Data,

n.chains = nChain,

inits = Inits,

jags = findjags(# look_in=if(as.character(.Platform$OS.type)==???windows???)

# "/Workspace/JAGS" else NA

),

method = "interruptible",

burnin = nBurn,

sample = nSim * nThin,

thin = nThin,

modules = "dic",

plots = TRUE,

keep.jags.files = TRUE,

tempdir = TRUE

)

save(MCMC, file = MCMCSave)

} else {

load(file = MCMCSave)

}
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Summarize Model

# plot(MCMC)

# summary(MCMC)

PostStat <- data.frame(MCMC$summary$statistics[, 1:2],
MCMC$HPD[, c(2, 1, 3)])

colnames(PostStat)[3:5] <- c("median", "lower95", "upper95")

print(PostStat, digits = 2)

## Mean SD median lower95 upper95

## UISD[1] 9.8141 3.078 9.36775 4.675 16.231

## UISD[2] 9.5670 3.021 9.13171 4.292 15.431

## UISD[3] 5.5692 1.770 5.23303 2.800 9.185

## SigCor[1] -0.1798 0.316 -0.19780 -0.749 0.443

## SigCor[2] 0.1201 0.358 0.14084 -0.565 0.761

## SigCor[3] -0.1566 0.323 -0.17258 -0.753 0.444

## Tau[1] -0.0130 0.026 -0.01371 -0.065 0.041

## Tau[2] 0.0015 0.027 0.00087 -0.052 0.056

## Tau[3] -0.0054 0.044 -0.00521 -0.095 0.080

## lnPop[1,30] 12.3469 0.178 12.34460 11.995 12.689

## lnPop[2,30] 12.5250 0.188 12.52060 12.159 12.899

## lnPop[3,30] 12.0627 0.220 12.06160 11.626 12.493

## lnPop[2,31] 12.5303 0.237 12.52565 12.058 12.999

## deviance -76.9442 12.764 -77.47425 -100.795 -50.841

# rv::splitbyname is not working

# worked with single index names

VarNames <- attr(MCMC$mcmc[[1]], "dimnames")[[2]]

Idx <- grep("lnPop", VarNames)

attr(MCMC$mcmc[[1]], "dimnames")[[2]][Idx] <-

paste("lnPop[", 1:nMiss, "]", sep = "")

mcmc <- JAGSExtract(MCMC)

Sim <- exp(mcmc$lnPop)

# dplyr only uses the first value some calculate outside

SimQuantiles <- rvquantile(probs = pCrit, x = Sim)

# These should be matched to the stratum and year

# instead of trusting that the order that JAGS

# put these in was maintained.

Impute <- tibble::tibble(
Yr = MissYrStr[ ,"Yr"] + 1990,

Str = MissYrStr[ ,"Str"],

Type = paste("I", 1:nMiss, sep = ""),

Pop = rvmean(Sim),
SE = rvsd(Sim),
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lnPop = rvmean(mcmc$lnPop),
lnSE = rvsd(mcmc$lnPop)

) %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE) %>%
mutate(Med = SimQuantiles[, 1],

LCI = SimQuantiles[, 2],

UCI = SimQuantiles[, 3])

Survey <- tPop %>%
filter(!is.na(lnPop)) %>%
mutate(Type = "Survey") %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE) %>%
mutate(

Med = qlnorm(p = pCrit[1], lnPop, lnSE),

LCI = qlnorm(p = pCrit[2], lnPop, lnSE),

UCI = qlnorm(p = pCrit[3], lnPop, lnSE)

)

Pop <- bind_rows(Impute,
Survey) %>%

arrange(Yr, Str)

Imputations

# To plot the imputations, need to get the before and after values to make a

# ribbon

Before <- inner_join(
Impute %>%

mutate(Yr = Yr - 1) %>%
select(Yr, Str, Type),

Pop %>%
select(-Type),

by = c("Yr", "Str")

)

After <- inner_join(
Impute %>%

mutate(Yr = Yr + 1) %>%
select(Yr, Str, Type),

Pop %>%
select(-Type),

by = c("Yr", "Str")

)

PlotImpute <- bind_rows(Before,
Impute,

After) %>%
arrange(Yr, Str, Type) %>%
# Multiple-year imputations will make duplicate observations

mutate(Dup = duplicated(paste(Yr, Str, sep = "."))) %>%
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filter(!Dup)

# Make a plot version of Survey

# Need different groups for each continuous span of years within a stratum

tPlotSurvey <- Survey %>%
group_by(Str) %>%
mutate(

LastYr = lag(Yr, n = 1, order_by = Yr),

Continuous = ifelse(is.na(LastYr), FALSE,

Yr == LastYr + 1),

SvyGrp = as.integer(NA)
)

iSvyGrp <- 1

tPlotSurvey[1, "SvyGrp"] <- iSvyGrp

for (i in 2:nrow(tPlotSurvey)) {

if (!tPlotSurvey[i, "Continuous"]) {

iSvyGrp <- iSvyGrp + 1

}

tPlotSurvey[i, "SvyGrp"] <- iSvyGrp

}

PlotSurvey <- tPlotSurvey %>%
ungroup() %>%
mutate(Type = paste("S", SvyGrp, sep = "")) %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE, Med, LCI, UCI)

PlotPop <- bind_rows(PlotImpute,
PlotSurvey) %>%

arrange(Yr, Str, Type)

Pop = Pop %>%
mutate(str_name = ifelse(Str==1,"Michigan", ifelse(Str==2,"Minnesota","Wisconsin")))

colors = c("Survey"="pink","Imputed"="black")
TSPlot<-ggplot(Pop,aes(x=Yr,y=Med/1e6))+

geom_line(aes(color="Survey"))+
geom_ribbon(aes(x=Yr,ymin=LCI/1e6,ymax=UCI/1e6,fill=""),alpha=.15,show.legend=FALSE)+
geom_errorbar(data=Pop[Pop$Type!="Survey",],aes(x=Yr, ymin = LCI/1e6, ymax=UCI/1e6), size=0.25,width=.5) +
geom_point(data=Pop[Pop$Type!="Survey",],aes(x=Yr, y=Med/1e6,color="Imputed")) +
facet_wrap(~str_name)+
xlab("Year") +
ylab("Population in millions") +
labs(color="Estimate",shape="",fill="")+
theme(legend.position = "bottom")+
guides(color=guide_legend(override.aes=list(shape=c(NA,16),linetype=c(1,0),fill=NA)))+
scale_color_manual(values = c("Survey" = "dark red", "Imputed" = "black"))

print(TSPlot)
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Figure 1: Imputed population abundances for Great Lakes mallards in 2020–21.

# print out in table form

kbl(Pop[,1:10], longtable = T, booktabs = T, caption =

"Great Lakes mallard state population estimates in millions from 1991--2021.") %>%
kable_styling(latex_options = c("repeat_header"))

Table 2: Great Lakes mallard state population estimates in millions from 1991–2021.

Yr Str Type Pop SE lnPop lnSE Med LCI UCI
1991 1 Survey 289332.1 68647.28 12.57533 0.2372612 289332.1 181735.4 460631.6
1991 2 Survey 224953.0 28832.00 12.32365 0.1281690 224953.0 174982.3 289194.1
1991 3 Survey 172423.0 18677.10 12.05771 0.1083214 172423.0 139441.4 213205.6
1992 1 Survey 385767.1 103847.90 12.86299 0.2691984 385767.1 227605.7 653833.7
1992 2 Survey 360870.0 43621.10 12.79627 0.1208776 360870.0 284747.3 457342.9
1992 3 Survey 249727.0 34391.15 12.42812 0.1377150 249727.0 190652.4 327106.1
1993 1 Survey 437215.0 73544.44 12.98818 0.1682111 437215.0 314422.4 607962.3
1993 2 Survey 305838.0 31102.50 12.63081 0.1016960 305838.0 250569.2 373297.6
1993 3 Survey 174531.0 21423.75 12.06986 0.1227504 174531.0 137210.5 222002.5
1994 1 Survey 420534.2 86316.81 12.94928 0.2052551 420534.2 281247.0 628803.3
1994 2 Survey 426455.0 66240.10 12.96326 0.1553273 426455.0 314527.3 578213.3
1994 3 Survey 283401.0 38144.27 12.55462 0.1345947 283401.0 217687.8 368950.9
1995 1 Survey 524069.6 120690.36 13.16938 0.2302945 524069.6 333704.4 823030.7
1995 2 Survey 319433.0 48123.50 12.67430 0.1506529 319433.0 237762.8 429156.5
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Table 2: Great Lakes mallard state population estimates in millions from 1991–2021. (continued)

Yr Str Type Pop SE lnPop lnSE Med LCI UCI
1995 3 Survey 242166.0 24760.40 12.39738 0.1022456 242166.0 198189.9 295899.9
1996 1 Survey 378175.3 73944.58 12.84311 0.1955299 378175.3 257785.1 554789.9
1996 2 Survey 314816.0 53460.80 12.65974 0.1698160 314816.0 225688.3 439141.5
1996 3 Survey 314413.0 38715.65 12.65846 0.1231363 314413.0 246994.2 400234.3
1997 1 Survey 489349.5 89687.25 13.10083 0.1832785 489349.5 341674.2 700851.7
1997 2 Survey 407413.0 65771.20 12.91758 0.1614362 407413.0 296906.8 559048.7
1997 3 Survey 180967.0 25250.26 12.10607 0.1395296 180967.0 137667.5 237885.1
1998 1 Survey 522987.4 95784.32 13.16731 0.1831484 522987.4 365254.0 748837.2
1998 2 Survey 368450.0 61512.80 12.81706 0.1669502 368450.0 265625.8 511077.6
1998 3 Survey 186891.0 27776.16 12.13828 0.1486222 186891.0 139662.9 250089.7
1999 1 Survey 466094.9 112773.96 13.05214 0.2419549 466094.9 290082.8 748905.1
1999 2 Survey 316394.0 51651.30 12.66474 0.1632499 316394.0 229757.5 435699.3
1999 3 Survey 248446.0 32391.34 12.42298 0.1303758 248446.0 192422.5 320780.6
2000 1 Survey 427185.0 103242.51 12.96497 0.2416811 427185.0 266009.2 686017.6
2000 2 Survey 318134.0 36856.60 12.67023 0.1158524 318134.0 253510.7 399230.6
2000 3 Survey 453979.0 53808.20 13.02581 0.1185257 453979.0 359870.7 572697.2
2001 1 Survey 324204.4 54882.28 12.68913 0.1692830 324204.4 232661.7 451765.2
2001 2 Survey 320560.0 39540.90 12.67782 0.1233495 320560.0 251717.9 408229.7
2001 3 Survey 183452.0 24040.51 12.11971 0.1310452 183452.0 141898.1 237174.7
2002 1 Survey 323207.2 60932.53 12.68605 0.1885247 323207.2 223361.6 467685.1
2002 2 Survey 366625.0 46264.20 12.81209 0.1261894 366625.0 286292.1 469499.0
2002 3 Survey 378543.0 44045.24 12.84408 0.1163547 378543.0 301351.9 475506.5
2003 1 Survey 298881.4 45056.68 12.60780 0.1507510 298881.4 222422.9 401622.9
2003 2 Survey 280517.0 34556.00 12.54439 0.1231868 280517.0 220344.6 357121.5
2003 3 Survey 261332.0 30988.37 12.47355 0.1185786 261332.0 207137.3 329706.0
2004 1 Survey 341985.1 65346.88 12.74252 0.1910811 341985.1 235157.4 497342.7
2004 2 Survey 375313.0 57591.00 12.83552 0.1534479 375313.0 277829.6 507000.9
2004 3 Survey 229174.0 28170.77 12.34224 0.1229231 229174.0 180108.0 291606.8
2005 1 Survey 258101.4 43746.90 12.46111 0.1694950 258101.4 185146.7 359803.0
2005 2 Survey 238500.0 28595.00 12.38212 0.1198952 238500.0 188553.0 301677.8
2005 3 Survey 317224.0 42967.00 12.66736 0.1354469 317224.0 243261.5 413674.4
2006 1 Survey 244648.2 42528.18 12.40758 0.1738340 244648.2 174010.0 343961.5
2006 2 Survey 160715.0 24230.00 11.98739 0.1507638 160715.0 119598.6 215966.7
2006 3 Survey 219494.0 30548.00 12.29908 0.1391746 219494.0 167092.5 288329.0
2007 1 Survey 337722.9 61938.48 12.72998 0.1834003 337722.9 235749.1 483805.9
2007 2 Survey 242481.0 30020.00 12.39868 0.1238035 242481.0 190237.4 309071.9
2007 3 Survey 210219.0 30343.00 12.25591 0.1443400 210219.0 158419.8 278955.1
2008 1 Survey 200505.4 40996.89 12.20860 0.2044678 200505.4 134302.1 299343.1
2008 2 Survey 297565.0 27787.00 12.60339 0.0933813 297565.0 247796.7 357328.9
2008 3 Survey 188429.0 23850.00 12.14648 0.1265729 188429.0 147030.9 241483.1
2009 1 Survey 258869.1 42808.98 12.46408 0.1653692 258869.1 187205.1 357966.8
2009 2 Survey 236436.0 36539.00 12.37343 0.1545408 236436.0 174649.9 320080.3
2009 3 Survey 200497.0 27251.00 12.20855 0.1359172 200497.0 153608.4 261698.3
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Table 2: Great Lakes mallard state population estimates in millions from 1991–2021. (continued)

Yr Str Type Pop SE lnPop lnSE Med LCI UCI
2010 1 Survey 338298.3 58261.36 12.73168 0.1722189 338298.3 241383.1 474124.9
2010 2 Survey 241884.0 33940.00 12.39621 0.1403152 241884.0 183726.0 318451.8
2010 3 Survey 199107.0 23486.00 12.20160 0.1179567 199107.0 158008.9 250894.7
2011 1 Survey 258568.1 46601.65 12.46291 0.1802297 258568.1 181619.8 368117.8
2011 2 Survey 283329.0 49845.00 12.55436 0.1759262 283329.0 200697.7 399981.3
2011 3 Survey 187862.0 23068.00 12.14346 0.1227923 187862.0 147678.7 238979.1
2012 1 Survey 439268.0 168742.10 12.99287 0.3841438 439268.0 206893.0 932638.6
2012 2 Survey 224965.0 45057.00 12.32370 0.2002845 224965.0 151926.1 333117.5
2012 3 Survey 196950.0 27796.00 12.19071 0.1411323 196950.0 149356.4 259709.6
2013 1 Survey 288384.0 40540.00 12.57205 0.1405765 288384.0 218933.5 379865.7
2013 2 Survey 293239.0 58463.00 12.58874 0.1993698 293239.0 198389.1 433436.6
2013 3 Survey 181200.0 21663.00 12.10736 0.1195530 181200.0 143348.9 229045.6
2014 1 Survey 230120.0 33445.00 12.34636 0.1453372 230120.0 173078.5 305960.7
2014 2 Survey 256996.0 55366.00 12.45682 0.2154353 256996.0 168479.7 392017.3
2014 3 Survey 158747.0 21438.00 11.97507 0.1350451 158747.0 121830.2 206850.3
2015 1 Survey 237752.0 25972.00 12.37898 0.1092399 237752.0 191928.3 294516.3
2015 2 Survey 206230.0 37498.00 12.23675 0.1818261 206230.0 144404.6 294525.2
2015 3 Survey 176200.0 23589.00 12.07938 0.1338763 176200.0 135534.6 229066.5
2016 1 Survey 278110.0 51061.00 12.53577 0.1836000 278110.0 194060.0 398563.2
2016 2 Survey 250204.0 42850.00 12.43003 0.1712603 250204.0 178861.7 350002.6
2016 3 Survey 164147.0 23697.00 12.00852 0.1443645 164147.0 123694.3 217829.3
2017 1 Survey 298120.0 33793.00 12.60525 0.1133537 298120.0 238728.5 372287.1
2017 2 Survey 213644.0 32704.00 12.27207 0.1530771 213644.0 158267.3 288396.6
2017 3 Survey 180930.0 22927.00 12.10587 0.1267175 180930.0 141139.5 231938.4
2018 1 Survey 251362.0 44279.00 12.43465 0.1761563 251362.0 177973.4 355012.9
2018 2 Survey 295370.0 46578.00 12.59598 0.1576937 295370.0 216838.9 402342.2
2018 3 Survey 216652.0 28131.00 12.28605 0.1298442 216652.0 167972.9 279438.5
2019 1 Survey 179170.0 19379.00 12.09609 0.1081598 179170.0 144943.7 221478.3
2019 2 Survey 286357.0 35570.00 12.56499 0.1242156 286357.0 224478.8 365292.1
2019 3 Survey 204296.0 54461.00 12.22733 0.2665789 204296.0 121156.7 344486.5
2020 1 I1 233925.3 42085.21 12.34693 0.1777145 229716.2 162803.6 326766.9
2020 2 I2 280052.2 53889.27 12.52497 0.1876406 273922.4 191951.4 402801.8
2020 3 I3 177539.7 39747.41 12.06272 0.2198366 173095.7 112622.9 268552.7
2021 1 Survey 309993.0 58313.00 12.64430 0.1881107 309993.0 214403.5 448200.2
2021 2 I4 284563.2 70282.12 12.53025 0.2370734 275309.2 174765.4 449191.7
2021 3 Survey 147371.0 19686.89 11.90071 0.1335873 147371.0 113423.3 191479.2

readr::write_csv(x = Pop,

# file = "../extdata/MissMallAK.csv",

file = "extdata/MissMallGL.csv",

na = "")

# print out totals
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tot_Pop<-tapply(Pop$Med,Pop$Yr,sum)
tot_Pop_SE<-tapply(Pop$SE,Pop$Yr,function(x) sqrt(sum(x^2)))
tot_Pop_df<-data.frame("Year"=unlist(dimnames(tot_Pop)),

"Total"=as.vector(tot_Pop)/1e6,
"SE"=as.vector(tot_Pop_SE)/1e6)

kbl(tot_Pop_df, longtable = T, booktabs = T, caption = "Total

Great Lakes mallard population estimates in millions.") %>%
kable_styling(latex_options = c("repeat_header"))

Table 3: Total Great Lakes mallard population estimates in millions.

Year Total SE
1991 0.6867081 0.0767631
1992 0.9963641 0.1177707
1993 0.9175840 0.0826748
1994 1.1303902 0.1152967
1995 1.0856686 0.1322691
1996 1.0074043 0.0991199
1997 1.0777295 0.1140492
1998 1.0783284 0.1171750
1999 1.0309349 0.1281991
2000 1.1992980 0.1221178
2001 0.8282164 0.0717878
2002 1.0683752 0.0882787
2003 0.8407304 0.0646877
2004 0.9464721 0.0915452
2005 0.8138254 0.0676582
2006 0.6248572 0.0576968
2007 0.7904229 0.0752215
2008 0.6864994 0.0549699
2009 0.6958021 0.0625326
2010 0.7792893 0.0713996
2011 0.7297591 0.0720303
2012 0.8611830 0.1768520
2013 0.7628230 0.0743687
2014 0.6458630 0.0681436
2015 0.6201820 0.0513526
2016 0.6924610 0.0707453
2017 0.6926940 0.0523179
2018 0.7633840 0.0701534
2019 0.6698230 0.0678732
2020 0.6767343 0.0790890
2021 0.7326732 0.0934214
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tot_2020<-round(tot_Pop_df[tot_Pop_df$Year==2020,"Total"],2)
tot_2020_SE<-round(tot_Pop_df[tot_Pop_df$Year==2020,"SE"],2)
tot_2021<-round(tot_Pop_df[tot_Pop_df$Year==2021,"Total"],2)
tot_2021_SE<-round(tot_Pop_df[tot_Pop_df$Year==2021,"SE"],2)

Imputation Results
As expected, the imputed values for Great Lakes mallard population abundances in 2020 and 2021
were consistent with historical, observed population sizes Figure 1. Based on these results, the total
population estimate for the Great Lakes mallard population in the spring of 2021 is 0.73 million with
a 95% con�dence interval ranging from 0.5536 to 0.9064 million. .

Covariance matrix

Reconstruct the covariance matrix from the signi�cant inverse correlations and the inverse SDs.

# See the percentage of not PD

tmp <- rvmapply(
FUN = function(UISD,

SigCor,

ICSig,

n) {

Test <- MkVar(UISD,
SigCor,

ICSig,

n)

return(!is.na(Test[1]))
},

mcmc$UISD,
mcmc$SigCor,
MoreArgs = list(ICSig = ICSig,

n = nStr),

SIMPLIFY = FALSE

)

# percentage of PDs

print(rvmean(100 * tmp))

## [1] 100

# See the percentage of not PD

tmp <- rvmapply(
FUN = MkVar,

mcmc$UISD,
mcmc$SigCor,
MoreArgs = list(ICSig = ICSig,

n = nStr),

SIMPLIFY = FALSE

)
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# Get the m

RVVar <- rvmatrix(tmp)
UVar <- matrix(rvmean(RVVar), nrow = nStr, ncol = nStr)

UVarSD <- matrix(rvsd(sqrt(RVVar)), nrow = nStr, ncol = nStr)

USD <- tibble::tibble(Str = 1:nStr,
Mean = sqrt(diag(UVar)),
USD = diag(UVarSD))

# Process random walk SDs

print(USD, digits = 3)

## # A tibble: 3 x 3

## Str Mean USD

## <int> <dbl> <dbl>

## 1 1 0.0186 0.00940

## 2 2 0.0193 0.00996

## 3 3 0.0481 0.0242

Cor <- diag(USD$Mean ^ -1) %*% UVar %*% diag(USD$Mean ^ -1)

dimnames(Cor) <- list(1:3, 1:3)
print(100 * Cor, digits = 0)

## 1 2 3

## 1100 5 -9

## 2 5100 13

## 3 -9 13100

Alaska Breeding Population

# Western mallards = strata 1-12

# Years 1990+

tPop_AK <-

# readr::read_csv("../extdata/mall_bpop.csv", na = c("", "NA")) %>%

readr::read_csv("extdata/mall_bpop.csv", na = c("", "NA")) %>%
filter(Stratum %in% 1:12 & Yr > 1989) %>%
arrange(Stratum, Yr) %>%
mutate(

Str = Stratum,

lnPop = ifelse(Pop == 0, NA, log(Pop)),
lnSE = ifelse(Pop == 0, NA, SE / Pop),

)

nStr <- nlevels(factor(tPop_AK$Str))
nYr <- nlevels(factor(tPop_AK$Yr))

# Stratum by year log-population matrix. NA are missing

tlnPop_AK <- tPop_AK %>%
mutate(
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Str = factor(Str, 1:12)
) %>%
arrange(Str, Yr) %>%
select(Yr, Str, lnPop) %>%
pivot_wider(

id_cols = c("Yr"),
names_from = "Str",

values_from = "lnPop",

values_fill = NA

)

lnPop_AK <- matrix(unlist(tlnPop_AK[, -1]), nrow = nStr, ncol = nYr, byrow = TRUE)

# Stratum by year log-population SE matrix. NA are missing

tlnSE_AK <- tPop_AK %>%
mutate(

Str = factor(Str, 1:12)
) %>%
arrange(Str, Yr) %>%
select(Yr, Str, lnSE) %>%
pivot_wider(

id_cols = c("Yr"),
names_from = "Str",

values_from = "lnSE",

values_fill = NA

)

lnSE_AK <- matrix(unlist(tlnSE_AK[, -1]), nrow = nStr, ncol = nYr, byrow = TRUE)

tPop_AK = tPop_AK %>%
mutate(grp = ifelse(Stratum==12,"s12", "srest"))

tmpPop_AK<-dcast(tPop_AK,Yr~grp,value.var = "Pop", fun.aggregate=sum)

tmpSE_AK<-dcast(tPop_AK,Yr~grp,value.var = "SE", fun.aggregate=function(x) sqrt(sum(x^2)))
tmpdf_AK<-cbind(tmpPop_AK[,c('Yr','s12')],tmpSE_AK[,'s12'],tmpPop_AK$srest,tmpSE_AK$srest)
colnames(tmpdf_AK)<-c("Yr","Pop","SE","Pop","SE")
kable(tmpdf_AK,longtable = T, booktabs = T, digits=0,caption =

"Alaska mallard breeding population estimates from 1990--2021.") %>%
add_header_above(c("","Strata 12"=2,"Strata 1--11"=2)) %>%
kable_styling(latex_options = c("repeat_header"))

Table 4: Alaska mallard breeding population estimates from 1990–2021.

Strata 12 Strata 1–11
Yr Pop SE Pop SE

1990 9886 5542 357047 36600
1991 5991 1455 379328 36250
1992 7497 1744 338211 38669
1993 5398 1015 277585 29516
1994 8696 1953 342179 37091
1995 19192 3751 505008 67872
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Table 4: Alaska mallard breeding population estimates from 1990–2021. (continued)

Strata 12 Strata 1–11
Yr Pop SE Pop SE

1996 14244 6800 507762 43018
1997 14394 4684 569853 51785
1998 47231 14833 788985 65628
1999 28338 6788 684716 69236
2000 19942 4698 750391 51947
2001 14694 4250 703592 53960
2002 12595 5092 654744 50430
2003 17093 6951 826404 66461
2004 18293 4490 792843 63720
2005 14094 6517 689046 54359
2006 4798 1273 511023 46918
2007 9440 3389 572054 54949
2008 20749 3730 511666 46648
2009 20443 6233 482526 44461
2010 19528 5404 586028 52794
2011 6408 2978 409417 38653
2012 12052 1932 493530 51030
2013 9764 2592 328615 38127
2014 8544 2467 492336 57298
2015 9154 2991 461761 50779
2016 11595 6520 572605 65063
2017 16477 3035 521974 51793
2018 11595 4779 439156 44807
2019 5797 2841 355262 35232
2020 NA NA NA NA
2021 NA NA 630939 58219

Correlations of the Changes

# There are a lot more correlations of the differences.

# That is validation of the RW model!

dlnPop_AK <- diff(t(lnPop_AK))

tmp_AK <- as_tibble(dlnPop_AK)
colnames(tmp_AK) <- 1:12
ggpairs(tmp_AK)
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0.281
Corr:
0.380.
Corr:
0.292
Corr:
0.313.
Corr:
0.348.
Corr:
0.305
Corr:
0.087
Corr:

−0.037
Corr:
0.255
Corr:
0.220
Corr:

0.604***
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#IC <- invcor(dlnPop, cutoff = 0.04)

# based on email from M. Otto (6 August 2021); set to 0.0 to estimate the correlations

IC_AK <- invcor(dlnPop_AK, cutoff = 0.0)

print(100*IC_AK, digits = 0, na.print = "")

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

## [1,] 100 -25 66 -0 40 4 -10 -12 4 -28 -34 31

## [2,] -25 100 11 -31 -7 9 36 6 -33 26 20 22

## [3,] 66 11 100 -13 -28 37 41 -7 -11 37 41 -22

## [4,] -0 -31 -13 100 23 43 30 -13 -71 61 25 11

## [5,] 40 -7 -28 23 100 -19 29 12 15 -4 15 7

## [6,] 4 9 37 43 -19 100 -10 42 28 -18 -40 25

## [7,] -10 36 41 30 29 -10 100 -25 15 -37 -26 -2

## [8,] -12 6 -7 -13 12 42 -25 100 -24 -5 2 9

## [9,] 4 -33 -11 -71 15 28 15 -24 100 69 31 16

## [10,] -28 26 37 61 -4 -18 -37 -5 69 100 -30 4

## [11,] -34 20 41 25 15 -40 -26 2 31 -30 100 55

## [12,] 31 22 -22 11 7 25 -2 9 16 4 55 100

#

ICSig_AK <- cbind(
row(IC_AK)[!is.na(IC_AK)],
col(IC_AK)[!is.na(IC_AK)]

)

ICSig_AK <- ICSig_AK[ICSig_AK[, 1] > ICSig_AK[, 2] , ]
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# Make the process tau matrix with the fixed zeros

UTau_AK <- matrix(0, nrow = nStr, ncol = nStr)

diag(UTau_AK) <- NA

UTau_AK[ICSig_AK] <- NA

# Get the upper diagonal

UTau_AK[ICSig_AK[,2:1]] <- NA

Find the values to interpolate

Regression with the error
This is a hierarchical model on the log scale.

# Get significance level from the West report

# using the original file location from M. Otto here

cMdl_AK <- "AK_StrataMVlnN"

Data_AK <- list(
NITau = 0.001,

NIG = 0.01,

nStr = nStr,

nYr = nYr,

lnPop = lnPop_AK,

lnTau = lnSE_AK ^ -2,

ICSig = t(ICSig_AK),
nICSig = nrow(ICSig_AK),
UTau = UTau_AK

)

# Parameters to model

# Monitoring LnDist is a lot of variables. Get working first

Parms_AK <- c("UISD",
"SigCor",

"Tau",

paste("lnPop[", MissYrStr_AK[, 1], ",", MissYrStr_AK[, 2], "]", sep = ""))

# Initial values

InitFcn_AK <- function(iChain) {

# Make sure the matrix is PD.

while (TRUE) {

UISD <- abs(rnorm(nStr, 1, .001))

SigCor <- rnorm(nrow(ICSig_AK), 0, .0001)

InvVar <- matrix(0, nrow = nStr, ncol = nStr)

diag(InvVar) <- UISD ^ 2

InvVar[ICSig_AK] <- InvVar[ICSig_AK[, 2:1]] <- SigCor *
UISD[ICSig_AK[, 1]] *
UISD[ICSig_AK[, 2]]
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Var <- solve(InvVar)
EV <- eigen(Var, symmetric = TRUE)

if (all(EV$values > 0))

break
USD <- sqrt(diag(Var))

}

list(UIDiag = UISD ^ 2,

SigCor = SigCor)

}

# Simulation parameters

nChain <- 4

nSim <- 5000 # Number of simulations desired

setnsims(nChain * nSim)

## [1] 20000

getnsims()

## [1] 20000

nThin <- 1

pctBurn <- 50

nBurn <- nThin * nSim * pctBurn / (100 - pctBurn)

DebugMe <- FALSE

# set.seed(Save.Seed)

Inits_AK <- sapply(1:nChain, InitFcn_AK, simplify = FALSE)

# JAGS model

# BUGSMdl <- paste(readLines(paste(

# "../extdata/", cMdl_AK, "/", cMdl_AK, ".mdl", sep = ""

# )),

# collapse = "\n")

BUGSMdl_AK <- paste(readLines(paste(
"extdata/", cMdl_AK, "/", cMdl_AK, ".mdl", sep = ""

)),

collapse = "\n")

# Run JAGS

unlink("runjagsfiles_*")
save(

cMdl_AK,

nChain,

nSim,

nThin,

pctBurn,
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nBurn,

DebugMe,

Data_AK,

Inits_AK,

InitFcn_AK,

Parms_AK,

# cParm,

# nParm,

BUGSMdl_AK,

# file = paste("../data/", cMdl_AK, ".Setup.RData", sep = "")

file = paste("data/", cMdl_AK, ".Setup.RData", sep = "")

)

Run model

# Run the MCMC if the Rsave file does not exist

# MCMCSave <- paste("../data/", cMdl_AK, ".RData", sep = "")

MCMCSave_AK <- paste("data/", cMdl_AK, ".RData", sep = "")

require(rjags)
if (!file.exists(MCMCSave_AK)) {

runjags.options(force.summary = TRUE)

runjags.getOption("force.summary")
if (exists("MCMC"))

rm(MCMC_AK)
MCMC<- run.jags(

model = BUGSMdl_AK,

monitor = c(Parms_AK, "deviance", "pd"),

data = Data_AK,

n.chains = nChain,

inits = Inits_AK,

jags = findjags(# look_in=if(as.character(.Platform$OS.type)==???windows???)

# "/Workspace/JAGS" else NA

),

method = "interruptible",

burnin = nBurn,

sample = nSim * nThin,

thin = nThin,

modules = "dic",

plots = TRUE,

keep.jags.files = TRUE,

tempdir = TRUE

)

save(MCMC, file = MCMCSave_AK)

} else {

load(file = MCMCSave_AK)

}
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Summarize model

# plot(MCMC)

# summary(MCMC)

PostStat_AK<- data.frame(MCMC$summary$statistics[, 1:2],
MCMC$HPD[, c(2, 1, 3)])

colnames(PostStat_AK)[3:5] <- c("median", "lower95", "upper95")

print(PostStat_AK, digits = 2)

## Mean SD median lower95 upper95

## UISD[1] 5.0102 1.598 4.7630 2.230 8.168

## UISD[2] 3.0777 0.812 2.9573 1.705 4.700

## UISD[3] 9.8244 2.947 9.5290 4.732 15.817

## UISD[4] 7.3702 2.393 7.0474 3.337 12.077

## UISD[5] 2.5821 0.813 2.4251 1.303 4.214

## UISD[6] 9.4419 2.837 9.1164 4.543 15.188

## UISD[7] 6.3424 1.827 6.0671 3.268 10.171

## UISD[8] 6.9567 2.120 6.6381 3.437 11.451

## UISD[9] 6.1069 2.074 5.7241 2.758 10.445

## UISD[10] 6.0366 2.956 5.2967 1.821 12.334

## UISD[11] 5.7368 1.985 5.3875 2.619 9.735

## UISD[12] 4.3926 1.481 4.1012 2.031 7.458

## SigCor[1] -0.3695 0.247 -0.3885 -0.805 0.118

## SigCor[2] -0.1963 0.240 -0.1930 -0.670 0.255

## SigCor[3] -0.3053 0.196 -0.3040 -0.684 0.064

## SigCor[4] -0.4278 0.214 -0.4419 -0.814 -0.013

## SigCor[5] -0.0784 0.293 -0.0827 -0.623 0.485

## SigCor[6] -0.2916 0.289 -0.3165 -0.799 0.281

## SigCor[7] -0.3711 0.238 -0.3908 -0.809 0.092

## SigCor[8] -0.3929 0.356 -0.4711 -0.927 0.319

## SigCor[9] -0.6781 0.161 -0.7030 -0.945 -0.375

## Tau[1] 0.0249 0.051 0.0249 -0.075 0.130

## Tau[2] -0.0046 0.066 -0.0041 -0.137 0.125

## Tau[3] -0.0079 0.033 -0.0077 -0.079 0.055

## Tau[4] 0.0212 0.043 0.0208 -0.067 0.107

## Tau[5] 0.0269 0.079 0.0273 -0.130 0.188

## Tau[6] 0.0082 0.033 0.0078 -0.059 0.076

## Tau[7] -0.0143 0.036 -0.0139 -0.088 0.055

## Tau[8] 0.0205 0.036 0.0201 -0.049 0.096

## Tau[9] 0.0263 0.046 0.0261 -0.065 0.116

## Tau[10] 0.0415 0.062 0.0397 -0.085 0.169

## Tau[11] 0.0127 0.065 0.0123 -0.116 0.141

## Tau[12] 0.0135 0.077 0.0136 -0.134 0.173

## lnPop[10,5] 8.8148 1.171 8.8128 6.552 11.112

## lnPop[2,25] 8.8335 0.544 8.8370 7.758 9.885

## lnPop[1,31] 9.2560 0.509 9.2559 8.266 10.269

## lnPop[2,31] 9.5639 0.553 9.5610 8.453 10.629

## lnPop[3,31] 10.8757 0.283 10.8742 10.339 11.450
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## lnPop[4,31] 11.7190 0.302 11.7178 11.126 12.311

## lnPop[5,31] 9.9776 0.593 9.9783 8.835 11.155

## lnPop[6,31] 9.9182 0.303 9.9202 9.340 10.524

## lnPop[7,31] 8.7628 0.293 8.7622 8.189 9.340

## lnPop[8,31] 10.8036 0.344 10.8027 10.124 11.472

## lnPop[9,31] 11.8652 0.269 11.8664 11.339 12.398

## lnPop[10,31] 9.7005 1.196 9.6971 7.390 12.018

## lnPop[11,31] 10.1559 0.459 10.1545 9.263 11.060

## lnPop[12,31] 9.0957 0.626 9.1069 7.820 10.277

## lnPop[12,32] 9.2371 0.691 9.2419 7.866 10.593

## deviance 115.1624 22.892 114.8510 69.973 160.478

# rv::splitbyname is not working

# worked with single index names

VarNames <- attr(MCMC$mcmc[[1]], "dimnames")[[2]]

Idx <- grep("lnPop", VarNames)

attr(MCMC$mcmc[[1]], "dimnames")[[2]][Idx] <-

paste("lnPop[", 1:nMiss_AK, "]", sep = "")

mcmc_AK <- JAGSExtract(MCMC)

Sim <- exp(mcmc_AK$lnPop)

# dplyr only uses the first value some calculate outside

SimQuantiles <- rvquantile(probs = pCrit, x = Sim)

# These should be matched to the stratum and year

# instead of trusting that the order that JAGS

# put these in was maintained.

Impute_AK <- tibble::tibble(
Yr = MissYrStr_AK[ ,"Yr"] + 1989,

Str = MissYrStr_AK[ ,"Str"],

Type = paste("I", 1:nMiss_AK, sep = ""),

Pop = rvmean(Sim),
SE = rvsd(Sim),
lnPop = rvmean(mcmc_AK$lnPop),
lnSE = rvsd(mcmc_AK$lnPop)

) %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE) %>%
mutate(Med = SimQuantiles[, 1],

LCI = SimQuantiles[, 2],

UCI = SimQuantiles[, 3])

Survey_AK <- tPop_AK %>%
filter(!is.na(lnPop)) %>%
mutate(Type = "Survey") %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE) %>%
mutate(

Med = qlnorm(p = pCrit[1], lnPop, lnSE),

LCI = qlnorm(p = pCrit[2], lnPop, lnSE),

UCI = qlnorm(p = pCrit[3], lnPop, lnSE)

)

83 



Pop_AK <- bind_rows(Impute_AK,
Survey_AK) %>%

arrange(Yr, Str)

# To plot the imputations, need to get the before and after values to make a

# ribbon

Before_AK <- inner_join(
Impute_AK %>%

mutate(Yr = Yr - 1) %>%
select(Yr, Str, Type),

Pop_AK %>%
select(-Type),

by = c("Yr", "Str")

)

After_AK <- inner_join(
Impute_AK %>%

mutate(Yr = Yr + 1) %>%
select(Yr, Str, Type),

Pop_AK %>%
select(-Type),

by = c("Yr", "Str")

)

PlotImpute_AK <- bind_rows(Before_AK,
Impute_AK,

After_AK) %>%
arrange(Yr, Str, Type) %>%
# Multiple-year imputations will make duplicate observations

mutate(Dup = duplicated(paste(Yr, Str, sep = "."))) %>%
filter(!Dup)

# Make a plot version of Survey

# Need different groups for each continuous span of years within a stratum

tPlotSurvey_AK <- Survey_AK %>%
group_by(Str) %>%
mutate(

LastYr = lag(Yr, n = 1, order_by = Yr),

Continuous = ifelse(is.na(LastYr), FALSE,

Yr == LastYr + 1),

SvyGrp = as.integer(NA)
)

iSvyGrp <- 1

tPlotSurvey_AK[1, "SvyGrp"] <- iSvyGrp

for (i in 2:nrow(tPlotSurvey_AK)) {

if (!tPlotSurvey_AK[i, "Continuous"]) {

iSvyGrp <- iSvyGrp + 1

}
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tPlotSurvey_AK[i, "SvyGrp"] <- iSvyGrp

}

# For the last year 1-11 strata that were not imputed,

# we need a band of more than one time point to make a ribbon

# Need a general way to make these color changes.

Last_AK <- tPlotSurvey_AK %>%
filter(Yr == max(Yr) & Str != 12) %>%
mutate(

Yr = Yr + 0.5)

PlotSurvey_AK <- bind_rows(
tPlotSurvey_AK,

Last_AK) %>%
ungroup() %>%
mutate(Type = paste("S", SvyGrp, sep = "")) %>%
select(Yr, Str, Type, Pop, SE, lnPop, lnSE, Med, LCI, UCI)

PlotPop_AK <- bind_rows(PlotImpute_AK,
PlotSurvey_AK) %>%

arrange(Yr, Str, Type)

# Pop_AK = Pop_AK %>%

# mutate(str_name = ifelse(Str==12,"Strata 12", "Stratas 1-11"))

colors = c("Survey"="pink","Imputed"="black")
AKTSplot<-ggplot(Pop_AK,aes(x=Yr,y=Med))+

geom_line(aes(color="Survey"))+
geom_ribbon(aes(x=Yr,ymin=LCI,ymax=UCI,fill=""),alpha=.15,show.legend=FALSE)+
geom_errorbar(data=Pop_AK[Pop_AK$Type!="Survey",],aes(x=Yr, ymin = LCI, ymax=UCI), size=0.25,width=.5) +
geom_point(data=Pop_AK[Pop_AK$Type!="Survey",],aes(x=Yr, y=Med,color="Imputed")) +
scale_y_log10() +
facet_wrap(~Str)+
xlab("Year") +
ylab("Population") +
labs(color="Estimate",shape="",fill="")+
theme(legend.position = "bottom")+
guides(color=guide_legend(override.aes=list(shape=c(NA,16),linetype=c(1,0),fill=NA)))+
scale_color_manual(values = c("Survey" = "dark red", "Imputed" = "black"))

print(AKTSplot)
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Figure 2: Imputed population abundances for Alaska mallards in 2020–21.

# print out in table form

# kbl(Pop_AK[,1:10], longtable = T, booktabs = T, caption =

# "Alaska mallard population estimates in millions from 1990--2021.") %>%

# kable_styling(latex_options = c("repeat_header"))

# readr::write_csv(x = Pop_AK,

# file = "/extdata/MissMallAK.csv",

# na = "")

# print out totals

tot_Pop_AK<-tapply(Pop_AK$Med,Pop_AK$Yr,sum)
tot_Pop_AK_SE<-tapply(Pop_AK$SE,Pop_AK$Yr,function(x) sqrt(sum(x^2)))
tot_Pop_AK_df<-data.frame("Year"=unlist(dimnames(tot_Pop_AK)),

"Total"=as.vector(tot_Pop_AK)/1e6,
"SE"=as.vector(tot_Pop_AK_SE)/1e6)

# kbl(tot_Pop_AK_df, booktabs = T, caption = "Total

# Alaska mallard population estimates in millions.") %>%

# kable_styling(latex_options = c("repeat_header"))

AK_tot_2020<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2020,"Total"],2)
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AK_tot_2020

## [1] 0.49

AK_tot_2020_SE<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2020,"SE"],2)

AK_12_2021 <- round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "Pop"])

AK_12_2021_SE<-round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "SE"])

AK_12_2021_upp<-as.numeric(round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "UCI"],2))

AK_12_2021_low<-as.numeric(round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "LCI"],2))

AK_tot_2021<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2021,"Total"],2)
AK_tot_2021_SE<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2021,"SE"],2)

# AK_tot_2020<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2020,"Total"],2)

# # AK_tot_2020_SE<-round(tot_Pop_AK_df[tot_Pop_AK_df$Year==2020,"SE"],2)

# AK_12_2021 <- round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "Pop"])

# AK_12_2021_SE<-round(Pop_AK[Pop_AK$Str == 12 & Pop_AK$Yr==2021, "SE"])

Imputation Results
The imputed values for Alaska mallard population abundances in 2020 and 2021 were consistent
with historical, observed population sizes (Figure 2). The imputed population estimate for Alaska
mallards in spring of 2020 is 0.49 million with a 95% con�dence interval ranging from 0.3136 to 0.6664
million. The population estimate for Alaska mallards in the spring of 2021 is 0.64 million with a 95%
con�dence interval ranging from 0.5224 to 0.7576 million. The population estimate for mallards in
strata 12 in 2021 was 13020 with the 95% con�dence interval ranging from 2564.83 to 39474.3 .
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EMALL Forcasting for ABDU AHM
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Abstract
The American black duck (ABDU) Adaptive Harvest Management framework uses ABDU population

size and eastern mallard (EMALL) population size as state variables. EMALL were hypothesized to
compete with breeding ABDU and reduce recruitment. Due to the Covid-19 epidemic, spring breeding
population surveys for waterfowl were not conducted during the spring of 2020 and 2021. We do not have
a population model that can be used to predict EMALL breeding population size in 2020 and 2021, so we
used a formal time series analysis to predict the 2020 and 2021 breeding population sizes for EMALL to
inform ABDU AHM. Our time series analysis indicated that a single difference and first-order moving
average model fit the time series best. Because the best model was a random walk and first-order moving
average, the two out-year predicted population sizes were the same (N = 387,269). The prediction interval
for 2020 (95% PI = 331,265 - 443,273) was slightly smaller than the prediction interval for 2021 (95% PI
= 327.177 - 447,3604).

Contents
1 Introduction

2 Raw Data

3 Analysis
3.1 Results Summary and 2020-2021 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Assess Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction
American black duck (ABDU) AHM is currently informed by two states: ABDU breeding population size
(BPOP) and eastern mallard (EMALL) BPOP in eastern Canada. Although the management community is
moving towards defining the ABDU population as all black ducks breeding in eastern Canada and the eastern
U.S., the current definition is ABDU breeding in the core breeding range of eastern Canada (WBPHS strata
51, 52, 63, 64, 66, 67, 68, 70, 71, and 72). The EMALL population used in ABDU AHM is comprised of those
breeding in the same strata as the current ABDU population definition. All WBPHS were canceled for the
spring 2020 and 2021 due to the Covid-19 epidemic, so we do not have an estimate of the current state for
either ABDU and EMALL for these two years. We used the ABDU integrated population model with 2019
population size, 2019 and 2020 pre-season banding data, and predicted 2019 and 2020 recruitment based on
the 2019 and 2020 ABDU BPOP (density-dependent term), 2019 and 2020 EMALL BPOP (competition
hypothesis), and a long-term trend. However, we do not have a current population model to predict the
EMALL population size for 2020 and 2021. The population model used to support the former eastern mallard
AHM strategy was based on a different population of mallards (i.e., those breeding in WBPHS strata 51, 52,
53, and 56; and in the states of VA north to NH), so we could not use that model to predict EMALL BPOP
for ABDU AHM. Therefore, we used an Auto Regressive Integrated Moving Average (ARIMA) approach to
predict 2020 and 2021 BPOP sizes for EMALL based on the historic time series.
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We used the ‘forecast’ package with the ARIMA function in program R as recommended by Hyndman and
Athanasopoulos (2018) to identify the best approach for forecasting the 2020 and 2021 EMALL population:

1. Inspect the raw data for stationarity - a stationary population is one with random fluctuations where a
count is not influenced by the time at which its observed (i.e., no trends or seasonality).

2. Use model selection (AICc) and a stepwise selection to identify the best autoregressive, differencing, or
moving average (and order for each) is best for forecasting the time series based on the nature of the
historic data.

3. Present fit tests to assess how well the selected model fits.

2 Raw Data
We explored the raw data for stationarity using:

1. Plot pf the raw data through time and simple regression of year and time to see if there is evidence of a
trend

2. Produced an Autocorrelation plot of the coefficients of correlation between a time series and lags of
that time series. Stationary data have autocorrelation go to zero rapidly within very few time lags.

3. Conducted a Box-Ljung test, which assess the overall randomness of the data rather than autocorrelation
at specific time lags. The null hypothesis for this test is that the data represent randomness or white
noise

4. Conducted a KPSS unit root test to assess whether differencing (i.e., use the difference between
subsequent observations in the analysis) is likely needed to achieve stationarity. The null hypothesis is
that the data are random, so rejecting the null suggests that differencing is needed. As implemented in
ARIMA, the test statistic is compared to the critical values at different levels in the output.

raw.dat <- read.csv('data/InputData/integrated.csv')
#mall <- raw.dat[,c('Year','mall_med','mall_se','mall_LCI95','mall_UCI95')]
mall <- raw.dat[,c('Year','mall_med','mall_se')]
# Assess stationarity

# Visualize data and run simple regression to look for trends and extreme observations
plot(mall$Year,mall$mall_med/100,type='l',lwd=3,xlab = 'Year',ylab = 'EMALL BPOP (in 100,000s)',ylim=c(0,8))

# lines(mall$Year,mall$mall_LCI95/100000,lty=3,lwd=3)
# lines(mall$Year,mall$mall_UCI95/100000,lty=3,lwd=3)
lines(mall$Year,mall$mall_med/100 + (mall$mall_se/100),lty=3,lwd=3)
lines(mall$Year,mall$mall_med/100 - (mall$mall_se/100),lty=3,lwd=3)
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glm.trend <- glm(mall_med ~ Year, data = mall)
summary(glm.trend)

##
## Call:
## glm(formula = mall_med ~ Year, data = mall)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -58.017 -14.518 1.383 14.159 62.640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5180.5994 1164.2915 -4.450 0.000125 ***
## Year 2.7752 0.5808 4.778 0.0000509 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 758.2334)
##
## Null deviance: 38540 on 29 degrees of freedom
## Residual deviance: 21231 on 28 degrees of freedom
## AIC: 288
##
## Number of Fisher Scoring iterations: 2
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# Autocorrelation plot
acf(mall$mall_med, main="")
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# Box-Ljung test
Box.test(mall$mall_med, lag=10, type="Ljung-Box")

##
## Box-Ljung test
##
## data: mall$mall_med
## X-squared = 36.479, df = 10, p-value = 0.00006963

# KPSS Unit Root Test
mall$mall_med %>%

ur.kpss() %>%
summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 2 lags.
##
## Value of test-statistic is: 0.7761
##
## Critical value for a significance level of:
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## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739

Inspection of the raw data indicated that the EMALL time series is not stationary, and that differencing is
likely needed and a basic autocorrelation or random walk model might not be appropriate. The 4 checks
indicated:

1. The raw data plot indicated an increasing trend over time and the simple linear regression indicated a
significant positive slope

2. The autocorrelation did not approach zero until several lags; and even went slightly negative towards
the longest lags

3. The Box-Ljung test had a small p-value, which rejects the null hypothesis of randomness in the data
4. The unit root test test-statistic was slightly greater than the significance level at 1 percent (i.e., out in

the tail), so it rejects the hypothesis of overall stationarity in the data.

3 Analysis
We used the auto.arima function to estimate the best approach and ordering for forecasting EMALL BPOP
based on the historic time series. The auto.arima function returns a vector with three elements to summarize
the results of model selection (i.e., ARIMA(x,y,z)):

1. Element x represents autoregressive models (0 = autoregressive model not appropriate, >0 = order for
autoregressive model AR(1), AR(2), etc)

2. Element y represents differencing (0 = differencing not needed, >0 = order for differencing)
3. Element z represents whether a moving average model is appropriate (0 = moving average model not

needed, >0 = order for moving average model)

3.1 Results Summary and 2020-2021 Prediction
Model selection indicated ARIMA(0,1,1) indicating that differencing of 1 time step and MA(1) fit the data
best. The regression was conducted on differences among years (N=29) rather than the actual annual
estimates (N=30) and the values were the current and single time lag regression errors rather than the
population sizes. The resulting regression equation is: yt = εt − 0.6110εt−1. The εt terms in this model are
not directly observed, so this is not a standard regression and the values in the model are estimated from
recursive estimation. The population sizes are considered weighted moving averages of the past year’s forecast
error. This model was selected at best due to the inherent trend in the time series.

## Series: dat
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.6110
## s.e. 0.1402
##
## sigma^2 estimated as 816.5: log likelihood=-138.1
## AIC=280.19 AICc=280.65 BIC=282.93
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Table 1: Predicted BPOP for EMALL (and prediction intervals) for 2020-2021

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2020 387.2688 350.6497 423.8879 331.2647 443.2729
2021 387.2688 347.9770 426.5606 327.1772 447.3604
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Observed (black) and predicted (blue) EMALL BPOP

3.2 Assess Model Fit
Inspection of model fit indicated that ARIMA(0,1,1) model adequately fit the time series. The Ljung-Box test
had a p-value of 0.328, so we do not reject the null hypothesis of random variation and the autocorrelation
plot centered around zero within acceptable limits (dotted blue lines in the ACF plot below). Although
overall, the model appeared to fit well, the residual plots indicated some lack of fit. The time series of residual
plot indicated a slight declining trend and the residual histogram was slightly left-skewed. The mean of
the residuals should ideally be zero (equally under and over fit), but the mean of the residuals was about 6.
This pattern indicated that early in the time series the model slightly over-predicted, whereas later in the
time series, the model slightly under-predicted. This is likely due to the trend in the raw data where the
population was increasing until a certain point where it appears to stabilize or slightly decrease.
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 5.7823, df = 5, p-value = 0.328
##
## Model df: 1. Total lags used: 6

94 



Northern Pintail AHM - Latitude Forecast:
Spring 2021

G. Scott Boomer

Branch of Assessment and Decision Support
Division of Migratory Bird Management

U.S. Fish and Wildlife Service
scott_boomer@fws.gov

16 August 2021

Abstract

Due to the COVID-19 pandemic, waterfowl breeding populations were not directly observed
in the springs of 2020–21. As a result, waterfowl harvest regulations will have to be informed
with information based on predictions of breeding population sizes and habitat conditions. We
developed an estimation and forecasting framework to predict the distribution (weighted latitude)
of the pintail (Anas acuta) breeding population in the spring of 2021 based on historical breeding
distribution information from 1980–2019. We used an autoregressive integrated moving average
(ARIMA) estimation framework to develop a model to forecast the breeding distribution of pintails
in 2021. A 1st order autoregressive model [ARIMA (1,0,0)] was best supported by the data. Based
on our selected model, the forecast of the latitude of the 2021 pintail breeding population is 55.47
degrees (95% PI = 51.85 – 59.09).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to conduct the Waterfowl Breeding Population and Habitat Survey (WBPHS) to estimate
the 2021 waterfowl breeding populations as well as evaluate breeding habitat conditions. As a result,
the promulgation of waterfowl harvest regulations in 2021 will require some modifications to the
decision protocols that typically govern the regulatory process. In the absence of this information,
the USFWS proposes to base 2021 regulatory decisions on predictions of breeding population sizes
and habitat conditions. Current system models for which we have AHM decision frameworks will
be used to predict 2021 population sizes based on the breeding population sizes, habitat conditions,
harvest, and harvest rates observed in 2019. However, several harvest strategies such as pintail AHM
rely on other forms of information (e.g., breeding distribution) to establish decision thresholds. As a
result, we developed an estimation framework to forecast the latitude of the 2020–21 pintail breeding
population distribution.

Latitude Time Series Analysis

Data

nopi_dat<-getBPOP.fn(1430,"MAS",1980:2019,1e6)

# bind data into a time series object for convenience

lat_ts<-ts(nopi_dat$lat,frequency=1,start=1980,end=2019)

We are interested in predicting the 2021 pintail breeding distribution (weighted latitude) from the
historical time series of breeding population estimates. We summarized breeding ground distribution
information in the form of a BPOP weighted average of the latitude of the centroid of each strata in
the traditional survey area of the Waterfowl Breeding Population and Habitat Survey (U.S. Fish and
Wildlife Service 2019). Based on previous analyses that documented a temporal shift in the distribution
of breeding pintails (Runge and Boomer 2005, M. C. Runge USGS, personal communication), we
restricted our analyses to information from 1980–2019 (Figure 1).
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Figure 1: The observed latitude of the pintail breeding population distribution from 1980–2019.

We analysed the raw time series information for stationarity with unit root tests from the R
tseries package (Trapletti and Hornik 2019). We started with an augmented Dicky-Fuller test limiting
the number of lags to an AR(1) process to test the null hypothesis that the population time series is
non-stationary. These test results provide strong evidence that the data are stationary.

#ggAcf(lat_ts)

adf.test(lat_ts, k = 0)

##

## Augmented Dickey-Fuller Test

##

## data: lat_ts

## Dickey-Fuller = -4.0426, Lag order = 0, p-value = 0.01812

## alternative hypothesis: stationary

To confirm this result, we used a KPSS test with a null hypothesis that the time series is stationary.
These test results provide little evidence to conclude that the data are not stationary.

kpss.test(lat_ts,null="Level")

## Warning in kpss.test(lat_ts, null = "Level"): p-value greater than printed p-

## value

##

## KPSS Test for Level Stationarity

##

## data: lat_ts

## KPSS Level = 0.1211, Truncation lag parameter = 3, p-value = 0.1
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Weanalysed the historical informationwith an autoregressive integratedmoving average (ARIMA)
estimation framework, using the auto.arima function from the Forecast R package (Hyndman et al.
2020, Hyndman and Khandakar 2008) to determine the appropriate number of lags and differencing
(Hyndman and Athanasopoulos 2018) for the final specification of our ARIMA model.

fit_lat<-auto.arima(lat_ts,stepwise=FALSE,approximation=FALSE,trace=TRUE)

##

## ARIMA(0,0,0) with zero mean : 437.1984

## ARIMA(0,0,0) with non-zero mean : 165.9492

## ARIMA(0,0,1) with zero mean : Inf

## ARIMA(0,0,1) with non-zero mean : 163.692

## ARIMA(0,0,2) with zero mean : Inf

## ARIMA(0,0,2) with non-zero mean : 163.2817

## ARIMA(0,0,3) with zero mean : Inf

## ARIMA(0,0,3) with non-zero mean : 165.7076

## ARIMA(0,0,4) with zero mean : Inf

## ARIMA(0,0,4) with non-zero mean : 165.9126

## ARIMA(0,0,5) with zero mean : Inf

## ARIMA(0,0,5) with non-zero mean : 168.7623

## ARIMA(1,0,0) with zero mean : Inf

## ARIMA(1,0,0) with non-zero mean : 161.9086

## ARIMA(1,0,1) with zero mean : Inf

## ARIMA(1,0,1) with non-zero mean : 164.2008

## ARIMA(1,0,2) with zero mean : Inf

## ARIMA(1,0,2) with non-zero mean : 165.6069

## ARIMA(1,0,3) with zero mean : Inf

## ARIMA(1,0,3) with non-zero mean : 169.0239

## ARIMA(1,0,4) with zero mean : Inf

## ARIMA(1,0,4) with non-zero mean : 168.8571

## ARIMA(2,0,0) with zero mean : Inf

## ARIMA(2,0,0) with non-zero mean : 164.0091

## ARIMA(2,0,1) with zero mean : Inf

## ARIMA(2,0,1) with non-zero mean : 165.1546

## ARIMA(2,0,2) with zero mean : Inf

## ARIMA(2,0,2) with non-zero mean : 167.9224

## ARIMA(2,0,3) with zero mean : Inf

## ARIMA(2,0,3) with non-zero mean : Inf

## ARIMA(3,0,0) with zero mean : Inf

## ARIMA(3,0,0) with non-zero mean : 165.1493

## ARIMA(3,0,1) with zero mean : Inf

## ARIMA(3,0,1) with non-zero mean : 165.0755

## ARIMA(3,0,2) with zero mean : Inf

## ARIMA(3,0,2) with non-zero mean : Inf

## ARIMA(4,0,0) with zero mean : Inf

## ARIMA(4,0,0) with non-zero mean : 167.4134

## ARIMA(4,0,1) with zero mean : Inf

## ARIMA(4,0,1) with non-zero mean : 167.8004

## ARIMA(5,0,0) with zero mean : Inf

## ARIMA(5,0,0) with non-zero mean : 166.1395
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##

##

##

## Best model: ARIMA(1,0,0) with non-zero mean

summary(fit_lat)

## Series: lat_ts

## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

##

## Training set error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01472947 1.681347 1.312912 -0.1177028 2.357408 0.7654633

## ACF1

## Training set -0.03108714

print(fit_lat)

## Series: lat_ts

## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

#checkresiduals(fit_lat)
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Figure 2: Residual diagnostics from the selected model [ARIMA (1,0,0)].

##

## Ljung-Box test

##

## data: Residuals from ARIMA(1,0,0) with non-zero mean

## Q* = 10.665, df = 6, p-value = 0.09931

##

## Model df: 2. Total lags used: 8

2021 Pintail Latitude Forecast
The model selection results suggest that a 1st order autoregressive model [ARIMA (1,0,0)] is best
supported by the data. Model diagnostics indicate that the residuals are uncorrelated and the selected
model does not show a lack of fit (Figure 2). We can use these model results to forecast the distribution
of the pintail breeding population in the spring of 2021.

lat_2021 <- forecast(fit_lat,h=2)

summary(lat_2021)

##

## Forecast method: ARIMA(1,0,0) with non-zero mean

##

## Model Information:

## Series: lat_ts
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## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

##

## Error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01472947 1.681347 1.312912 -0.1177028 2.357408 0.7654633

## ACF1

## Training set -0.03108714

##

## Forecasts:

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 2020 55.16463 52.95392 57.37534 51.78364 58.54562

## 2021 55.46743 53.09961 57.83524 51.84617 59.08868

autoplot(lat_2021) + xlab("Year") + ylab("Latitude (degrees)") +ggtitle("")
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Figure 3: The forecast of the latitude of the pintail breeding population distribution for 2020–21.
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lat_2021_sd<-(lat_2021$upper[,1] - lat_2021$lower[,1]) /

(2 * qnorm(.5 + lat_2021$level[1] / 200))

mean_abs_2020 <- format(round(as.numeric(lat_2021$mean[1]),2),nsmall=2)

mean_abs_2021 <- format(round(as.numeric(lat_2021$mean[2]),2),nsmall=2)

upper_abs_2020<-round(lat_2021$upper[1,2],2)

lower_abs_2020<-round(lat_2021$lower[1,2],2)

upper_abs_2021<-round(lat_2021$upper[2,2],2)

lower_abs_2021<-round(lat_2021$lower[2,2],2)

print(paste("SD =",round(lat_2021_sd,3),sep=""))

## [1] "SD =1.725" "SD =1.848"

Based on the selected model, the forecast for the latitude of the 2021 pintail breeding population
is 55.47 degrees with a 95% prediction interval ranging from 51.85 to 59.09 (Figure 3).
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Appendix H Mid-Continent Mallard Models 

In 1995, we developed population models to predict changes in mid-continent mallards based on the traditional 
survey area which includes individuals from Alaska (Johnson et al. 1997). In 1997, we added mallards from 
the Great Lakes region (Michigan, Minnesota, and Wisconsin) to the mid-continent mallard stock, assuming 
their population dynamics were equivalent. In 2002, we made extensive revisions to the set of alternative 
models describing the population dynamics of mid-continent mallards (Runge et al. 2002, U.S. Fish and 
Wildlife Service 2002). In 2008, we redefned the population of mid-continent mallards Table H.1 to account 
for the removal of Alaskan birds (WBPHS strata 1–12) that are now considered to be in the western mallard 
stock and have subsequently rescaled the model set accordingly. 

Model Structure 

Collectively, the models express uncertainty (or disagreement) about whether harvest is an additive or com-
pensatory form of mortality (Burnham et al. 1984), and whether the reproductive process is weakly or strongly 
density-dependent (i.e., the degree to which reproductive rates decline with increasing population size). 

All population models for mid-continent mallards share a common “balance equation” to predict changes in 
breeding-population size as a function of annual survival and reproductive rates: 

/���� ��+1 = �� (���,�� + (1 − �)(��,�� + ��(��,�� + ��,�� �
���
� � ))) 

where: 

N =breeding population size, 

m = proportion of males in the breeding population, 

��� , ��� , ��� , and ��� = survival rates of adult males, adult females, young females, and young 
males, respectively, 

R = reproductive rate, defned as the fall age ratio of females, 

����/����= the ratio of female (F ) to male (M ) summer survival, and t = year. � � 

and ����/���� We assumed that m are fxed and known. We also assumed, based in part on information� � 
provided by Blohm et al. (1987), the ratio of female to male summer survival was equivalent to the ratio of 

/���� annual survival rates in the absence of harvest. Based on this assumption, we estimated ���� = 0.897.� � 
To estimate m we expressed the balance equation in matrix form: 

[ ] [ ] [ ] 
���� �

���/���� ��+1,�� ��� ��,�� � � = 
��+1,�� 0 ��� + ���� ��,�� 

and substituted the constant ratio of summer survival and means of estimated survival and reproductive 
rates. The right eigenvector of the transition matrix is the stable sex structure that the breeding population 
eventually would attain with these constant demographic rates. This eigenvector yielded an estimate of 
m = 0.5246. 

Using estimates of annual survival and reproductive rates, the balance equation for mid-continent mallards 
over-predicted observed population sizes by 11.0% on average. The source of the bias is unknown, so we 
modifed the balance equation to eliminate the bias by adjusting both survival and reproductive rates: 

/���� ��+1 = �� �� (���,�� + (1 − �) (��,�� + ���� (��,�� + ��,�� �
���
� � ))) 

where � denotes the bias-correction factors for survival (S), and reproduction (R). We used a least squares 
approach to estimate �� = 0.9407 and �� = 0.8647. 
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Table H.1 – Estimates (N) and associated standard errors (SE) of mid-continent mallards (in millions) observed 
in the WBPHS (strata 13–18, 20–50, and 75–77) from 1992 to 2019 and the Great Lakes region (Michigan, 
Minnesota, and Wisconsin) from 1992 to 2019 and 2021. The waterfowl breeding population surveys were not 
conducted in 2020–21 due to the COVID-19 pandemic; 2020–21 numbers are model predictions based on most 
recent information. 

WBPHS area Great Lakes region Total 

Year N SE N SE N SE 

1992 5.6304 0.2379 0.9964 0.1178 6.6267 0.2654 

1993 5.4253 0.2068 0.9176 0.0827 6.3429 0.2227 

1994 6.6292 0.2803 1.1304 0.1153 7.7596 0.3031 

1995 7.7452 0.2793 1.0857 0.1323 8.8309 0.3090 

1996 7.4193 0.2593 1.0074 0.0991 8.4267 0.2776 

1997 9.3554 0.3041 1.0777 0.1140 10.4332 0.3248 

1998 8.8041 0.2940 1.0783 0.1172 9.8825 0.3165 

1999 10.0926 0.3374 1.0309 0.1282 11.1236 0.3610 

2000 8.6999 0.2855 1.1993 0.1221 9.8992 0.3105 

2001 7.1857 0.2204 0.8282 0.0718 8.0139 0.2318 

2002 6.8364 0.2412 1.0684 0.0883 7.9047 0.2569 

2003 7.1062 0.2589 0.8407 0.0647 7.9470 0.2668 

2004 6.6142 0.2746 0.9465 0.0915 7.5607 0.2895 

2005 6.0521 0.2754 0.8138 0.0677 6.8660 0.2836 

2006 6.7607 0.2187 0.6249 0.0577 7.3856 0.2262 

2007 7.7258 0.2805 0.7904 0.0752 8.5162 0.2904 

2008 7.1914 0.2525 0.6865 0.0550 7.8779 0.2584 

2009 8.0094 0.2442 0.6958 0.0625 8.7052 0.2521 

2010 7.8246 0.2799 0.7793 0.0714 8.6039 0.2889 

2011 8.7668 0.2650 0.7298 0.0720 9.4965 0.2746 

2012 10.0959 0.3199 0.8612 0.1769 10.9571 0.3655 

2013 10.0335 0.3586 0.7628 0.0744 10.7963 0.3662 

2014 10.3989 0.3429 0.6459 0.0681 11.0448 0.3496 

2015 11.1724 0.3582 0.6202 0.0514 11.7926 0.3619 

2016 11.2083 0.3615 0.6925 0.0707 11.9008 0.3684 

2017 9.9500 0.3298 0.6927 0.0523 10.6427 0.3339 

2018 8.8044 0.2955 0.7634 0.0702 9.5678 0.3037 

2019 9.0624 0.2823 0.6698 0.0679 9.7322 0.2903 

2020 8.3023 1.4183 0.6767 0.0791 8.9790 1.4205 

2021 7.8871 1.3453 0.7327 0.0934 8.6198 1.3485 
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Survival Process 

We considered two alternative hypotheses for the relationship between annual survival and harvest rates. For 
both models, we assumed that survival in the absence of harvest was the same for adults and young of the 
same sex. In the model where harvest mortality is additive to natural mortality: 

= �� ��,���,��� 0,���(1 − ��,���,���) 

and in the model where changes in natural mortality compensate for harvest losses (up to some threshold): 

{ 
�� 
0,��� �� ��,���,��� ≤ 1 − �� 

0,��� ��,���,��� = 
1 − ��,���,��� �� ��,���,��� > 1 − �� 

0,��� 

where �0 = survival in the absence of harvest under the additive (A) or compensatory (C ) model, and K = 
harvest rate adjusted for crippling loss (20%, Anderson and Burnham 1976). We averaged estimates of �0 

across banding reference areas by weighting by breeding-population size. For the additive model, �0 = 0.7896 
and 0.6886 for males and females, respectively. For the compensatory model, �0 = 0.6467 and 0.5965 for 
males and females, respectively. These estimates may seem counterintuitive because survival in the absence 
of harvest should be the same for both models. However, estimating a common (but still sex-specifc) �0 

for both models leads to alternative models that do not ft available band-recovery data equally well. More 
importantly, it suggests that the greatest uncertainty about survival rates is when harvest rate is within the 
realm of experience. By allowing �0 to difer between additive and compensatory models, we acknowledge 
that the greatest uncertainty about survival rate is its value in the absence of harvest (i.e., where we have no 
experience). 

Reproductive Process 

Annual reproductive rates were estimated from age ratios in the harvest of females, corrected using a constant 
estimate of diferential vulnerability. Predictor variables were the number of ponds in May in Prairie Canada 
(P, in millions) and the size of the breeding population (N, in millions). We estimated the best-ftting linear 
model, and then calculated the 80% confdence ellipsoid for all model parameters. We chose the two points 
on this ellipsoid with the largest and smallest values for the efect of breeding-population size, and generated 
a weakly density-dependent model: 

�� = 0.7166 + 0.1083�� − 0.0373�� 

and a strongly density-dependent model: 

�� = 1.1390 + 0.1376�� − 0.1131�� 

Predicted recruitment was then rescaled to refect the current defnition of mid-continent mallards which now 
excludes birds from Alaska but includes mallards observed in the Great Lakes region. 

Pond Dynamics 

We modeled annual variation in Canadian pond numbers as a frst-order autoregressive process. The estimated 
model was: 

��+1 = 2.2127 + 0.3420�� + �� 

where ponds are in millions and �� is normally distributed with mean = 0 and variance = 1.2567. 
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Variance of Prediction Errors 

Using the balance equation and sub-models described above, predictions of breeding-population size in year 
t+1 depend only on specifcation of population size, pond numbers, and harvest rate in year t. For the period 
in which comparisons were possible, we compared these predictions with observed population sizes. 

We estimated the prediction-error variance by setting: 

( ) 
���� ��� �� = ln − ln (� )� � ( ) 

�� ∼ � 0, �2 ∑ [ ( ) ]2^ � ��� ��� �2 = ln − ln (� ) /(� − 1)� � � 

where � ��� and ���� are observed and predicted population sizes (in millions), respectively, and n = the 
number of years being compared. We were concerned about a variance estimate that was too small, either 
by chance or because the number of years in which comparisons were possible was small. Therefore, we 
calculated the upper 80% confdence limit for �2 based on a Chi-squared distribution for each combination 
of the alternative survival and reproductive sub-models, and then averaged them. The fnal estimate of �2 

was 0.0280, equivalent to a coefcient of variation of about 16.85%. 

Model Implications 

The population model with additive hunting mortality and weakly density-dependent recruitment (SaRw) 
leads to the most conservative harvest strategy, whereas the model with compensatory hunting mortality 
and strongly density-dependent recruitment (ScRs) leads to the most liberal strategy. The other two models 
(SaRs and ScRw) lead to strategies that are intermediate between these extremes. Under the models with 
compensatory hunting mortality (ScRs and ScRw), the optimal strategy is to have a liberal regulation re-
gardless of population size or number of ponds because at harvest rates achieved under the liberal alternative, 
harvest has no efect on population size. Under the strongly density-dependent model (ScRs), the density 
dependence regulates the population and keeps it within narrow bounds. Under the weakly density dependent 
model (ScRw), the density-dependence does not exert as strong a regulatory efect, and the population size 
fuctuates more. 

Model Weights 

Model weights are calculated as Bayesian probabilities, refecting the relative ability of the individual alter-
native models to predict observed changes in population size. The Bayesian probability for each model is a 
function of the model’s previous (or prior) weight and the likelihood of the observed population size under 
that model. We used Bayes’ theorem to calculate model weights from a comparison of predicted and observed 
population sizes for the years 1996–2019, starting with equal model weights in 1995. 
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Appendix I Western Mallard Models 

In contrast to mid-continent, we did not model changes in population size for both the Alaska and southern 
Pacifc Flyway (California, Oregon, Washington, and British Columbia combined) substocks of western mal-
lards (Table I.1) as an explicit function of survival and reproductive rate estimates (which in turn may be 
functions of harvest and environmental covariates). We believed this so-called “balance-equation approach” 
was not viable for western mallards because of insufcient banding in Alaska to estimate survival rates, and 
because of the difculty in estimating substock-specifc fall age ratios from a sample of wings derived from a 
mix of breeding stocks. 

Table I.1 – Estimates (N) and associated standard errors (SE) of western mallards (in millions) observed in 
Alaska (WBPHS strata 1–12) and the southern Pacifc Flyway (California, Oregon, Washington, and British 
Columbia combined) from 1990 to 2021. The waterfowl breeding population surveys were not conducted in 2020 
due to the COVID-19 pandemic; 2020 numbers are based on model predictions. Surveys in the southern Pacifc 
Flyway and strata 12 in Alaska were not surveyed in 2021 because of the pandemic; data for Alaska strata 12 
were imputed and 2021 numbers for the southern Pacifc Flyway are based on model predictions. 

Alaska CA-ORa WA-BC SO–PFb Total Total 

Year N SE N SE N SE N SE N SE 

1990 0.3669 0.0370 NA NA NA NA NA NA NA NA 

1991 0.3853 0.0363 NA NA NA NA NA NA NA NA 

1992 0.3457 0.0387 NA NA NA NA NA NA NA NA 

1993 0.2830 0.0295 NA NA NA NA NA NA NA NA 

1994 0.3509 0.0371 0.4281 0.0425 NA NA NA NA NA NA 

1995 0.5242 0.0680 0.4460 0.0427 NA NA NA NA NA NA 

1996 0.5220 0.0436 0.6389 0.0802 NA NA NA NA NA NA 

1997 0.5842 0.0520 0.6325 0.1043 NA NA NA NA NA NA 

1998 0.8362 0.0673 0.4788 0.0489 NA NA NA NA NA NA 

1999 0.7131 0.0696 0.6857 0.1066 NA NA NA NA NA NA 

2000 0.7703 0.0522 0.4584 0.0532 NA NA NA NA NA NA 

2001 0.7183 0.0541 NA NA NA NA NA NA NA NA 

2002 0.6673 0.0507 0.3698 0.0327 NA NA NA NA NA NA 

2003 0.8435 0.0668 0.4261 0.0501 NA NA NA NA NA NA 

2004 0.8111 0.0639 0.3449 0.0352 NA NA NA NA NA NA 

2005 0.7031 0.0547 0.3920 0.0474 NA NA NA NA NA NA 

2006 0.5158 0.0469 0.4805 0.0576 NA NA NA NA NA NA 

2007 0.5815 0.0551 0.4808 0.0546 NA NA NA NA NA NA 

2008 0.5324 0.0468 0.3725 0.0478 NA NA NA NA NA NA 

2009 0.5030 0.0449 0.3746 0.0639 NA NA NA NA NA NA 

2010 0.6056 0.0531 0.4347 0.0557 0.1740 0.0132 0.6087 0.0572 1.2143 0.0781 

2011 0.4158 0.0388 0.3763 0.0452 0.1411 0.0117 0.5174 0.0467 0.9332 0.0607 

2012 0.5056 0.0511 0.4759 0.0550 0.1650 0.0117 0.6409 0.0563 1.1465 0.0760 

2013 0.3384 0.0382 0.3830 0.0527 0.1573 0.0117 0.5403 0.0540 0.8787 0.0661 

2014 0.5009 0.0574 0.3239 0.0553 0.1690 0.0123 0.4929 0.0566 0.9938 0.0806 

2015 0.4709 0.0509 0.2612 0.0295 0.1678 0.0114 0.4290 0.0316 0.8999 0.0599 

2016 0.5842 0.0654 0.3511 0.0365 0.1339 0.0078 0.4850 0.0373 1.0692 0.0753 

2017 0.5385 0.0519 0.2701 0.0324 0.1743 0.0120 0.4444 0.0346 0.9828 0.0624 

2018 0.4508 0.0451 0.3700 0.0436 0.2042 0.0115 0.5743 0.0451 1.0250 0.0637 

2019 0.3611 0.0353 0.3237 0.0330 0.2008 0.0142 0.5245 0.0359 0.8855 0.0504 

2020 0.4912 0.0842 NA NA NA NA 0.5303 0.0757 1.0215 0.1132 

2021 0.6413 0.0591 NA NA NA NA 0.5284 0.0875 1.1697 0.1056 

a Available California survey estimates begin in 1992; Oregon surveys estimates begin in 1994 and were unavailable in 2001. 
b Southern Pacifc Flyway includes California, Oregon, Washington, and British Columbia observations. 

108 



Model Structure 

To evaluate western mallard population dynamics, we used a discrete logistic model (Schaefer 1954), which 
combines reproduction and natural mortality into a single parameter r, the intrinsic rate of growth. The 
model assumes density-dependent growth, which is regulated by the ratio of population size, N, to the 
carrying capacity of the environment, K (i.e., equilibrium population size in the absence of harvest). In 
the traditional formulation, harvest mortality is additive to other sources of mortality, but compensation for 
hunting losses can occur through subsequent increases in production. However, we parameterized the model 
in a way that also allows for compensation of harvest mortality between the hunting and breeding seasons. 
It is important to note that compensation modeled in this way is purely phenomenological, in the sense 
that there is no explicit ecological mechanism for compensation (e.g., density-dependent mortality after the 
hunting season). The basic model for both the Alaska and southern Pacifc Flyway substocks has the form: 

[ ( )] 
�� 

��+1 = �� + ��� 1 − (1 − ��)
� 

where, 

= �ℎ�� �� � 

and where t = year, ℎ�� = the harvest rate of adult males, and d = a scaling factor. The scaling factor is 
used to account for a combination of unobservable efects, including un-retrieved harvest (i.e., crippling loss), 
diferential harvest mortality of cohorts other than adult males, and for the possibility that some harvest 
mortality may not afect subsequent breeding-population size (i.e., the compensatory mortality hypothesis). 

Estimation Framework 

We used Bayesian estimation methods in combination with a state-space model that accounts explicitly for 
both process and observation error in breeding population size. This combination of methods is becoming 
widely used in natural resource modeling, in part because it facilitates the ftting of non-linear models that 
may have non-normal errors (Meyer and Millar 1999). The Bayesian approach also provides a natural and 
intuitive way to portray uncertainty, allows one to incorporate prior information about model parameters, and 
permits the updating of parameter estimates as further information becomes available. Breeding population 
data are available for California and Oregon from 1994–2019 (except for 2001), British Columbia from 2006– 
2019, and Washington from 2010–2019 (see Table I.1). We attempted to use correlations with adjacent states 
to impute data back to 1992 for WA and BC, but could not fnd a reasonable correlation between those surveys 
and other regions (potentially due to a short time series). Therefore, we imputed population estimates for 
BC and WA by sampling values from the mean and variance within the MCMC framework. Specifcally, we 
calculated the total mean and variance of breeding population sizes based on observed data (2006–2019 for 
British Columbia, and 2010–2019 for Washington), and then used those means and variances to sample a 
population size for the missing years (1992–2005 for British Columbia; and 1992–2009 for Washington) during 
each iteration of MCMC sampling. Although this approach imputes values based on a random draw, it does 
acknowledge added uncertainty in those estimates compared to the years with observed data. Further, given 
the low annual variability and lack of trend, we have no evidence that the recent survey estimates used to 
generate the mean and variance are not a reasonable approximation of historical breeding population sizes. 

We frst scaled N by K as recommended by Meyer and Millar (1999), and assumed that process errors were 
lognormally distributed with mean 0 and variance �2 . Thus, the process model had the form: 

�� = ��/� ( ( )) 
1 − �ℎ�� log(��) = log [��−1 + ��−1� (1 − ��−1)] + �� �−1 
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where, 

�� ∼ � (0, �2) 

The observation model related the unknown population sizes (���) to the population sizes (��) estimated 
from the breeding-population surveys in Alaska and southern Pacifc Flyway. We assumed that the observa-
tion process yielded additive, normally distributed errors, which were represented by: 

= ��� + ��� �� �� � , 

where, 

��� �� ∼ � (0, �2 
� �� �� ). 

permitting us to estimate the process error, which refects the inability of the model to completely describe 
changes in population size. The process error refects the combined efect of misspecifcation of an appropriate 
model form, as well as any un-modeled environmental drivers. We initially examined a number of possible 
environmental covariates, including the Palmer Drought Index in California and Oregon, spring temperature 
in Alaska, and the El Niño Southern Oscillation Index (http://www.cdc.noaa.gov/people/klaus.wolter/MEI/ 
mei.html). While the estimated efects of these covariates on r or K were generally what one would expect, 
they were never of sufcient magnitude to have a meaningful efect on optimal harvest strategies. We therefore 
chose not to further pursue an investigation of environmental covariates, and posited that the process error 
was a sufcient surrogate for these un-modeled efects. Parameterization of the models also required measures 
of harvest rate. Beginning in 2002, harvest rates of adult males were estimated directly from the recovery of 
reward bands. Prior to 1993, we used direct recoveries of standard bands, corrected for band-reporting rates 
provided by Nichols et al. (1995b). We also used the band-reporting rates provided by Nichols et al. (1995b) 
for estimating harvest rates in 1994 and 1995, except that we infated the reporting rates of full-address 
and toll-free bands based on an unpublished analysis by Clint Moore and Jim Nichols (Patuxent Wildlife 
Research Center). We were unwilling to estimate harvest rates for the years 1996–2001 because of suspected, 
but unknown, increases in the reporting rates of all bands. For simplicity, harvest rate estimates were treated 
as known values in our analysis, although future analyses might beneft from an appropriate observation 
model for these data. 

The state-space model is informed by the population sizes estimated from breeding-population surveys. 
However, the southern pacifc fyway was not surveyed in 2020 and 2021, and Alaska was not surveyed in 
2020 because of the COVID-19 pandemic. For these years with missing data, we predicted population size 
from the process model. We included process error from the state-space model and predicted sampling error 
associated with breeding-population survey in the prediction variance. 

We predicted sampling variance using the mean CV from years when we had observed data. First, we 
used simple linear regression to determine the correlation between breeding-population size estimates on 
their standard errors in Alaska (1990–2019, 2021) and the southern Pacifc Flyway (2010–2019) separately. 
Output from the linear model was treated as data in the state-space model, including: degrees of freedom 
(Alaska �� = 30; southern Pacifc Flyway [sPF] �� = 9), residual standard error (Alaska ��� = 0.008; sPF 
��� = 0.007), the coefcient of the relationship of population size estimates and standard error of estimates, 
which represents an estimate of the mean CV, (Alaska � = 0.090; sPF � = 0.087), and the standard error 
of the coefecent (Alaska �� = 0.003; sPF �� = 0.004). For years with no observed breeding population, we 
assumed the latent population size �� was a normally distributed random parameter with an expected mean 
��� and standard deviation �: 

�� ∼ � (���, �� 
2) 
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where, 

�� ∼ �(����, �) 

where � is a sampled CV from the parameters of the linear regression: 

� ∼ �(�, �� ) 

and � represents the standard error of this relationship, which is informed by �� and ��� from the linear 
regression. The parameter � can be interpreted as our confdence in predictions of abundance when no surveys 
were completed, which increases as more years of observations are used to inform the linear regression. 

In a Bayesian analysis, one is interested in making probabilistic statements about the model parameters 
(�), conditioned on the observed data. Thus, we are interested in evaluating � (�|����), which requires 
the specifcation of prior distributions for all model parameters and unobserved system states (�) and the 
sampling distribution (likelihood) of the observed data � (����|�). Using Bayes theorem, we can represent 
the posterior probability distribution of model parameters, conditioned on the data, as: 

� (�|����) ∝ � (�) × � (����|�) 

Accordingly, we specifed prior distributions for model parameters r, K, d, and �0, which is the initial 
population size relative to carrying capacity. For both substocks, we specifed the following prior distributions 
for r, d, and �2: 

� ∼ ���������(−1.0397, 0.69315) 

� ∼ �������(0, 2) 

�2 ∼ ������� − �����(0.001, 0.001) 

The prior distribution for r is centered at 0.35, which we believe to be a reasonable value for mallards based on 
life-history characteristics and estimates for other avian species. Yet the distribution also admits considerable 
uncertainty as to the value of r within what we believe to be realistic biological bounds. As for the harvest-rate 
scalar, we would expect � ≥ 1 under the additive hypothesis and � < 1 under the compensatory hypothesis. 
As we had no data to specify an informative prior distribution, we specifed a vague prior in which d could 
take on a wide range of values with equal probability. We used a traditional, uninformative prior distribution 
for �2 . Prior distributions for K and �0 were substock-specifc and are described in the following sections. 

We used the public-domain software JAGS (Plummer (2003); https://sourceforge.net/projects/mcmc-jags) 
to derive samples from the joint posterior distribution of model parameters via MCMC simulations. We spec-
ifed 10,000 adaptive iterations for each chain, obtained 150,000 samples from the joint posterior distribution 
and thinned it by 25, resulting in a sample of 6,000 for each of the 5 chains, or 30,000 total samples. 

Alaska mallards 

Data selection—Breeding population estimates of mallards in Alaska (and the Old Crow Flats in Yukon) 
are available since 1955 in WBPHS strata 1–12 (Smith 1995). However, a change in survey aircraft in 1977 
instantaneously increased the detectability of waterfowl, and thus population estimates (Hodges et al. 1996). 
Moreover, there was a rapid increase in average annual temperature in Alaska at the same time, apparently 
tied to changes in the frequency and intensity of El Niño events (http://www.cdc.noaa.gov/people/klaus. 
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wolter/MEI/mei.html). This confounding of changes in climate and survey methods led us to truncate the 
years 1955–1977 from the time series of population estimates. 

Modeling of the Alaska substock also depended on the availability of harvest-rate estimates derived from 
band-recovery data. Unfortunately, sufcient numbers of mallards were not banded in Alaska prior to 1990. 
A search for covariates that would have allowed us to make harvest-rate predictions for years in which band-
recovery data were not available was not fruitful, and we were thus forced to further restrict the time series 
to 1990 and later. Even so, harvest rate estimates were not available for the years 1996–2001, and 2014 
because of unknown changes in band-reporting rates or lack of banding data. Because available estimates of 
harvest rate showed no apparent variation over time, we simply used the mean and standard deviation of the 
available estimates and generated independent samples of predictions for the missing years based on a logit 
transformation and an assumption of normality: 

( ) 
ℎ� 

�� ∼ ������(−2.4055, 0.0651) for t = 1996–2001, and 2014. 
1 − ℎ� 

Prior distributions for K and �0—We believed that sufcient information was available to use mildly informa-
tive priors for K and �0. During the development of this framework, the Alaska substock had approximately 
0.8 million mallards. If harvest rates have been comparable to that necessary to achieve maximum sustained 
yield (MSY) under the logistic model (i.e., r/2), then we would expect � ≈ 1.6 million. On the other hand, if 
harvest rates have been less than those associated with MSY, then we would expect � < 1.6 million. Because 
we believed it was not likely that harvest rates were > �/2, we believed the likely range of K to be 0.8–1.6 
million. We therefore specifed a prior distribution that had a mean of 1.4 million, but had a sufciently large 
variance to admit a wide range of possible values: 

� ∼ ���������(0.13035, 0.41224) 

Extending this line of reasoning, we specifed a prior distribution that assumed the estimated population size 
of approximately 0.4 million at the start of the time series (i.e., 1990) was 20–60% of K. Thus on a log scale: 

�� ∼ �������(−1.6094, −0.5108) 

Parameter estimates—The logistic model and associated posterior parameter estimates provided a reasonable 
ft to the observed time series of population estimates. The posterior means of K and r were similar to their 
priors, although their variances were considerably smaller (Table I.2). However, the posterior distribution of 
d was essentially the same as its prior, refecting the absence of information in the data necessary to reliably 
estimate this parameter. 

Table I.2 – Estimates of model parameters resulting from ftting a discrete logistic model to a time series of 
estimated population sizes and harvest rates of mallards breeding in Alaska from 1990–2019 and 2021. 

Parameter Mean SD 2.5% CIa Median 97.5% CI 

K 1.026 0.284 0.641 0.965 1.715 

d 1.194 0.513 0.163 1.246 1.961 

r 

�2 

0.316 

0.027 

0.126 

0.011 

0.103 

0.012 

0.308 

0.025 

0.592 

0.054 
a CI = credible interval. 
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Southern Pacifc Flyway (CA-OR-WA-BC) mallards 

Data selection—Breeding-population estimates of mallards in California are available starting in 1992, but 
not until 1994 in Oregon. Also, Oregon did not conduct a survey in 2001. To avoid truncating the time 
series, we used the admittedly weak relationship (P = 0.02) between California-Oregon population estimates 
to predict population sizes in Oregon in 1992, 1993, and 2001. The ftted linear model was: 

��� = 60521 + 0.0904(���)� � 

To derive realistic standard errors, we assumed that the predictions had the same mean coefcient of variation 
as the years when surveys were conducted (n = 25, CV = 0.089). The estimated sizes and variances of the 
southern Pacifc Flyway substock were calculated by simply summing the state-specifc estimates. 

We pooled band-recovery data for the southern Pacifc Flyway substock and estimated harvest rates in the 
same manner as that for Alaska mallards. Although banded sample sizes were sufcient in all years, harvest 
rates could not be estimated for the years 1996–2001 because of unknown changes in band-reporting rates. 
As with Alaska, available estimates of harvest rate showed no apparent trend over time, and we simply used 
the mean and standard deviation of the available estimates and generated independent samples of predictions 
for the missing years based on a logit transformation and an assumption of normality: 

( ) 
ℎ� 

�� ∼ ������(−1.8494, 0.0272) for t = 1996–2001 
1 − ℎ� 

Prior distributions for K and �0—Unlike the Alaska substock, the California-Oregon population had been 
relatively stable with a mean of 0.48 million mallards while developing western mallard AHM. We believed 
K should be in the range 0.48–0.96 million, assuming the logistic model and that harvest rates were ≤ �/2. 
The addition of Washington and British Columbia mallards to the southern Pacifc Flyway substock did not 
result in substantive changes to historically stable population dynamics, but increased the overall size of the 
southern Pacifc Flyway population by approximately 30%. Therefore, we scaled the prior to increase the 
expected carrying capacity by 30%. We therefore specifed a prior distribution on K that had a mean of 0.8 
million, but with a variance sufciently large to admit a wide range of possible values: 

� ∼ ���������(−0.2262, 0.2638) 

The estimated size of the California-Oregon substock was 0.47 million at the start of the time series (i.e., 
California plus the imputed Oregon estimate in 1992). We used a similar line of reasoning as that for Alaska 
for specifying a prior distribution �0, positing that initial population size was 40-100% of K. Thus on a log 
scale: 

�� ∼ �������(−0.9163, 0.0) 

Parameter estimates—The logistic model and associated posterior parameter estimates provided a reasonable 
ft to the observed time series of population estimates. The posterior means of K and r were similar to their 
priors, although the variances were considerably smaller (Table I.3). Interestingly, the posterior mean of d 
was < 1, suggestive of a compensatory response to harvest; however the standard deviation of the estimate 
was large, with the upper 95% credibility limit > 1. 

For each western mallard substock, we further summarized the simulation results for r, K, and the scaling 
factor d to admit parametric uncertainty with a formal correlation structure within the optimization procedure 
used to calculate the harvest strategy. We frst defned a joint distribution for 3 discrete outcomes for each of 
the 3 population parameters. We used the 30 and 70 percent quantiles for each parameter as the cut points 
to defne three bins for which to discretize 3 values of each posterior distribution. We then determined the 
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Table I.3 – Estimates of model parameters resulting from ftting a discrete logistic model to a time series of 
estimated population sizes and harvest rates of mallards breeding in the southern Pacifc Flyway (California, 
Oregon, Washington, and British Columbia combined) from 1992 to 2020. 

Parameter Mean SD 2.5% CIa Median 97.5% CI 

K 

d 

r 

�2 

0.878 

0.586 

0.305 

0.009 

0.217 

0.385 

0.185 

0.005 

0.608 

0.051 

0.066 

0.002 

0.821 

0.511 

0.265 

0.008 

1.429 

1.535 

0.772 

0.022 
a CI = credible interval. 

frequency of occurrence of each of the 27 possible combinations of each parameter value falling within the 3 
bins from the MCMC simulation results. These frequencies were then assigned parameter values based on 
the midpoint of bin ranges (15, 50, 85 percent quantiles) to specify the joint distribution of the population 
parameter values used in the optimization. 
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Appendix J Atlantic Flyway Multi-stock Models 

Similar to western mallards we did not have adequate data to model changes in breeding population size of the 
species included in the multi-stock framework (Table J.1) to use the balance-equation approach. Therefore, 
we used discrete logistic models similar to those used to model western mallard population dynamics. We 
initially intended to use the same model structure for all four species in the strategy, but because of the lack 
of preseason banding data for ring-necked ducks and goldeneyes, we implemented two diferent forms of the 
discrete logistic model. 

Table J.1 – Estimates (N) and associated standard errors (SE) of American green-winged teal (AGWT), wood 
ducks (WODU), ring-necked ducks (RNDU), and goldeneyes (GOLD) (in millions) observed in eastern Canada 
(WBPHS strata 51–53, 56, 62–72) and U.S. (Atlantic Flyway states) from 1998 to 2021. The waterfowl breeding 
population surveys were not conducted in 2020 for any species or in 2021 for any species but WODU, due to the 
COVID-19 pandemic; numbers from years without surveys are based on model predictions. 

AGWTa WODUb RNDUa GOLDa 

Year N SE N SE N SE N SE 

1998 0.3003 0.0700 0.9655 0.1177 0.5858 0.1274 0.5505 0.1452 

1999 0.3887 0.0769 0.9817 0.1214 0.6948 0.1539 0.6599 0.1378 

2000 0.3567 0.0637 0.9405 0.1153 0.9210 0.3552 0.6425 0.1703 

2001 0.2985 0.0578 0.9280 0.1150 0.6584 0.1235 0.7462 0.1836 

2002 0.4056 0.0736 0.9649 0.1178 0.6697 0.1128 0.8526 0.2170 

2003 0.3930 0.0843 0.9292 0.1146 0.6701 0.0987 0.6448 0.1899 

2004 0.4635 0.0974 0.9450 0.1218 0.7375 0.1486 0.5925 0.1385 

2005 0.3404 0.0746 0.9261 0.1150 0.6225 0.0900 0.5170 0.1070 

2006 0.3332 0.0699 0.9580 0.1190 0.6542 0.1048 0.4740 0.1005 

2007 0.4406 0.1338 0.9598 0.1188 0.8330 0.1195 0.6613 0.1549 

2008 0.4063 0.0936 0.9270 0.1159 0.6713 0.1238 0.6268 0.1571 

2009 0.4290 0.1047 0.9439 0.1185 0.6839 0.1349 0.5419 0.1265 

2010 0.4171 0.1069 0.9409 0.1178 0.6759 0.1173 0.5348 0.1322 

2011 0.4023 0.1057 0.9471 0.1164 0.6093 0.0961 0.5459 0.1215 

2012 0.3647 0.0878 0.9769 0.1223 0.6331 0.1180 0.5747 0.1696 

2013 0.4001 0.2186 0.9867 0.1225 0.7832 0.4361 0.6203 NAc 

2014 0.3058 0.0719 0.9920 0.1228 0.5968 0.0999 0.5800 0.2081 

2015 0.3126 0.0751 0.9833 0.1226 0.7132 0.1947 0.4390 0.1024 

2016 0.3194 0.0802 0.9963 0.1248 0.7326 0.1389 0.5034 0.1404 

2017 0.3447 0.0695 1.0280 0.1389 0.6119 0.1282 0.5616 0.1570 

2018 0.3395 0.0749 0.9822 0.1258 0.6275 0.1289 0.4891 0.1291 

2019 0.3028 0.0634 1.0222 0.1301 0.6935 0.1513 0.5159 0.1489 

2020 0.3451 0.0988 0.9496 0.1369 0.7000 0.1678 0.5687 0.1820 

2021 0.3396 0.0983 1.0204 0.1332 0.7097 0.1722 0.5856 0.1971 

a Breeding population size estimates from eastern survey area (WBPHS strata 51–53, 56, 62–72) 
b Breeding population size estimates from Atlantic Flyway states (Florida north to Maine) 
c The SE of the goldeneyes estimate for 2013 is not reported due to insufcient counts. 

Model Structures 

We had sufcient preseason bandings for American green-winged teal and wood ducks to estimate harvest 
rates directly from band recovery analysis, so we used a similar model to western mallards: 
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[ ( )] 
�� 

��+1 = �� + ��� 1 − (1 − ℎ�),
� 

where N = breeding population size, r = the maximum intrinsic growth rate, K = carrying capacity, 
and h = harvest rate estimated from banding data. The model does not have age or sex structure and 
banding summaries indicated reasonable sample sizes for adults and juveniles of both sexes, so we pooled all 
banding data when estimating an overall population harvest rate. This form of the discrete logistic model 
assumes that density dependent growth (or declines) are instantaneous and loss to harvest occurs following the 
instantaneous growth [i.e., next year’s population is based on the current year population, density dependent 
growth, and surviving the hunting season at a rate equal to (1 − ℎ)]. This model assumes that harvest is 
additive and r and K provide a measure of the harvest potential for these species. 

Because we did not have sufcient data to estimate harvest rates for ring-necked ducks and goldeneyes, we 
used a slightly modifed version of the above model that includes total harvest rather than harvest rate: [ ( )] 

�� 
��+1 = �� + ��� 1 − − ���,

� 

where H = total harvest in number of birds, and d = a scaling parameter to account for incomplete overlap 
between the spatial scale for which H and N are calculated (i.e., breeding population surveys are limited to a 
discrete region in eastern U.S. and Canada, whereas the harvest data can be collected from birds that breed 
outside of the survey region). 

Estimation Framework 

We used Bayesian estimation methods with a state-space model (Meyer and Millar 1999) to estimate the 
parameters of the discrete logistic model for all four species in the multi-stock framework. This modeling 
approach allows us to explicitly model the process (i.e., the unobservable true underlying dynamics of the 
population) and observation (sampling a portion of the population) components that generated the observed 
data. As recommended by Meyer and Millar (1999), we scaled N by K to help improve convergence and 
assumed that the process error was lognormally distributed. Therefore, the process model for American 
green-winged teal and wood ducks was: 

log(��) = log ([��−1 + ��−1� (1 − ��−1)] (1 − ℎ�−1)) + ��, 

whereas the process model for ring-necked ducks and goldeneyes was: ( ) 
��−1log(��) = log [��−1 + ��−1� (1 − ��−1)] − � + ��,� 

with 
�� = ��/�, ��� 

�� ∼ � (0, �2) 

for both model structures. The process error (��) represents the inability of the discrete logistic model to 
accurately characterize population changes. We assumed that the standard errors for the breeding population 
size estimates were normally distributed and linked the process model to the observed data as: 

= ��� + ��� �� ,�� � 
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where 

��� �� ∼ � (0, �2 
� �� �� ). 

The posterior estimates for the discrete logistic parameters for each species are listed in Table J.2. 

Table J.2 – Estimates of model parameters resulting from ftting a discrete logistic model to a time series of 
estimated population sizes and harvest rates of American green-winged teal (AGWT), wood ducks (WODU), 
ring-necked ducks (RNDU), and goldeneyes (GOLD) breeding in eastern Canada and U.S. from 1998 to 2020. 

Parameter Species Mean SD 2.5% CIa Median 97.5% CI 

K AGWT 0.5379 0.0705 0.4174 0.5269 0.6882 

K WODU 1.5834 0.2021 1.2398 1.5513 2.0042 

K RNDU 0.9022 0.1650 0.6432 0.8741 1.2292 

K GOLD 0.7396 0.1300 0.5277 0.7139 1.0200 

�0 AGWT 0.6001 0.0771 0.4441 0.6057 0.7361 

�0 WODU 0.5823 0.0754 0.4389 0.5872 0.7148 

�0 RNDU 0.6288 0.0711 0.4742 0.6370 0.7537 

�0 GOLD 0.6622 0.0957 0.4599 0.6650 0.8491 

d RNDU 0.5346 0.2777 0.0649 0.5549 0.9993 

d GOLD 0.5877 0.2818 0.0837 0.6298 1.0000 

r AGWT 0.4405 0.1072 0.2560 0.4263 0.6550 

r WODU 0.3994 0.0855 0.2572 0.3864 0.5680 

r RNDU 0.4155 0.1088 0.2243 0.3999 0.6317 

r GOLD 0.2321 0.0526 0.1395 0.2261 0.3387 

�2 AGWT 0.0053 0.0062 0.0002 0.0032 0.0166 

�2 WODU 0.0023 0.0019 0.0002 0.0017 0.0059 

�2 RNDU 0.0038 0.0045 0.0002 0.0023 0.0119 

�2 GOLD 0.0139 0.0138 0.0002 0.0099 0.0403 
a CI = credible interval. 

Data—The USFWS and Atlantic Flyway agreed to use breeding population size data from the largest area 
possible for the multi-stock AHM framework. The complete eastern Canada and Maine area has been surveyed 
since 1998 and is the largest area representing breeding population sizes of American green-winged teal, ring-
necked ducks, and goldeneyes that are harvested in the Atlantic Flyway. The BBS survey (1966–current) and 
AFBWS (1993–current) data that are used to estimate wood duck breeding population size provide a longer 
time series for that species in the Atlantic Flyway. However, changes in band inscriptions and the lack of an 
appropriate reporting rate for adjusting harvest rate for that species during the mid-1990s precluded us from 
estimating reliable harvest rates that were needed for the discrete logistic model. Therefore, we limited the 
data for all species to 1998–current for the Atlantic Flyway multi-stock AHM framework (see Table J.1). 

Prior distributions —Inferences from Bayesian analyses are derived from posterior distributions that are 
proportional to the likelihood of the data given model parameters multiplied by the prior probabilities of 
those parameters. We used two diferent approaches for estimating prior distributions for K and r. For K, 
we used a uniform prior because we had no a priori information that could allow us to put more weight on a 
specifc K for each species. However, we felt we could identify endpoints for the uniform distribution as the 
mean observed population size (i.e., current harvest levels are completely compensatory) and double the mean 
observed population size (i.e., populations are currently being harvested at maximum sustainable yield [MSY] 
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1and are at �). We extended the uniform prior 20% less and 20% greater than these end points to account 2 
for uncertainty in observational data. These prior values were based on observed breeding population sizes 
from 1998 to 2015, which represented the extent of the time series when the development of the multi-stock 
framework frst began. We felt that we had a more justifable theoretical basis to estimate a non-uniform 
prior for r based on previous research. For each species, we used the demographic invariant method (Niel 
and Lebreton 2005) with survival rate estimates based on an allometric relationship between species mass 
and survival in captive birds (Johnson et al. 2012) to develop informed lognormal priors (Table J.3). We 
used a non-informative inverse gamma prior for estimating process variation. 

Table J.3 – Lognormal mean and standard deviations (SD) used to describe the prior distributions for maximum 
intrinsic growth rate (r) for American green-winged teal (AGWT), wood ducks (WODU), ring-necked ducks 
(RNDU), and goldeneyes (GOLD) in eastern Canada and U.S. 

Species Mean SD 

AGWT −0.80396 0.23495 

WODU −0.89116 0.24417 

RNDU −0.90198 0.24294 

GOLD −1.42346 0.20831 
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Appendix K Modeling Waterfowl Harvest Rates 

Mid-continent Mallards 

We modeled harvest rates of mid-continent mallards within a Bayesian hierarchical framework. We developed 
a set of models to predict harvest rates under each regulatory alternative as a function of the harvest rates 
observed under the liberal alternative, using historical information. We modeled the probability of regulation-
specifc harvest rates (h) based on normal distributions with the following parameterizations: 

Closed: �(ℎ� ) ∼ � (�� , �2 )� 

Restrictive: �(ℎ�) ∼ � (��, �2 )� 

Moderate: �(ℎ� ) ∼ � (�� , �2 )� 

Liberal: �(ℎ�) ∼ � (��, �2 )� 

For the restrictive and moderate alternatives we introduced the parameter � to represent the relative diference 
between the harvest rate observed under the liberal alternative and the moderate or restrictive alternatives. 
Based on this parameterization, we are making use of the information that has been gained (under the liberal 
alternative) and are modeling harvest rates for the restrictive and moderate alternatives as a function of 
the mean harvest rate observed under the liberal alternative. For the harvest-rate distributions assumed 
under the restrictive and moderate regulatory alternatives, we specifed that �� and �� are equal to the 
prior estimates of the predicted mean harvest rates under the restrictive and moderate alternatives divided 
by the prior estimates of the predicted mean harvest rates observed under the liberal alternative. Thus, 
these parameters act to scale the mean of the restrictive and moderate distributions in relation to the mean 
harvest rate observed under the liberal regulatory alternative. We also considered the marginal efect of 
framework-date extensions under the moderate and liberal alternatives by including the parameter �� . 

To update the probability distributions of harvest rates realized under each regulatory alternative, we frst 
needed to specify a prior probability distribution for each of the model parameters. These distributions 
represent prior beliefs regarding the relationship between each regulatory alternative and the expected harvest 
rates. We used a normal distribution to represent the mean and a scaled inverse-chi-square distribution to 
represent the variance of the normal distribution of the likelihood. For the mean (�) of each harvest-rate 
distribution associated with each regulatory alternative, we use the predicted mean harvest rates provided in 
(U.S. Fish and Wildlife Service 2000, 13–14), assuming uniformity of regulatory prescriptions across Flyways. 
We set prior values of each standard deviation (�) equal to 20% of the mean (CV = 0.2) based on an analysis 
by Johnson et al. (1997). We then specifed the following prior distributions and parameter values under each 
regulatory package: 

Closed (in U.S. only):( ) 
0.00182 

�(�� ) ∼ � 0.0088, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.00182)� 

These closed-season parameter values are based on observed harvest rates in Canada during the 1988–93 
seasons, which was a period of restrictive regulations in both Canada and the United States. 

For the restrictive and moderate alternatives, we specifed that the standard error of the normal distribution 
of the scaling parameter is based on a coefcient of variation for the mean equal to 0.3. The scale parameter 
of the inverse-chi-square distribution was set equal to the standard deviation of the harvest rate mean under 
the restrictive and moderate regulation alternatives (i.e., CV = 0.2). 
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Restrictive: ( ) 
0.152 

�(��) ∼ � 0.51, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.01332)� 

Moderate: ( ) 
0.262 

�(�� ) ∼ � 0.85, 6 

�(�� 
2) ∼ ������ ��� − �2(6, 0.02232) 

Liberal: ( ) 
0.02612 

�(��) ∼ � 0.1305, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.02612)� 

The prior distribution for the marginal efect of the framework-date extension was specifed as: 

( ) 
�(�� ) ∼ � 0.02, 0.012 

The prior distributions were multiplied by the likelihood functions based on the last 23 years of data under 
liberal regulations, and the resulting posterior distributions were evaluated with Markov chain Monte Carlo 
simulation. Posterior estimates of model parameters and of annual harvest rates are provided in Table K.1. 

Western Mallards 

We modeled harvest rates of western mallards using a similar parameterization as that used for mid-continent 
mallards. However, we did not explicitly model the efect of the framework date extension because we did 
not use data observed prior to when framework date extensions were available. In the western mallard 
parameterization, the efect of the framework date extensions are implicit in the expected mean harvest rate 
expected under the liberal regulatory option. 

Closed: �(ℎ� ) ∼ � (�� , �2 )� 

Restrictive: �(ℎ�) ∼ �(����, �2 )�

Moderate: �(ℎ� ) ∼ � (�� ��, �2 )� 

Liberal: �(ℎ�) ∼ � (��, �2 )�

We set prior values of each standard deviation (�) equal to 30% of the mean (CV = 0.3) to account for 
additional variation due to changes in regulations in the other Flyways and their unpredictable efects on the 
harvest rates of western mallards. We then specifed the following prior distribution and parameter values 
for the liberal regulatory alternative: 
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2000

2005

2010

2015

2020

Table K.1 – Parameter estimates for predicting mid-continent mallard harvest rates resulting from a hierarchical, 
Bayesian analysis of mid-continent mallard band-recovery information from 1998 to 2020. 

Parameter Estimate SD Parameter Estimate SD 

�� 

�� 

�� 

�� 

�� 

�� 

�� 

�� 

�� 

0.0088 

0.0019 

0.5092 

0.0129 

0.8437 

0.0215 

0.1070 

0.0165 

0.0034 

0.0021 

0.0005 

0.0609 

0.0033 

0.1080 

0.0055 

0.0060 

0.0023 

0.0064 

ℎ1998 

ℎ1999 

ℎ 

ℎ2001 

ℎ2002 

ℎ2003 

ℎ2004 

ℎ 

ℎ2006 

ℎ2007 

ℎ2008 

ℎ2009 

ℎ 

0.1020 

0.0983 

0.1232 

0.0930 

0.1210 

0.1104 

0.1300 

0.1144 

0.1025 

0.1128 

0.1177 

0.1011 

0.1109 

0.0068 

0.0070 

0.0083 

0.0084 

0.0043 

0.0042 

0.0047 

0.0053 

0.0042 

0.0040 

0.0045 

0.0036 

0.0049 

ℎ2011 

ℎ2012 

ℎ2013 

ℎ2014 

ℎ 

0.0965 

0.1023 

0.1042 

0.1102 

0.1014 

0.0058 

0.0049 

0.0051 

0.0062 

0.0066 

ℎ2016 

ℎ2017 

ℎ2018 

ℎ2019 

ℎ 

0.1120 

0.1049 

0.0977 

0.0991 

0.1026 

0.0070 

0.0045 

0.0043 

0.0042 

0.0068 
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Table K.2 – Parameter estimates for predicting western mallard harvest rates resulting from a hierarchical, 
Bayesian analysis of western mallard band-recovery information from 2008 to 2020. 

Parameter Estimate SD Parameter Estimate SD 

�� 

�� 

�� 

�� 

�� 

�� 

�� 

�� 

0.0088 

0.0182 

0.5086 

0.0172 

0.8516 

0.0286 

0.1371 

0.0267 

0.0011 

0.0046 

0.0628 

0.0043 

0.1026 

0.0073 

0.0068 

0.0044 

ℎ2008 

ℎ2009 

ℎ2010 

ℎ2011 

ℎ2012 

ℎ2013 

ℎ2014 

ℎ2015 

ℎ2016 

ℎ2017 

ℎ2018 

ℎ2019 

ℎ2020 

0.1486 

0.1360 

0.1387 

0.1258 

0.1328 

0.0941 

0.1608 

0.1553 

0.1589 

0.1567 

0.1258 

0.1396 

0.1590 

0.0065 

0.0058 

0.0061 

0.0055 

0.0055 

0.0047 

0.0072 

0.0069 

0.0079 

0.0078 

0.0060 

0.0063 

0.0067 

Closed (in US only):( ) 
0.002642 

�(�� ) ∼ � 0.0088, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.002642)� 

Restrictive: ( ) 
0.1532 

�(��) ∼ � 0.51, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.018672)� 

Moderate: ( ) 
0.2552 

�(�� ) ∼ � 0.85, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0, 0.031122)� 

Liberal: ( ) 
0.036612 

�(��) ∼ � 0.1220, 6 

�(�2 ) ∼ ������ ��� − �2(6, 0.036612)� 

The prior distributions were multiplied by the likelihood functions based on the last 13 years of data under 
liberal regulations, and the resulting posterior distributions were evaluated with Markov chain Monte Carlo 
simulation. Posterior estimates of model parameters and of annual harvest rates are provided Table K.2. 
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Eastern Waterfowl Stocks 

We estimated expected harvest rates and associated variances for American green-winged teal and wood ducks 
as a function of the Atlantic Flyway’s liberal regulatory alternative using birds banded in eastern Canada and 
the Atlantic Flyway during 1998–2014 (banding reference areas 8, 15, 16; the states of North Carolina, South 
Carolina, Georgia, and Florida; the provinces of New Brunswick, Nova Scotia, Newfoundland and Labrador, 
Prince Edward Island, and eastern Quebec). We used these bands and their direct recoveries in binomial 
models to estimate direct recovery probabilities and then adjusted those recovery probabilities with regional 
reporting rates (birds banded in these areas were recovered in eastern Canada, the Atlantic Flyway, and 
Mississippi Flyway; Boomer et al. 2013) to estimate harvest rates (U.S. Fish and Wildlife Service 2017). We 
pooled age and sex classes for this estimation because the discrete logistic model used for this assessment does 
not incorporate age and sex structure. We used Bayesian methods and Markov chain Monte Carlo (MCMC) 
methods to estimate annual recovery probabilities and adjusted the recovery probabilities within the MCMC 
to obtain variances and incorporate uncertainty in the estimates of reporting rates (Padding et al. 2018). 

Banding and recovery data were insufcient for estimating the expected ring-necked duck and goldeneye 
harvest rates, so we used annual estimates of harvest (H) from the Harvest Information Program and the 
fall population size to make inferences about harvest rate (Runge et al. 2004). We estimated the annual 
fall population size (NF) from the discrete logistic model, and then estimated the expected harvest rate as 
H/NF (Runge et al. 2004). Therefore, the estimates of harvest rate for ring-necked ducks and goldeneyes 
were both calculated as derived parameters in the discrete logistic model used to estimate r and K for 
the population. We used Bayesian methods and a state-space model to ft the discrete logistic models and 
calculate derived estimates of harvest rate for these species (Appendix J). Breeding population estimates for 
ring-necked ducks and goldeneyes in eastern North America were available beginning in 1998, therefore we 
estimated the expected harvest rate for both species based on 1998–2014 harvest and population estimates. 

The Atlantic Flyway has not experienced more restrictive duck hunting regulations (e.g., 30-day season and 
a 3-bird limit) since the early 1990s. Furthermore, preseason duck banding eforts in eastern North America 
were limited until the 1990s. Therefore, we relied on data collected through the annual USFWS’s Parts 
Collection Survey (PCS) to estimate expected harvest rates during seasons < 60 days and/or bag limits 
< 6 birds as a proportion of the liberal package (see Padding et al. 2018 for details). We used daily bag 
composition data from the PCS to estimate the proportional reduction in harvest of each species that was 
expected to result from smaller bag limits under the moderate and restrictive regulatory alternatives (bag 
limit efect), following methods described by Martin and Carney (1977) and Balkcom et al. (2010). For each 
of the four species, we then summed the expected Flyway-wide reductions due to reduced season lengths and 
the expected reduction due to a smaller bag limits to estimate total expected reductions as proportions of the 
harvest under the liberal regulatory alternative (i.e., we estimated a �� , ��, �� for each species). Therefore, 
we estimated the expected harvest rate under the closed, moderate, and restrictive alternatives as 

ℎ� = ℎ� × ��, 

where i indexes moderate, restrictive, or closed seasons in the U. S. 

To estimate the expected efect of a January 31 ending framework date for the liberal and moderate alter-
natives, we relied on the observed efect of a 16-day framework date extension implemented in 2002 that 
increased the mallard harvest rate by 0.0052 (U.S. Fish and Wildlife Service 2017, Appendix G). We esti-
mated a mean additional extension of 3 days for the January 31 fxed ending date, and assumed that the efect 
per day would be the same as the observed per day efect of the previous extension. The resulting predicted 
increase in harvest rate (3/16 × 0.0052 = 0.000975) was added to the expected harvest rate estimates for the 
liberal and moderate alternatives. 
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Table K.3 – Annual harvest rate estimates (h) and associated standard errors (SE) for American green-winged 
teal (AGWT), wood ducks (WODU), ring-necked ducks (RNDU), and goldeneyes (GOLD) in eastern Canada 
(WBPHS strata 51–53, 56, 62–72) and U.S. (Atlantic Flyway states) from 1998 to 2020. 

AGWTa WODUa RNDUb GOLDb 

Year h SE h SE h SE h SE 

1998 0.1791 0.0253 0.1069 0.0076 0.2351 0.0213 0.045 0.0052 

1999 0.1308 0.0095 0.1224 0.0083 0.1812 0.0183 0.038 0.0044 

2000 0.1327 0.0092 0.1175 0.0077 0.1269 0.0145 0.0378 0.0045 

2001 0.1073 0.0088 0.1372 0.0086 0.1169 0.0152 0.0274 0.0038 

2002 0.1014 0.0085 0.122 0.0073 0.1172 0.0131 0.029 0.0038 

2003 0.123 0.009 0.1139 0.0079 0.125 0.0137 0.0328 0.0149 

2004 0.1022 0.0097 0.1059 0.0073 0.0916 0.0101 0.0338 0.0043 

2005 0.0982 0.0088 0.1101 0.007 0.122 0.0126 0.0397 0.0054 

2006 0.1036 0.0094 0.1046 0.0065 0.151 0.0155 0.0317 0.0045 

2007 0.1026 0.0079 0.1047 0.0066 0.1252 0.0135 0.031 0.0043 

2008 0.1097 0.0083 0.1148 0.0072 0.1357 0.0145 0.0343 0.0048 

2009 0.1027 0.0092 0.1098 0.0065 0.1238 0.0135 0.0296 0.0042 

2010 0.1132 0.0087 0.1415 0.0084 0.1034 0.0114 0.0285 0.0041 

2011 0.108 0.0082 0.123 0.0073 0.157 0.0165 0.0305 0.0045 

2012 0.1142 0.0094 0.1442 0.0085 0.1856 0.0205 0.0288 0.0045 

2013 0.1178 0.0099 0.1175 0.0073 0.1517 0.019 0.03 0.0051 

2014 0.1068 0.0092 0.1564 0.0093 0.1273 0.016 0.0194 0.0033 

2015 0.1394 0.0133 0.1302 0.0079 0.1318 0.0164 0.0165 0.0027 

2016 0.1166 0.0115 0.1346 0.0083 0.1372 0.017 0.0203 0.0033 

2017 0.1201 0.0112 0.1692 0.0101 0.1087 0.0136 0.0194 0.0031 

2018 0.111 0.0099 0.1295 0.0078 0.1229 0.0149 0.0175 0.0028 

2019 0.1207 0.0112 0.1369 0.0079 0.0776 0.0096 0.0192 0.0031 

2020 0.1372 0.0128 0.1613 0.0098 0.098 0.0117 0.014 0.0024 

a Estimated from band recovery data. 
b Estimated from a fall fight and total harvest. 

Table K.4 – Parameter estimates for predicting American green-winged teal (AGWT), wood duck (WODU), 
ring-necked duck (RNDU), and goldeneye (GOLD) expected harvest rates for season lengths < 60 days and bag 
limits < 6 birds. 

Parameter AGWT WODU RNDU GOLD 

�� 

�� 

�� 

0.1413 

0.4872 

0.7607 

0.0484 

0.6048 

0.7339 

0.1904 

0.4427 

0.7405 

0.1848 

0.2759 

0.5172 
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Appendix L Northern Pintail Models 

The Flyway Councils have long identifed the northern pintail as a high-priority species for inclusion in the 
AHM process. In 2010, the USFWS and Flyway Councils adopted an adaptive management framework to 
inform northern pintail harvest management. A detailed progress report that describes the evolution of the 
pintail harvest strategy is available online (http://www.fws.gov/migratorybirds/NewsPublicationsReports. 
html). The northern pintail adaptive harvest management protocol considers two population models that 
represent alternative hypotheses about the efect of harvest on population dynamics: one in which harvest 
is additive to natural mortality, and another in which harvest is compensatory to natural mortality. We 
describe the technical details of the northern pintail model set below. 

Latitude Bias Correction Model 

Northern pintails tend to settle on breeding territories farther north during years when the prairies are 
dry and farther south during wet years. When pintails settle farther north, a smaller proportion are counted 
during the Waterfowl Breeding Population and Habitat Survey (WBPHS strata: 1–18, 20–50, 75–77), thus the 
population estimate is biased low in comparison to years when the birds settle farther south. This phenomenon 
may be a result of decreased detectability of pintails during surveys in northern latitudes compared to southern 
latitudes or because birds settle in regions not covered by the survey. Runge and Boomer (2005) developed 
an empirical relationship to correct the observed breeding population estimates for this bias. Based on this 
approach, the latitude-adjusted breeding population size (��� ���) in year t, can be calculated with 

= ���(��� ���)+ 0.741(����� − 51.68)��� ��� 

where ��� ��� is the observed breeding population size in year t and ����� is the mean latitude of the 
observed breeding population in year t. The mean latitude of the pintail breeding population distribution 
is based on the geographical centroid of each stratum in the traditional survey area (WBPHS strata: 1–18, 
20–50, 75–77). In year t, we calculate a mean latitude (�����) weighted by the population estimates from 
each strata with 

∑ 
����� = [���� (��� ���,� /��� ���)] 

� 

where ���� is the latitude of survey stratum j. 

Population Models 

Two population models are considered: one in which harvest is additive to natural mortality, and another in 
which harvest is compensatory to natural mortality. The models difer in how they handle the winter survival 
rate. In the additive model, winter survival rate is a constant, whereas winter survival is density-dependent 
in the compensatory model. 

For the additive harvest mortality model, the latitude-adjusted population size (��� �� ) in year � + 1, is 
calculated with 

( ) ( ) �̂ 
� ^��� ���+1 = ��� ����� 1 + ���� − �� 

(1 − �) 

125 

http://www.fws.gov/migratorybirds/NewsPublicationsReports.html
http://www.fws.gov/migratorybirds/NewsPublicationsReports.html


where ��� ��� is the latitude-adjusted breeding population size in year t, �� and �� are the summer and 
winter survival rates, respectively, �� is a bias-correction constant for the age-ratio, c is the crippling loss 

^ ^ rate, �� is the predicted age-ratio, and �� is the predicted continental harvest. The model uses the following 
constants: �� = 0.70, �� = 0.93, �� = 0.8, and � = 0.20. 

The compensatory harvest mortality model serves as a hypothesis that stands in contrast to the additive 
harvest mortality model, positing a strong but realistic degree of compensation. The compensatory model 
assumes that the mechanism for compensation is density-dependent post-harvest (winter) survival (Runge 
2007). The form is a logistic relationship between winter survival and post-harvest population size, with 
the relationship anchored around the historic mean values for each variable. For the compensatory model, 
predicted winter survival rate in year t (��) is calculated as 

[ ]−1
�̄ ))�� = �0 + (�1 − �0) 1 + �−(� + �(�� − , 

where �1 (upper asymptote) is 1.0, �0 (lower asymptote) is 0.7, b (slope term) is -1.0, �� is the post-harvest 
¯population size in year t (expressed in millions), � is the mean post-harvest population size (4.295 million 

from 1974 through 2005), and 

( ) 
�̄ − �0

� = logit 
�1 − �0 

or ( ) { ( )} 
�̄ − �0 �̄ − �0

� = log − log 1 − ,
�1 − �0 �1 − �0 

where �̄ is 0.93 (mean winter survival rate). 

Age Ratio Submodel 

Recruitment (�̂) in year t is measured by the vulnerability-adjusted, female age-ratio in the fall population 
and is predicted as 

^ = �(7.6048 − 0.13183����� − 0.09212��� ���)�� 

where ����� is the mean latitude of the observed breeding population in year t and ��� ��� is the latitude-
adjusted breeding population in year t (expressed in millions). 

Harvest Submodel 

Predicted continental harvest (�̂ ) in year t is calculated with 

�̂� = �� � + ��� + ��� + ��� + ������ 

where �� � , ��� , ��� , and ��� are the predicted harvest in the Pacifc, Central, Mississippi, and Atlantic 
Flyways, respectively. The expected harvest from Alaska and Canada ������ is assumed fxed and equal 
to 67,000 birds. Flyway specifc harvest predictions are calculated with 
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Table L.1 – Total pintail harvest expected from the set of regulatory alternatives specifed for each Flyway 
under the northern pintail adaptive harvest management protocol. 

Pacifc Central Total 

Atlantic Mississippi Harvest 

Closed Closed 67,000 

Liberal 1 Closed 278,000 

Liberal 1 Restrictive 3 410,000 

Liberal 1 Moderate 3 523,000 

Liberal 1 Liberal 1 569,000 

Liberal 2 Closed 357,000 

Liberal 2 Restrictive 3 490,000 

Liberal 2 Moderate 3 603,000 

Liberal 2 Liberal 2 672,000 

�� � = −12051.41 + 1160.960���� + 73911.49��� 

��� = −95245.20 + 2946.285���� + 15228.03��� + 23136.04��� 

��� = −59083.66 + 3413.49���� + 7911.95��� + 59510.10��� 

�� � = −2403.06 + 360.950���� + 5494.00��� 

where ���� is the season length, ��� is the daily bag limit, and ��� is an indicator variable with value equal to 
0 (full season equal to length from general duck season) or 1 (restrictive season within the liberal or moderate 
regulatory alternative for general duck season, i.e., partial season). Each regulatory combination of bag limit 
and season length has an associated predicted pintail harvest (Table L.1). 

Model Weights 

The relative degree of confdence that we have in the additive or compensatory mortality hypothesis can be 
represented with model weights that are updated annually from a comparison of model specifc predictions 
and observed population sizes. For the period 1974–2018, the subsequent year’s breeding population size (on 
the latitude-adjusted scale) was predicted with both the additive and compensatory models, and compared 
to the observed breeding population size (on the latitude-adjusted scale). The mean-squared error of the 
predictions from the additive model (������) was calculated as: 

� ( )2 
������ =

1 ∑ 
��� ��� − ��� �� ��� ,� (� − 1975) + 1 

�=1975 

and the mean-squared error of the predictions from the compensatory model were calculated in a similar 
manner. 

We calculated model weights for the additive and compensatory model as a function of their relative mean-
squared errors. The model weight for the additive model (����) was determined by 
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1 
������ ���� = 

1 1 
+ 

������ ������� 

The model weight for the compensatory model was found in a corresponding manner, or by subtracting the 
additive model weight from 1.0. As of 2021, the compensatory model did not ft the historic data as well 
as the additive model; the model weights were 0.575 for the additive model and 0.425 for the compensatory 
model. 

Equilibrium Conditions 

Equilibrium analyses of the additive model suggest a carrying capacity of 7.33 million (on the latitude-
adjusted scale), maximum sustained yield (MSY) of 446,000 at an equilibrium population size of 3.30 million, 
and harvest rate of 10.9% (Runge and Boomer 2005). The yield curve resulting from the compensatory model 
is signifcantly skewed compared to the additive model (Figure L.1). Compared to the additive model, the 
compensatory model results in a lower carrying capacity (4.67 million), a higher MSY (561 thousand) at a 
lower equilibrium population size (2.99 million), and a higher maximum harvest rate (14.9%). 

The average model, based on 2021 model weights, produces a yield curve that is intermediate between the 
additive and compensatory models. An equilibrium analysis of the weighted model results in carrying capacity, 
MSY, equilibrium population size at MSY, and maximum harvest rate that are intermediate between the 
additive and compensatory model results (5.46 million, 492 thousand, 3.11 million, and 12.6% respectively). 
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Figure L.1 – Harvest yield curves resulting from an equilibrium analysis of the northern pintail model set based 
on 2021 model weights. 
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Appendix M Scaup Model 

We use a state-space formulation of scaup population and harvest dynamics within a Bayesian estimation 
framework (Meyer and Millar 1999, Millar and Meyer 2000). This analytical framework allows us to repre-
sent uncertainty associated with the monitoring programs (observation error) and the ability of our model 
formulation to predict actual changes in the system (process error). 

Process Model 

Given a logistic growth population model that includes harvest (Schaefer 1954), scaup population and harvest 
dynamics are calculated as a function of the intrinsic rate of increase (r), carrying capacity (K ), and harvest 
(��). Following Meyer and Millar (1999), we scaled population sizes by K (i.e., �� = ��/�) and assumed that 
process errors (��) are lognormally distributed with a mean of 0 and variance �2 The state dynamics�������. 
can be expressed as 

= �0�
�1974�1974 

�� = (��−1 + ���−1 (1 − ��−1) − ��−1/�) ��� , � = 1975, . . . , 2020, 

where �0 is the initial ratio of population size to carrying capacity. To predict total scaup harvest levels, we 
modeled scaup harvest rates (ℎ�) as a function of the pooled direct recovery rate (��) observed each year with 

ℎ� = ��/��. 

We specifed reporting rate (��) distributions based on estimates for mallards (Anas platyrhynchos) from 
large scale historical and existing reward banding studies (Henny and Burnham 1976, Nichols et al. 1995b, 
P. Garrettson unpublished data). We accounted for increases in reporting rate believed to be associated with 
changes in band type (e.g., from AVISE and new address bands to 1-800 toll free bands) by specifying year 
specifc reporting rates according to 

�� ∼ ������(0.38, 0.04), � = 1974, . . . , 1996 

�� ∼ ������(0.70, 0.04), � = 1997, . . . , 2020. 

We then predicted total scaup harvest (��) with 

�� = ℎ� [�� + ��� (1 − ��)] �, � = 1974, . . . , 2020. 

Observation Model 

We compared our predictions of population and harvest numbers from our process model to the observations 
collected by the Waterfowl and Breeding Habitat Survey (WBPHS) and the Harvest Survey programs with 
the following relationships, assuming that the population and harvest observation errors were additive and 
normally distributed. May breeding population estimates were related to model predictions by 

��������� = ��� �� 
� − ��� ,� 
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where 

��� �� ∼ � (0, �2 � = 1974, . . . , 2019,� �,�� �� ), 

where �2 is specifed each year with the BPOP variance estimates from the WBPHS.�,�� �� 

We adjusted our harvest predictions to the observed harvest data estimates with a scaling parameter (q) 
according to 

��������� − (ℎ� [�� + ��� (1 − ��)] �) /� = �� , � = 1974, . . . , 2020,� � 

where, 

�� ∼ � (0, �2 
� �,�������). 

We assumed that appropriate measures of the harvest observation error �2 could be approximated by �,������� 
assuming a coefcient of variation for each annual harvest estimate equal to 0.15 (Paul Padding pers. comm.). 
The fnal component of the likelihood included the year specifc direct recovery rates that were represented 
by the rate parameter (��) of a Binomial distribution indexed by the total number of birds banded preseason 
and estimated with, 

�� = ��/��, 

�� ∼ ��������(��, ��) 

where �� is the total number of scaup banded preseason in year t and recovered during the hunting season 
in year t and �� is the total number of scaup banded preseason in year t. 

Bayesian Analysis 

Following Meyer and Millar (1999), we developed a fully conditional joint probability model, by frst proposing 
prior distributions for all model parameters and unobserved system states and secondly by developing a fully 
conditional likelihood for each sampling distribution. 

Prior Distributions 

For this analysis, a joint prior distribution is required because the unknown system states P are assumed to 
be conditionally independent (Meyer and Millar 1999). This leads to the following joint prior distribution for 
the model parameters and unobserved system states 

� (�, �, �, ��, ��, �
2 
� ������, �0, �1,...,� ) = 

�(�)�(�)�(�)�(��)�(��)�(�
2 

� ������)� ������)�(�0)�(�1|�0, �
2 

�∏ 
× �(��|��−1, �, �, ��−1, ��−1, �

2 
� ������) 

�=2 

In general, we chose non-informative priors to represent the uncertainty we have in specifying the value of 
the parameters used in our assessment. However, we were required to use existing information to specify 
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informative priors for the initial ratio of population size to carrying capacity (�0) as well as the reporting 
rate values (��) specifed above that were used to adjust the direct recovery rate estimates to harvest rates. 

We specifed that the value of �0, ranged from the population size at maximum sustained yield (�0 = 
���� /� = (�/2)/� = 0.5) to the carrying capacity (�0 = �/� = 1), using a uniform distribution on the 
log scale to represent this range of values. We assumed that the exploitation experienced at this population 
state was somewhere on the right-hand shoulder of a sustained yield curve (i.e., between MSY and K ). Given 
that we have very little evidence to suggest that historical scaup harvest levels were limiting scaup population 
growth, this seems like a reasonable prior distribution. 

We used non-informative prior distributions to represent the variance and scaling terms, while the priors for 
the population parameters r and K were chosen to be vague but within biological bounds. These distributions 
were specifed according to 

�0 ∼ �������(��(0.5), 0), 

� ∼ ���������(2.17, 0.667), 

� ∼ �������(0.00001, 2), 

�� ∼ ����(0.5, 0.5), 

� ∼ �������(0.0, 2), 

�2 ∼ ������� �����(0.001, 0.001).� ������ 

Likelihood 

We related the observed population, total harvest estimates, and observed direct recoveries to the model 
parameters and unobserved system states with the following likelihood function: 

� (�1,...,� , �1,...,� , �1,...,� �1,...,� |�, �, ��, ��, �, �
2 
� ������, �

2 
�������, �1,...,� ) = 

� � ∏ ∏ 
× �(��|��, �, �2 �(��|��, �, �, �, ��, ��, �

2 
�� �� ) × �������) 

�=1 �=1 

�∏ 
× �(��|��, ��) 

�=1 

Posterior Evaluation 

Using Bayes theorem we then specifed a posterior distribution for the fully conditional joint probability 
distribution of the parameters given the observed information according to 

� (�, �, �, ��, ��, �
2 
� ������, �0, �1,...,� |�1,...,� , �1,...,� , �1,...,� , �1,...,� ) ∝ 

�(�)�(�)�(�)�(��)�(��)�(�
2 

� ������)� ������)�(�0)�(�1|�0, �
2 

� � ∏ ∏ 
× �(��|��−1, �, �, ��−1, ��−1, �

2 �(��|��, �, �2 
� ������) × �� �� ) 

�=2 �=1 

� � ∏ ∏ 
× �(��|��, �, �, �, ��, ��, �

2 �(��|��, ��)�������) × 
�=1 �=1 
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Table M.1 – Model parameter estimates resulting from a Bayesian analysis of scaup breeding population obser-
vations from 1974–2019, along with harvest and banding information from 1974–2020. 

Parameter Mean SD 2.5% CI Median 97.5% CI 

r 

K 

�2 

q 

0.1329 

8.8737 

0.0078 

0.7631 

0.0439 

1.6778 

0.0030 

0.0400 

0.0654 

6.2789 

0.0034 

0.6893 

0.1268 

8.6550 

0.0073 

0.7619 

0.2377 

12.4902 

0.0150 

0.8462 

We used MCMC methods to evaluate the posterior distribution using WinBUGS (Spiegelhalter et al. 2003). 
We randomly generated initial values and simulated 5 independent chains each with 1,000,000 iterations. We 
discarded the frst half of the simulation and thinned each chain by 250, yielding a sample of 10,000 points. 
We calculated Gelman-Rubin statistics (Brooks and Gelman 1998) to monitor for lack of convergence. The 
state-space formulation and Bayesian analysis framework provided reasonable fts to the observed breeding 
population and total harvest estimates with realistic measures of variation. The 2021 posterior estimates of 
model parameters based on data from 1974 to 2020 are provided in Table M.1. 

We further summarized the simulation results for r, K, and the scaling parameter q to admit parametric 
uncertainty with a formal correlation structure within the optimization procedure used to calculate the 
harvest strategy. We frst defned a joint distribution for 3 discrete outcomes for each of the 3 population 
parameters. We used the 30 and 70 percent quantiles for each parameter as the cut points to defne three 
bins for which to discretize 3 values of each posterior distribution. We then determined the frequency of 
occurrence of each of the 27 possible combinations of each parameter value falling within the 3 bins from the 
MCMC simulation results. These frequencies were then assigned parameter values based on the midpoint of 
the bin ranges (15, 50, 85 percent quantiles) to specify the joint distribution of the population parameter 
values used in the optimization. 
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