WATERFOWL BREEDING POPULATION SURVEY ARCTIC COASTAL PLAIN, ALASKA 2011

William Larned¹ Robert Stehn² Robert Platte²

U.S. Fish and Wildlife Service Division of Migratory Bird Management ¹Waterfowl Mgt. Branch, 43655 KBeach Rd., Soldotna, AK 99669 ²Waterfowl Mgt. Branch, 1011 E. Tudor Rd., Anchorage, AK 99503 August 21, 2012

Waterfowl breeding population survey, Arctic Coastal Plain, Alaska 2011

WILLIAM W. LARNED, U.S. Fish and Wildlife Service, Migratory Bird Management, Waterfowl Management Branch, 43655 Kalifornsky Beach Rd., Soldotna, Alaska 99669

ROBERT S. STEHN, **ROBERT M. PLATTE**, U.S. Fish and Wildlife Service, Migratory Bird Management, Waterfowl Management Branch, 1011 E. Tudor Rd., Anchorage, Alaska 99503.

ABSTRACT. Waterfowl breeding population surveys have been completed annually on the Arctic Coastal Plain of Alaska since 1986. Methods for the 2011 Arctic Coastal Plain Waterfowl Breeding Population Survey (ACP survey) were similar to those employed since 2007, when a single survey was implemented to address objectives of two pre-existing surveys: the geographically comprehensive 1986 ACP survey conducted in mid-June to early July, and the geographically limited 1992-2006 North Slope Eider Survey, conducted in early to mid June to target the early phenology and breeding range of eiders. The current ACP survey covers 57,336 km², an area similar to the 1986 ACP survey but timed similar to the 1992-06 North Slope Eider Survey. The current design incorporates an annually-shifting transect grid, completed and repeated on a 4-year rotational basis. The survey flown in 2011 began the second 4-year set. Data collection methods follow the Standard Operating Standards (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987) adopted for breeding pair surveys by natural resource agencies throughout North America. Here, we present waterfowl spatial distribution, breeding densities, and comparisons with average 1986-2006 indices, using data from the entire ACP survey area (57,336 km²). For longterm consistency in phenological survey timing we restrict trend analysis to data from the northern coastal region that corresponds to the former North Slope Eider Survey area (30,465 km²). We test for population growth rates significantly greater or less than 1.0 (with significance probability <0.10) for all survey years (1992-2011) and for the most recent 10 years (2002-2011). Of these, the 1992-2011 growth rates for red-throated loon, mallard and green-winged teal were <1.0, while those for yellow-billed loon, Sabine's gull, Arctic tern, red-breasted merganser, scaup, king eider, white-winged scoter, lesser snow goose, greater white-fronted goose, black brant, tundra swan, sandhill crane, and Golden eagle were >1.0. During the most recent 10 years, growth rates of jaegers, glaucous gulls, Sabine's gulls, green-winged teal, scaup, king eider, black scoter, greater white-fronted geese, tundra swans and sandhill cranes were >1.0. Indices for greater white-fronted geese and tundra swans have been well above earlier levels for 5 consecutive years.

Key Words: aerial survey, Alaska, arctic, breeding, distribution, eider, nesting, population, waterfowl

INTRODUCTION

From 1992-2006, the Fish and Wildlife Service Migratory Bird Management Division (Alaska Region) conducted two annual aerial waterfowl breeding pair surveys on the Arctic Coastal Plain (ACP). The "Standard ACP Survey was a comprehensive aerial waterfowl breeding population survey conducted from 1986-06 from late June through early July. This timing was selected to assess the abundance and breeding distribution of most waterfowl species and avoid scheduling conflicts with other spring surveys. However, it soon became evident that late June missed the optimal timing for eiders, the males of which depart the breeding grounds for the postnuptial molt soon after nest initiation, typically about 20 June \pm one week, but at that time there was relatively little management interest in those species. However, in response to a 1990 petition to list spectacled and Steller's eiders under the Endangered Species Act, the North Slope Eider Survey was initiated in 1992, timed in early to mid June to coincide with the peak presence of adult males on the breeding grounds, and designed to assess and monitor the abundance and distribution of spectacled and Steller's eiders. This survey consistently provided precise data for spectacled eiders and king eiders; however, data on Steller's eiders had relatively low power to detect trends due to small sample size.

Subsequent comparison of data sets from the two surveys (Larned et al. 2009) suggested that the earlier timing window of the North Slope Eider Survey was actually optimal for most waterfowl species because the survey occurred prior to the main period of nest failure and subsequent local and regional redistribution of birds from breeding to molting areas both within and outside the survey area. In 2007, the two surveys were combined into a single survey similar in size to the prior ACP survey, but conducted in early to mid-June.

The present survey is titled the "Waterfowl Breeding Population Survey, Arctic Coastal Plain, Alaska", and referred to in this report as the "ACP Survey". The survey design consists of four sets of equally-spaced parallel transects which are surveyed on a four-year rotational basis. This report describes the methods and results of the 2011 ACP survey and the 5th year of the current design. For trend analysis, we combined the 1992-2006 North Slope Eider Survey data set with a geographically identical subset of the ACP survey 2007-2011 (hereafter referred to as the "northern coastal strata"). This subset provides a spatially and phenologically consistent data available for trend, while the data set from the total ACP survey area describes the more spatially comprehensive distribution. We also include long-term means from the Standard ACP Survey (1986-2006) for comparison with current ACP indices for comprehensive coastal plain geographic context.

OBJECTIVES

Data from the ACP Survey: (i) provide annual population indices and trend data to monitor spectacled eider recovery status against criteria described in the Spectacled Eider

Recovery Plan (U. S. Fish and Wildlife Service 1996), (ii) provide quantitative bases for evaluating potential impacts of proposed and (iii) resource development projects, information enabling U.S. provide the Department of Interior obligations to annually assess waterfowl populations under the Migratory Bird Treaty Act of 1918. Specific uses of ACP Survey data follow.

Spectacled Eider Recovery Plan

Task B1.4. Monitor trends and generate breeding pair abundance estimates for the [North Slope] spectacled eider breeding population.

This task relates to the decision criteria for potential future de-listing or reclassifying from Threatened to Endangered. These criteria are based on population growth rate and the minimum abundance estimate, which are defined as the greater of the lower end of the 95% confidence interval from the best available estimates, or the actual number of birds counted.

Specific objectives:

1. Determine the population trend for spectacled eiders in view of recovery and reclassification criteria, including power analysis.

2. Estimate the abundance of spectacled eiders observable from the air.

Evaluation of potential impacts of oil and gas development on waterbird resources

Describe of observed the distribution waterbirds within all important known waterfowl habitat on a rotational basis each 4 years using a systematic grid sampling frame. Produce point location and density polygon describing location of observed maps waterbirds and areas with specified ranges of multi-year, mean peak breeding densities.

Migratory Bird Treaty Act obligations

Estimate the annual breeding population of waterfowl species using the protocol specified in the "Standard Operating Procedures for Aerial Waterfowl Breeding Ground Population and Habitat Surveys in North America" (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987).

STUDY AREA AND METHODS

Aerial crew for 2011:

William Larned, Biologist-Pilot (Left Seat Observer), US Fish and Wildlife Service, Migratory Bird Management, Soldotna, Alaska

Wade Schock, M.S. Candidate (Right Seat Observer), *University of Alaska, Anchorage, Alaska*

Study area, survey design, navigation, and observation

The ACP Survey area covers 57,336 km² of the 61,645 km² Standard ACP Survey area (1986-2006) (Fig. 1). The 4,309 km² deleted from the Standard ACP survey is comprised of mostly upland habitat that we determined to be relatively poor waterfowl nesting habitat based historical (1986-2006)ACP on data. Procedures followed the standard protocol described "Standard in the Operating Procedures for Aerial Waterfowl Breeding Ground Population and Habitat Surveys in North America" (U. S. Fish and Wildlife Service and Canadian Wildlife Service 1987). A series of transects, oriented in an east-west direction (Fig. 1), were flown at 38 m altitude and 176±19km/hr ground speed. We used a turbine-powered Quest Kodiak amphibian in 2011, whereas previously a Cessna 206 amphibian was used.

Both the left seat biologist-pilot observer and the right seat observer recorded all waterbirds and avian predators seen within 200m either side of the flight path. To estimate the outer transect boundary, we determined the required viewing angle trigonometrically and marked a reference point on the wing strut for each observer using a clinometer and marking tape.

Transects consisted of computer-generated great circle segments, for compatibility with Global Positioning System (GPS) navigation. Transects were spaced systematically in each of 20 geographic strata (Fig. 1, Table 1) from a randomly-selected starting point. Distance between transects varied by stratum, in four categories of sampling intensity: Low (7.2 km), Medium (4.8 km), High (2.4 km) and Very High (1.2 km). Stratification and spacing assignments were based on a combination of physiographic (mostly hydrographic) characteristics, waterfowl breeding density data (from previous North Slope Eider and ACP boundaries surveys), and of different management units, such as planning areas for current and proposed oil and gas leases. In each stratum every fourth transect was flown in a given year, thus four years were required to cover all transects, after which the cycle was Stratification allows comparisons repeated. among geographic areas and provides a framework for more efficient sample allocation to decrease the magnitude of total sample variance. Transects flown in 2011 are depicted in Fig. 1.

Flight time required to complete the 2011 ACP Survey was 46 hours, not including ferry time to and from the survey area.

Data recording and transcription

Each observer had a notebook computer, into which bird observations were entered vocally via a remote microphone. Each computer received position data concurrently from a GPS receiver mounted in the aircraft's instrument panel. The vocal and GPS inputs resulted in a sound file (.wav format) with voice recording, and a linked position file containing location, date and time. After the flight, the observer played back the sound file on the computer and entered the species name and group size for each observation using a custom transcribing program. The transcription program produced an ASCII text file, each line of which contained a species code, group size, geographic coordinates, date, time, observer code, observer position in aircraft, stratum and transect identifier. The system also recorded a "track file" consisting of a list of the aircraft's geographic coordinates every five seconds during flight. These data files were used to produce the maps, tables and other data products for this report. The software used for this system was developed by John I. Hodges (U.S. Fish and Wildlife Service, Migratory Bird Management, 3000 Vintage Blvd., Suite 240, Juneau, AK 99801-7100).

Data Analysis

We provide an index to the number of individuals of each waterfowl species and other selected bird species present within the survey area. The term <u>index</u> as used here is defined as a number that represents an unknown proportion of the population of birds occupying the survey area during the nesting season and detected by the observers. While unknown, the proportion is assumed to be consistent enough among years to provide trend information sufficient to inform management decisions relative to spectacled eiders and other waterbird species.

Waterfowl data in general were treated according to the protocol used in the Aerial Waterfowl Breeding Ground Population and Habitat Surveys in North America (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987). The protocol states that for all ducks except scaup, the indicated total population index is calculated as twice the number of males observed as singles, in pairs, and in groups of males up to four, plus birds in flocks of 5 or more regardless of sex composition. Male scaup not visibly paired are not doubled because scaup have sex ratios strongly skewed toward males (ibid.). The protocol prescribes that indices of all other waterbird species consist of total birds recorded, with single birds not doubled. However, we deviated from this protocol by doubling the less visible single dark geese (i.e., white-fronted geese, Canada geese, and black brant) and sandhill cranes (to account for assumed undetected mates on nests. The more visible snow geese and swans are not doubled.

We present population estimates where applicable in Tables 3, 4 and 6. The term population estimate as used here is based on index estimates expanded using visibility correction factors derived during a three-year helicopter/fixed wing study conducted in tundra habitat on the Yukon-Kuskokwim Delta (Conant et al. 1991). This is designed to convert population indices to population estimates by accounting for birds present but not detected by observers in fixed wing aircraft. Untested assumptions were: (i) the helicopter crew recorded all birds present; (ii)observers are equal in performance, and (iii)detection rates of ducks in the Yukon-Kuskokwim Delta are similar to those in the ACP. Eiders were not included in the YK delta study, so no VCF is applied for eiders.

Bias

Indices are subject to biases typically associated with aerial survey data collection. Bias in this survey comes primarily from three sources: (i) sampling error due to variability among the transects within each sampling stratum, (ii) *mis-timing* of the survey relative to bird breeding phenology, and (iii) variation in detection rate of birds. In this survey, sampling error was estimated by ratio estimate procedures described by Cochran (1977). The calculated variance is used to produce 95% confidence intervals for the population estimates. Survey *timing* is designed to coincide with the peak presence of males in the

case of ducks, and the presence of peak numbers of intact pairs on breeding territories of all surveyed species. Proper timing is especially important for eiders and other sea ducks that are normally present on the breeding grounds only from arrival until shortly after nest initiation, when they move offshore for the postnuptial molt (Kistchinski and Flint 1974; Lamothe in Johnson and Herter 1989;). Variations in timing of arrival and departure between individual spectacled eider males on a study area in the Prudhoe Bay vicinity suggest that there may be few, if any, days when all breeding males are present in the survey area at the same time, especially in years of early spring melt (Troy 1997). Median nest initiation dates for Spectacled eiders at Prudhoe Bay from 1993 to 1996 varied from 7 to 16 June (average 1982-96 = 15 June), and telemetry data suggest that male departure begins within about 3 days of that date, and is more synchronized in the years when it commences later (Troy 1997). Most spectacled eider males depart the tundra for offshore molting areas by 20 to 25 June.

Aerial observations from the North Slope Eider Survey strata since 1992 suggest timing of male departure is constant within approximately ± 1 week among areas and years. King eider phenology is similar, but the period of male presence is normally more protracted and less synchronous than that of spectacled eiders, perhaps because king eiders utilize a greater diversity of wetland types which thaw at different times, and king eiders that breed on the ACP are widely distributed during the winter (Phillips et al 2006), so timing of spring migration would likely vary among wintering populations. Daily counts of male king eiders on a study area immediately southeast of Teshekpuk Lake in 2002 indicated a stable presence from June 8 to 16, with rapid departure of most males on 18 June (Phillips et In Canada, king eider males al 2007)). departed Bathurst Island, N.W.T. rather abruptly and synchronously from one week to 10 days after clutch initiation (Lamothe 1973). For the North Slope Eider Survey and current ACP Survey we assumed that proper timing for spectacled eiders is adequate for king eiders.

Our procedure for determining proper survey timing consists of the following: (i) we monitor weather, and ice and snow cover data, planning to arrive in the survey area when ponds and tundra vegetation are just becoming available to nesting eiders over most of the arctic slope; (ii) we contact biologists in Prudhoe Bay and Barrow for their observations on eider phenology; and (iii) we fly a reconnaissance survey to determine whether or not waterfowl including spectacled eiders appear to be occupying breeding territories as pairs, rather than in mixed-sex/species flocks. Our observations suggest eiders occupy breeding territories as pairs when there is icefree water in most shallow vegetated wetlands, and tundra vegetation is mostly snow-free around pond margins.

To determine retrospectively the accuracy of our survey timing for spectacled and king eiders, long-tailed ducks and northern pintails, we used a ratio of males unaccompanied by females to total males (with and without females), averaged over the entire survey. Our sample for this statistic included all unaccompanied males in groups of 1 to 4 only. This ratio, called the lone-drake index (LDI), was used for many years in the northern prairies of Canada and the U.S. (U.S. Fish and Wildlife Service and Canadian Wildlife Service 1987). The assumption inherent in this index is that the proportion of lone or grouped males in the surveyed population will increase as the season progresses because males remain visible on breeding ponds, while females spend more time with nesting activities. The index is easy to interpret for many dabbling ducks that normally remain on the breeding grounds after nest initiation to molt in local wetlands, whereas male eiders and other sea ducks depart the breeding grounds for distant, mostly marine molting habitats soon after nest initiation,

making them unavailable for observation. Hence, it is expected that the ratio will reach a peak at or slightly beyond the peak of nest initiation, followed by an abrupt drop as postbreeding males depart the survey area, while birds still visible may be mostly unsuccessful inexperienced pairs that stay on the breeding grounds beyond peak departure of successful males as observed near Prudhoe Bay (Warnock and Troy 1992). We consider the average lone drake ratio for the survey period and a plot of daily totals of this ratio helpful when considered in combination with other indicators of phenology, especially in determining the beginning of the survey window.

Detection bias is unaccounted for in the current survey analysis, though as noted above we present some duck indices adjusted using standard tundra Visibility Correction Factors developed on the YK Delta primarily to enable readers to more easily compare ACP populations with those from other parts of North America. This survey is designed to track the populations of large waterbirds that breed in the ACP. Of this total, some birds will not be represented in the sample because they: (i) have not yet arrived in the survey area; (ii) have left the survey area; (iii) flushed from the sample transect before detection due to disturbance by the survey aircraft; (iv) are not visible from the aircraft, being hidden by vegetation, terrain or aircraft fuselage etc (v) are misidentified and/or (vi) observers fail to see them due to fatigue, experience level, visual distractions. sunlight conditions. acuity, presence or absence of snow and ice, bird behavior, and/or the density of survey subjects and other objects competing for the observer's attention. We attempt to minimize the bias caused by arrival and departure of birds into and out of the study area by adjusting survey timing. Aerial survey crews working in other areas have attempted to compensate for the net effect of all the other variables by groundtruthing a sub-sample using ground or helicopter crews (U.S. Fish and Wildlife

Service and Canadian Wildlife Service 1987), and using those data to calculate visibility ratios to adjust operational survey data. During the 2001 Eider Survey we conducted a fixedwing/helicopter detection study covering a 270 km² subset of our operational transects. The results of the study were unsatisfactory in that our fixed-wing count often exceeded the helicopter count, suggesting a flaw in design or implementation. Therefore we resorted to an unadjusted annual index of abundance, for which we strive to minimize effects of observer bias by using the same observers (or those thoroughly trained to a common standard) and methods.

RESULTS

Habitat conditions, survey schedule

Directly measured snow depth data on the Alaskan arctic are scarce. According to the Alaska Climate Research Center (ACRC, University of Alaska, Fairbanks), Kuparuk is the only station that has kept records annually since 1990. Average snow depth in May 2011 at Kuparuk was 9 inches, slightly below the 1990-2011 average (National Climate Data Center, courtesy of Kevin Galloway, ACRC). Imagery from the NASA MODIS satellite indicated much of our survey area was snow free the week of 2-9 June except for the coastal fringe, while most of the remaining snow melted the following week (Fig. 2). Abundant small snow patches and extensive lake ice persisted in the coastal area, especially in the Teshekpuk Lake and Barrow areas, until about 15 June, limiting detection of eiders and other white-marked birds in those areas more than normal. Water was abundant over most of the survey area, but flooding of ponds and nesting cover was about average for the survey period. NASA Modis satellite imagery revealed continuous sea ice with almost no open water along the Beaufort sea coast from Barrow to the Canadian border during the entire survey period, while the Chukchi coast from Point Hope to Barrow was completely ice free, providing an excellent coastal migration corridor for access to Alaskan arctic breeding habitat. Overall, ice distribution was similar to 2010, and probably more favorable to Alaskan breeding waterfowl than birds continuing their migration for the Canadian Arctic.

The survey was initiated on 10 June 2011, suspended until 13 June 2011 due to strong gusty winds, and then completed on 19 June 2011. Generally favorable survey conditions prevailed after 13 June.

Of the four species selected as timing indicators, the eiders both exhibited average (king eider) to high (spectacled eider) total Lone-drake Index (LDI, the overall ratio of lone males to total males during the survey, a rough measure of survey timing in relation to nest initiation in ducks, Table 2), suggesting that phenology was advanced but most males had not yet departed the survey area to molt; thus, survey timing was likely optimal for these species (Table 2). Though somewhat erratic, the graphs of daily LDI for these species ended higher than the earlier portions, also suggesting proper survey timing. In contrast, in 2010, when completion of the survey was delayed until 22 June due to crew change, declining eider average daily LDI suggested that some males had departed the breeding area prior to the last survey days. The overall LDIs for long tailed ducks and pintails were both about average (Table 2), and the daily LDI graphs suggested stable and about average values through the survey period, so we believe the survey was accurately timed for these species as well.

Population indices for selected species

Following are results and comments by species. Indices and trends refer to data from the northern coastal strata and North Slope Eider Survey only, unless otherwise noted.

Loons

The 2011 yellow-billed loon index (1,487, 95%CI=923-2,051) is second highest for the survey, below the record of 2009 (1,693, CI=1,188-2,198, Larned et al 2010), and 27% above the 1992-2011 mean (1,171). The population growth rate (1.020, CI=1.007-1.034) indicates a significant positive trend over the long term (Table 3, Fig. 4). In contrast, the 2007-2010 average index for all ACP strata (2.465) is 11% below that of the 1986-2006 Standard ACP survey (2,778, Table 6). We believe the higher estimates attributed to the Standard ACP survey are due to that survey's later timing relative to the current ACP survey (Earnst et al. 2005), allowing time for an influx of non-breeding yellow-billed loons arrive on the ACP in late June.

The 2011 <u>Pacific loon</u> index (28,111) is the second highest for the survey, 32% above the 1992-2011 average (Tables 3-5, Fig. 5). The Pacific loon index has been very erratic since 2007, after 13 years of relative stability, but still shows a level trend over both 1992-2011 and 2002-2011 time periods (Fig. 5). The 2007-2010 average for all strata is 18% above that of the ACP survey from 1986-2006.

The 2011 <u>red-throated loon</u> northern coastal strata index (1,912) is 21% above that of 2010 (1,578), but still 23% below the 1992-2011 mean. From 1992 to 2010, the red-throated loon population index in the northern coastal strata declined significantly (growth rate 0.963, CI=0.942-0.985, Table 5, Fig. 6) (Tables 3 & 5, Fig. 6); however, the recent 10-year (2002-11) trend is stable (growth rate=0.993, CI=0.946-1.042, Fig. 6). The ACP 2011 index is 2,209, 32% below that of the ACP 1986-06) mean (3,240; Table 6).

Jaegers

Pomarine, parasitic and long-tailed jaegers all breed on the Arctic Coastal Plain of Alaska. Observations for all three species are combined for this survey to reduce diversion of observer focus from eiders and other high priority

species. The jaeger index varies among survey years, likely due to the dependence of jaegers (especially pomarine and long-tailed) on the irruptive cycles of microtine prey, including the North American brown lemming, Lemmus trimucronatus; Wiley and Lee 1998, 2000). Pomarine and long-tailed Jaegers may forgo breeding or breed elsewhere when lemmings are in short supply, while parasitic jaegers normally breed every year, depending more on small birds and eggs (Wiley and Lee 1999). While highly variable among years, the combined jaeger index has a level 1992-2011 trend, and a barely significant upward trend during the period from 2002-2011 (Fig. 7). The 2011 jaeger index (5,871) is 39% above the 1992-2011 mean (Tables 3,5; Fig. 7), which may have resulted at least in part from the apparent widespread abundance of lemmings reported by other investigators and north slope residents.

Gulls & terns

The <u>glaucous gull</u> long-term (1992-2011) trend is stable but significant positive growth is indicated during the most recent 10 years (2002-11,Table 5, Fig. 8). The 2011 total index (14,087) is 11% above the long-term (1992-2011) mean (12,663).

The 2011 <u>Sabine's gull</u> index (9,456) is 13% lower than indices averaged over the preceding 4 years (2007-2010), but 24% above the long-term mean (Table 3 Fig. 9). This species showed a positive growth rate from 1992-2011. (Table 5). High variability in numbers depicted in Fig. 9 indicates a level trend prior to the 2007 survey transition, followed by a consistently high index, suggesting that the slightly later average timing of the current survey design may be more appropriate for this species, compared to that of the 1992-2006 Eider Survey.

The <u>arctic tern</u> index increased from 1992 to 2000, resulting in a positive long-term growth rate (Table 5); however, the growth rate has been stable from 2000-11 (Table 5, Fig. 10).

The 2011 index (11,325, Table 3) is 4% above the 20-year mean (10,875).

<u>Ducks</u>

<u>Red-breasted mergansers</u> are found mostly in or near river corridors, and primarily away from the coast in the south-central portion of the survey area. Indices increased from 1992 to 2002, then leveled off at an average of about 700 (Fig. 11). The 2011 index (887) is 70% greater than the long-term average for the northern coastal strata (Table 3, Fig. 11).

<u>Mallard</u>, <u>American</u> <u>wigeon</u>, <u>green-winged</u> <u>teal</u> and <u>northern shoveler</u> are recorded in low numbers and thus have high sampling errors and low power to detect meaningful trends (Tables 3-5, Figs. 12-14, 16).

The <u>northern pintail</u> is one of the most abundant duck species recorded on the ACP survey. The 2011 northern coastal strata northern pintail index (29,094) is 39% below the long-term (1992-2011) average (47,344, Table 3, Fig. 15). The expanded 2011 all-ACP pintail index (125,717, Table 4) is 43% below the average of the 1986-2006 ACP survey (220,494, Table 6).

North Slope scaup, which appear to be entirely or mostly greater scaup based on our long-term aerial observations of wing plumage of birds in flight, are found predominately in wetlands associated with river and small stream corridors. Comparing the 2011 index from the northern coastal strata (7,487, Table 3) with that from all strata (26,364, Table 4) suggests that most scaup nest south of the coastal strata. The 2011 scaup index is 49% above the longterm (1992-2011) average (5036, Table 3, Fig. 17) and the growth rate is positive throughout both reference periods (1992-2011: 1.067, 90%CI=1.049-1.086; and 2002-11: 1.060. 90%CI=1.000-1.123,Table 5). The 2011 expanded total ACP scaup index ranks third highest among ACP ducks, behind northern pintail and long-tailed duck (50,883, Table 6).

The <u>long-tailed duck</u> was the most abundant duck in 2011. The northern coastal strata long tailed duck population index (44,382) is 43% above the 20-year mean, and the highest on record for the survey (Table 3, Fig. 18). The long-tailed duck population growth rate (1992-2011, 0.995, 90%CI=0.981-1.010,) is stable (Table 5, Fig. 18).

The 2011 <u>spectacled eider</u> index (7,952) is 21% higher than the 19-year mean (6,580, Table 3, Fig. 19). The index growth rate is stable over the long term and last 10 years (Table 5, Fig. 19).

The 2011 common eider index (354) is 30% below the 1992-2011 average, and survey results suggest a level trend over this period (Fig. 20). However, most ACP common eiders nest more or less colonially on barrier islands; not sampled habitats bv this survey. Consequently, the annual ACP survey sample consists of very low numbers, occasionally inflated by observations of large flocks (Fig. 20), thus not providing data useful for management purposes. To fill this gap, the U. S. Fish and Wildlife Service Waterfowl Management Branch conducted an aerial survey for common eiders along the Alaskan Arctic coast and barrier islands, annually 1999-2009. Results indicated average annual population growth rates of -1.4% (R=0.138) for total birds and +3.0% (R=0.374) for indicated breeding pairs (Dau and Bollinger 2009, available online at http://alaska.fws.gov/mbsp/ mbm/waterfowl/surveys/pdf/coei09rpt.pdf).

The 2011 king eider index for the northern coastal strata (18,942) is 33% above the long-term (1992-2011) mean (14,236; Table 3, Fig. 21) and the second highest index since the survey was initiated in 1992. King eider indices have increased over the long term and recent 10-year survey periods (1992-2011 growth rate=1.027, 90%CI=1.018-1.037, 2002-2011 growth rate=1.040, 90%CI=1.019-1.061, Table 5, Fig. 21).

Steller's eiders occur in very low densities throughout much of the ACP. The most important nesting area is near Barrow where they have been studied extensively since 1991 (see Safine 2012). Intensive (25-50% coverage) aerial surveys for Steller's eiders were conducted annually from 1999 to 2010 in a 2800 km² study area near Barrow by ABR Inc., using survey protocol similar to ours (Safine 2012). Indicated pair density estimates from our north coastal strata during the 1992-2006 North Slope Eider and 2007-2011 ACP surveys averaged 0.0023 (calculated from data in Fig. 22), whereas the pair density estimated by ABR in the Barrow study area averaged 0.016 (Safine 2012). This suggests the Steller's eider density in the Barrow area may be approximately 7 times higher than that in the entire north coastal strata $(30,465 \text{ km}^2)$. In 2011, we observed only 1 pair of Steller's eiders on the ACP survey, for an index of 49 (Fig. 22).

<u>Black scoters</u> are uncommon on the ACP survey. One indicated pair was recorded in 2011 (Tables 3- 4, Fig. 23).

The white-winged scoter northern coastal strata population index (1,240) is nearly double the long-term average of 629 (Table 3, Fig. 24). Most of the observations occurred in the central arctic, south of Teshekpuk Lake. The 2011 white-winged scoter index (1,240) is 97% higher than the 1992-2011 average, but greatly reduced (-76%) from the record high of 2010 (Fig. 24). We suspect that much of the increase seen in white-winged scoters observed during the 2010 and 2011 surveys consisted of an influx of males staging to molt along the Beaufort coast. Please note that the large apparent discrepancy in white-winged scoters between the ACP survey 1986-2006 and 2007-2011 is mostly due to most scoters from the earlier period being recorded as "unidentified scoters" (Table 6).

Geese and swans

This survey does not adequately sample snow geese, which occur mainly in isolated coastal breeding colonies. ACP estimates have because fluctuated of annually-shifting transects relative to nesting colonies (Fig. 25). However, we have noted a recent increase in scattered observations of small groups of snow geese throughout much of the survey area within 80 km of the coast. Specific aerial snow goose surveys have been conducted since the early 1990s by ABR Inc. (see Ritchie and Rose 2009). Both ABR Inc. surveys (Ritchie et al 2007) and the ACP survey (Fig. 25) indicate positive growth rates for most individual colonies and the overall ACP snow goose breeding population since about 2000.

The 2011 <u>white-fronted goose</u> population index for the northern coastal strata (157,481) exceeds the 20-year mean (95,546) by 65%. White-fronted geese have increased over the long term (1992-2011, growth rate=1.057, 90%CI=1.037-1.077) and during the last 10 years (2002-2011, growth rate=1.113, 90%CI=1.065-1.164, Fig. 26). We can offer no explanation for the sudden large jump in the ACP whitefront breeding population after 2006, after a long gentle increase since 1992 (Fig. 26).

The 2011 <u>Taverner's Canada goose</u> index for the northern coastal strata is 7,906, which is 5% below the long-term mean (8,285, Fig. 27). The Taverner's Canada goose growth rate for the northern coastal strata from 1992-11 is stable (Tables 3, 5). The 2011 ACP all-strata index is 9,859, 46% below the 1986-2006 ACP survey mean (Table 6). The later timing of the 1986-2006 survey likely included a large proportion of molt migrants from other breeding areas.

Most <u>black</u> <u>brant</u> nest in colonies on the Arctic Coastal Plain, and trends are difficult to detect with our systematic survey design. Periodic aerial brant nesting and brood-rearing surveys between Barrow and the Colville Delta, reported 32 colonies in 2001 (Ritchie et al. 2002) and 2006 (Ritchie et al. 2007), with active nest counts of 386 and 346. In contrast, our data suggest the breeding population of brant increased from 2001-04, and was stable thereafter (Table 5, Fig. 28). The proportion of brant recorded as "flocks" increased from 2002-11; therefore, the overall increase could be the result of early failed breeders arriving from other breeding areas. However, pairs and small flocks of brant are being observed farther from the coast suggesting expansion of the breeding range (Fig. 28).

The 2011 <u>tundra swan</u> index is 9,792 (Fig. 29, Table 3) and has incurred a positive growth in long-term (1986-2011) and the recent 10-year periods (Table 5). The 2007-2010 average all-strata index (14,458) is 45% above the ACP survey 1986-2006 mean (9,971, Table 6).

Raptors, Ravens, other birds

Based on 10 northern coastal strata, the 2011 ACP sandhill crane population index is 367 (Table 3), and 576 in the all-strata area (Table 4). The 1992-2011 northern coastal strata population index mean is 178 (Tables 3, 5). The long-term and recent 10-year population growth rates are positive (Table 5).

Since 1997, shorebirds have been recorded, only by the left side pilot/observer, to identify important shorebird habitats and track the ACP long-term population trend (Fig. 30). We pooled all species due to difficulty in identifying shorebirds reliably from the air.

Despite concerns about <u>raven</u> populations expanding on the North Slope in response to increased presence of buildings and other artificial structures used as nesting habitat, and the availability of garbage as a year-round food source, ACP survey data do not indicate a positive growth rate nor a geographic shift (Table 5). However, the probability of detecting ravens is low in settled areas, as ravens normally spend a large part of their time on or near industrial and residential structures, which we deliberately avoid during our surveys due to regulatory and safety considerations.

Owl populations are extremely variable on the ACP, with peaks typically associated with spikes in lemming populations over major portions of their range. The 2011 northern coastal strata short-eared and snowy owl indices were (239) and (2,226), respectively (Figs. 31, 32), both among the highest on record for the survey; results consistent with widespread apparent abundance of the lemmings noted above (Figs. 31, 32). We also observed several active snowy owl nests; a rare occurrence on the ACP survey. The sightings were all in the area between Teshekpuk Lake and Nuiqsut.

Golden eagle sightings are typically few during the ACP survey, probably due to low detection (cryptic coloration, usually sedentary, and not usually associated with water bodies where we focus our attention). The 2011 index for the northern coastal strata (92) is double the 1992-2011 average (46, Fig. 33), and the growth rate for that period is positive (1.059, 90%CI=1.005-1.116), but the all-ACP index (220) is 48% below the 1986-2006 ACP average (Table 6).

CONCLUSIONS

This report describes results of spatially comprehensive aerial breeding population survey data for all common waterbirds, owls, eagles and ravens on the Arctic Coastal Plain of Alaska, collected by the U.S. Fish and Wildlife Service from 1986 to 2011. The 2011 survey is the first year of the second 4-year cycle since the survey's redesign in 2007, and appeared to be well-timed for most species adequately addressed by the survey. The 2010 ACP survey report, available on the Alaska Region U. S. Fish and Wildlife Service website, summarized the long-term status and illustrated the distribution of most surveyed species over the first 4-year cycle of the current design, while this report provided the 2011 annual update, without distribution maps.

Our data from 1992-2011 indicate that redthroated loon, mallard, and American greenwinged teal have declined, while 13 others have increased (Table 5). Though global concern is low for red-throated loons (Birdlife International does not consider it "vulnerable", based on broad range and large global population of 200,000-590,000), the trend we detected should evoke at least local concern for the species, as statistical power is fairly robust for this species (11.5 survey years to detect a trend equivalent to a decline of 50% in 20 years), and the ACP population represents approximately 15% of the current estimated Alaska breeding population (proportion calculated from data from Mallek and Groves 2011 and this report). Results for mallard and green-winged teal are of lesser concern as ACP populations constitute an insignificant proportion of their continental breeding populations. The

As designed, with sampling frame the maximum possible for a single crew to complete within the phenological window of eiders, the ACP survey is nonetheless adequate to provide the data to confidently manage most North Slope species (Table 5). At a minimum, we recommend continuing the ACP survey as designed particularly in view of potential effects of climate change on the arctic environment.

The findings and conclusions in this document are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

ACKNOWLEDGMENTS

The authors would like to thank Wade Schock for his two years of excellence as waterfowl observer. Special thanks also to Debbie Nigro and others in the Bureau of Land Management who have steadfastly supported increased sampling in the Teshekpuk Lake region. We also appreciate the generous sharing of information critical to proper survey timing by Bob Ritchie and other personnel from ABR Inc.

LITERATURE CITED

- Cochran, W. G. 1977. Sampling techniques. Third edition. John Wiley and Sons, Inc., New York, N.Y. 428p.
- Conant, B., C. P. Dau and W. Larned. 1991. Yukon Delta Alaska helicopter/fixed wing comparative waterfowl breeding population survey. Progress Report III. Unpubl. Rep. U.S. Fish and Wildl. Serv.
- Dau, C. P. and K. S. Bollinger. 2009. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 1-5 July 2009. Unpubl. Rept., U. S. Fish and Wildlife Service. 20p.
- Earnst, S. L., R. A. Stehn, R. M. Platte, W. W. Larned, and E. J. Mallek. 2005. Population size and trend of yellow-billed loons in northern Alaska. The Condor 107:289-304.
- Johnson, S. R., and D. R. Herter. 1989. The birds of the Beaufort Sea. BP Exploration (Alaska) Inc. Anchorage, Alaska. 372p.
- Kistchinski, A. A., and V. E. Flint. 1974. On the biology of the spectacled eider. Wildfowl 25:5-15.
- Lamothe, P. 1973. Biology of king eider Somateria spectabilis in a fresh water breeding area on Bathurst Island, N. W. T. M. Sc. Thesis. U. of Alberta. Edmonton. 125p.
- Larned, W. W., R. A. Stehn, and R. M. Platte. 2010. Waterfowl breeding population survey, Arctic Coastal Plain, Alaska, 2009. Unpubl. Rept., U. S. Fish and Wildlife Service. 45p.

- Larned, W. W., R. A. Stehn, and R. M. Platte. 209. Waterfowl breeding population survey, Arctic Coastal Plain, Alaska, 2008. Unpubl. Rept., U. S. Fish and Wildlife Service. 42p.
- Mallek, E. J., and D. J. Groves. 2011. Alaska-Yukon waterfowl breeding population survey. Unpubl. rept., U.S. Fish and Wildl. Serv. Mig. Bird Manage. Fairbanks, Alaska. 30p.
- Mallek, E. J., R. M. Platte and R. A. Stehn.2007. Aerial breeding pair surveys of the Arctic Coastal Plain of Alaska B 2006.Unpubl. rept., U.S. Fish and Wildl. Serv.Mig. Bird Manage. Fairbanks, Alaska. 25p.
- Phillips, L. M., A. N. Powell, and E. A. Rexstad. 2006. Large-scale movements and habitat characteristics of King Eiders throughout the nonbreeding period. Condor 108: 887-900.
- Phillips, L.M., A.N. Powell, E.J. Taylor, and E.A. Rexstad. 2007. Use of the Beaufort Sea by king eiders breeding on the North Slope of Alaska. Journal of Wildlife Management 71(6):1892-1898.
- Ritchie, R. J., P. Lovely, and M. J. Knoche.
 2002. Aerial surveys for nesting and brood rearing brant and snow geese, Barrow to
 Fish Creek Delta and snow goose banding near the Ikpikpuk River Delta, Alaska, 2001.
 Unpubl. rept. submitted to North Slope Borough Department of Wildlife Management. ABR, Inc., Fairbanks, Alaska.
 31p.

- Ritchie, R. J., T. Obritschkewitsch, J. Shook, R. Burgess and J. Rose. 2007. Surveys for nesting and brood rearing brant and lesser snow geese, Barrow to Fish Creek Delta and lesser snow goose banding near the Ikpikpuk River Delta, Alaska, 2006. Unpubl. rept. submitted to North Slope Borough Department of Wildlife Management. ABR, Inc., Fairbanks, Alaska. 45p.
- Ritchie, R. J., and J. Rose. 2009. Results of snow goose surveys and a pilot study to band snow geese near Pt. Lay, Kasegaluk Lagoon, Alaska. Unpubl. rept. Submitted to ConocoPhillips Alaska, Inc., by ABR, Inc., Fairbanks, Alaska. 14p.
- Safine, D. E. 2012. Breeding ecology of Steller's and spectacled eiders nesting near Barrow, Alaska, 2011. U. S. Fish and Wildlife Service, Fairbanks Fish and Wildlife Field Office, Fairbanks, Alaska. Technical Report. 65 pp.
- Troy, D. 1997. Distribution and abundance of spectacled eiders in the vicinity of Prudhoe Bay, Alaska: 1996 Status Report. Unpubl. Rep. for BP Exploration, Troy Ecological Res. Assoc., Anchorage, Alas. 11p.
- U. S. Fish and Wildlife Service. 1996. Spectacled eider recovery plan. Anchorage, Alas. 157p.
- U. S. Fish and Wildlife Service, and Canadian Wildlife Service. 1987. Standard Operating procedures for aerial waterfowl breeding ground population and habitat surveys. Unpubl. Manual, U. S. Fish and Wildl. Serv., Migratory Bird Management, Laurel, Maryland. 98p.
- Warnock, N. D., and D. M. Troy. 1992.
 Distribution and abundance of spectacled eiders at Prudhoe Bay, Alaska: 1991. BP Exploration (Alaska) Inc., Anchorage, Alaska. 11p.

Wiley, R. H., and D. S. Lee. 2000. Pomarine Jaeger (*Stercorarius pomarinus*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/483

Wiley, R. H. and D. S. Lee. 1998. Long-tailed Jaeger (*Stercorarius longicaudus*), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/365

Wiley, R. H. and D. S. Lee. 1999. Parasitic Jaeger (Stercorarius parasiticus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/445

Figure 1. Spatial design of the 2011 Arctic Coastal Plain waterfowl breeding population survey. Northern coastal strata are shown in light green, strata outside the northern coastal strata area are shown in dark green. Red lines show locations of the 2011 design transects. Numbered strata are described in Table 1 below.

Table 1. Sampling design, aerial waterfowl breeding population survey, Arctic Coastal Plain, Alaska, June 2011. ID numbers refer to Fig. 1 above.

	Sampling	Stratum		Sampling	Stratum		Stratum	Sample	Sample % of
ID	Intensity	Area km ²	ID	Intensity	Area km ²		Area km ²	Area km ²	Stratum Area
0	Non-habitat		11	Medium	2,240	All Low	18,276	228.0	1.2
1	Low	1,812	12	Medium	7,453	All Medium	13,058	246.8	1.9
2	Low	3,916	13	Low	7,652	All High	20,351	837.9	4.1
3	Teshekpuk High	2,019	14	Low	3,571	Teshekpuk High	5,650	476.5	8.4
4	High	1,423	15	High	11,358	Eider Strata	30,465	1,401.2	4.6
5	Medium	2,581	16	High	582	All Strata	57,335	1,789.2	3.1
6	Teshekpuk High	1,362	17	Low	748				
7	Teshekpuk High	226	18	High	3,093				
8	High	128	19	Teshekpuk Hig	2,044				
9	Low	577	20	High	3,768				
10	Medium	784							

Figure 2. 2011 spring snow melt on the Arctic Coastal Plain, Alaska, from Terra satellite MODIS 8day maximum snow extent data.

Table 2. Average and range of ratios of lone males (single to 4) to total males (males 1-4 plus males in pairs) of selected duck species observed during the Eider Survey (1992-2006) and the ACP survey (2007-2011), Arctic Coastal Plain, Alaska.

	LDI Avg.	LDI SD	LDI range	
Species	1992-2010	1992-2010	1992-2010	LDI 2011
Spectacled eider	0.50	0.08	0.28-0.58	0.58
King eider	0.35	0.11	0.14-0.57	0.44
Long-tailed duck	0.49	0.04	0.39-0.58	0.47
Northern pintail	0.83	0.08	0.67-0.91	0.83

Figure 3. Daily ratio of lone males to total males (males single to 4 plus males in pairs) of selected duck species observed during the 2007-11 Waterfowl Breeding Population (ACP) survey, Arctic Coastal Plain, Alaska. A higher value indicates a more advanced stage of the breeding cycle.

Flocked Indicated Density Population Population Expanded Species Single Pair Birds Total birds/km2 Index 95%CI VCF Pop. Index %CV Yellow-billed loon 28 20 6 74^{1} 923-2.051 19.4 0.0488 1.487 Pacific Loon 1.247^{1} 7.5 248 491 17 0.9228 28.111 23.982-32.241 Red-throated loon 0 85^{1} 23 31 0.0628 1.912 1,304-2,520 16.2 Jaeger spp.³ 251¹ 206 21 3 0.1927 5,871 4,767-6,975 9.6 Glaucous gull 609^{1} 318 73 145 0.4624 14,087 8,363-19,810 20.7 Sabine's gull 221 90 60 461¹ 0.3104 9,456 7,370-11,542 11.3 Arctic tern 227 129 47 532¹ 0.3717 11,325 9,446-13,204 8.5 26^{2} Red-breasted merganser 5 8 0 0.0291 887 318-1,457 1.27 1,127 32.7 Mallard 0^{2} 0-0 0 0 0 0 4.01 0 0^{2} 0 0-Am. wigeon 0 0 0 0 3.84 0 6^{2} Am. Green-winged teal 2 1 0 0.0048 146 21-271 8.36 1,220 43.7 Northern pintail 377 93 594 $1,534^{2}$ 0.955 29,094 23,137-35,051 3.05 88,736 10.4 Northern shoveler 0^{2} 0 0 0 0 0 0-3.79 0 Greater scaup 327^{1} 40 80 127 0.2458 7,487 4,104-10,870 1.93 14,450 23.1 Long-tailed duck 1.87 400 411 389 2.011^{2} 1.4568 44,382 34,871-53,893 82,994 10.9 Spectacled eider 115 82 6 400^{2} 0.261 7,952 6,258-9,646 10.9 Common eider 3 14^{2} 4 0 0.0116 354 14-785 62.1 King eider 217 275 20 1.004^{2} 0.6218 18,942 15,986-21,897 8 Steller's eider 2^{2} 2-144 0 1 0 0.0016 49 100.2 2^{2} Black scoter 1 0 0 0.0016 49 2-138 1.17 57 94 25^{2} White-winged scoter 1 8 7 0.0407 1,240 25-2,508 1.17 1,450 52.2 271 Snow goose 23 440 $1,005^{1}$ 0.7581 23,096 1,005-50,352 60.2 6 Gr. White-fronted goose 842 1,648 2,699 7.679^{2} 5.1693 157,481 139,046-175,917 Taverner's Canada goose 522^{2} 38 31 384 0.2594 7,902 5,565-10,238 15.1 Black brant 79 602^{2} 100 244 0.3118 9,498 5,584-13,411 21 447^{1} Tundra swan 188 125 9 0.3214 9,792 8,479-11,105 6.8 Sandhill crane 0 20^{1} 10 0 0.0121 367 107-627 36.1 Unid. Shorebird^{4,5} 301 251 769 $1,572^{1}$ 2.2032 67,119 44,139-90,098 17.5 Common raven 5 0 0 5¹ 0.0062 188 42.7 31-346 Short-eared owl 11 0 0 11^{1} 0.0079 239 118-360 25.8 Snowy owl 107 0 0 107^{1} 0.0731 2,226 1,471-2,981 17.3 31 3 0 0 0.003 92 3-229 76.8 Golden eagle

Table 3. Combined observations by left and right observers on aerial survey transects, arctic coastal plain, Alaska, June 2011, with observable population indices. Includes observations from northern coastal strata only (Fig. 2). Expanded indices for selected ducks were calculated using visibility correction factors (VCF) developed on the Yukon Kuskokwim Delta for tundra habitats (Conant et al. 1991).

1. singles+(2*pairs)+flocked 2. 2*(singles+pairs)+flocked 3. Stercorarius longicaudus, S. parasiticus, S. pomarinus 4. Charadrius sp., Pluvialis spp.,

Calidris spp., Arenaria sp., Numenius sp., Limnodromus sp. et al. 5. Data from left-side observer only.

Population Flocked Indicated Density Population Expanded 95%CI VCF Species Single Pair Birds Total birds/km2 Index Pop. Index %CV Yellow-billed loon 37 29 6 101^{1} 0.0451 2.588 1.726-3.449 17 Pacific Loon 294 581 20 1.476^{1} 0.7317 41.955 34,115-49,796 9.5 92¹ Red-throated loon 24 34 0 0.0385 2,209 1,516-2,903 16 1^{1} Red-necked grebe 1 0 0 0.0009 53 1-134 77.7 Jaeger spp.³ 3 8.9 257 26 312^{1} 0.1733 9.937 8.207-11.667 Glaucous gull 85 152 683¹ 0.3354 11,967-26,493 19.3 361 19,230 Sabine's gull 503¹ 0.2072 11.3 255 94 60 11,877 9,245-14,509 Arctic tern 283 157 69 666^{1} 0.3368 19.313 15,445-23,181 10.2 Red-breasted merganser 7 9 32^{2} 28.1 0 0.0216 1.240 557-1.924 1.27 1.575 M allard 0 2 0 4^{2} 0.0047 4-619 1.077 269 4.01 66.6 Am. wigeon 2 4 12^{2} 0.0141 12-1,611 0 806 3.84 3.095 51 14^{2} Am. Green-winged teal 5 2 0 0.0139 798 78-1.518 8.36 6.670 46 Northern pintail 432 114 611 1.703^{2} 0.7189 41.219 32,471-49,967 3.05 125.717 10.8 Northern shoveler 0 2^{2} 402 1 0 0.0018 106 2-268 3.79 77.7 73 645¹ Greater scaup 188 196 0.4598 26,364 18,837-33,892 1.93 50,883 14.6 Long-tailed duck 473 527 401 $2,401^{2}$ 1.2059 69,141 55,666-82,616 1.87 129,294 9.9 Spectacled eider 6 410^{2} 0.1468 8,419 6,499-10,339 11.6 116 86 Common eider 3 4 14^{2} 0 0.006 344 14-859 76.5 King eider $1,052^{2}$ 229 287 20 0.3785 21,703 16,688-26,718 11.8 2^{2} Steller's eider 0 49 99.4 1 0 0.0009 2-145 2^{2} Black scoter 0 0 0.0009 49 2-141 1.17 57 95.3 1 White-winged scoter 73 6 100 258^{2} 0.329 18,862 3,601-34,124 1.17 22,069 41.3 272 $1,007^{1}$ 0.4127 1,007-52,805 62.8 Snow goose 23 440 23,661 Gr. White-fronted goose 8,496² 945 1,815 2,976 3.6388 208,632 174,865-242,399 8.3 Taverner's Canada goose 554² 23.7 49 36 384 0.1719 9,859 5,282-14,435 Black brant 79 100 247 605^{2} 0.1689 9,684 4,818-14,550 25.6 Tundra swan 524^{1} 219 144 17 0.2515 14,421 12,630-16,213 6.3 Sandhill crane 24^{1} 0.01 11 1 0 576 275-877 26.7 Unid. Shorebird^{4,5} 361 281 851 $1,774^{1}$ 1.6385 93,946 68,376-119,515 13.9 Common raven 9 **9**¹ 0 0 0.0098 76-1,048 44.1 562 Short-eared owl 15 0 0 15^{1} 0.0083 475 194-756 30.2 Snowy owl 108 0 0 108^{1} 0.0444 2,543 990-4,097 31.2 Golden eagle 6 0 0 61 0.0038 220 6-441 51.3

Table 4. Combined observations by left and right observers on aerial survey transects, arctic coastal plain, Alaska, June 2011, with observable population indices. Includes observations from all strata (Fig. 1). Expanded indices for selected ducks were calculated using visibility correction factors (VCF) developed on the Yukon Kuskokwim Delta for tundra habitats (Conant et al. 1991).

1. singles+(2*pairs)+flocked 2. 2*(singles+pairs)+flocked 3. Stercorarius longicaudus, S. parasiticus, S. pomarinus 4. Charadrius sp., Pluvialis spp.,

Calidris spp., Arenaria sp., Numenius sp., Limnodromus sp. et al. 5. Data from left-side observer only.

				Mean	Log-linear	Mean pop.	Pop. Growth	Avg. sampling error	Years to detect a	Mean pop. growth	Pop. GR last 10
Species	Measure	Years	n years	pop. Index	slope	growth rate	rate 90% CI	coef. of variation	slope of 0.0341	rate last 10 years	years 90% CI
Yellow-billed loon	$S+2{}^{\ast}Pr+Fl$	1992-2011	20	1,171	0.020	1.020	1.007-1.034	0.214	14.3	1.017	0.984-1.051
Pacific Loon	$S+2\ast Pr+Fl$	1992-2011	20	21,310	0.008	1.008	0.995-1.022	0.070	6.8	1.019	0.978-1.061
Red-throated loon	$S+2{\ast}Pr+Fl$	1992-2011	20	2,495	-0.037	0.963	0.942-0.985	0.154	11.5	0.993	0.946-1.042
Jaeger spp.	$S+2\ast Pr+Fl$	1992-2011	20	4,218	0.014	1.014	0.987-1.043	0.117	9.5	1.090	1.014-1.171
Glaucous gull	$S+2\ast Pr+Fl$	1992-2011	20	12,663	0.010	1.010	0.994-1.025	0.148	11.2	1.048	1.012-1.086
Sabine's gull	S + 2*Pr + Fl	1992-2011	20	7,604	0.030	1.030	1.010-1.051	0.132	10.3	1.068	1.021-1.118
Arctic tern	$S+2{\ast}Pr+Fl$	1992-2011	20	10,875	0.029	1.030	1.020-1.040	0.110	9.2	1.003	0.977-1.031
Red-breasted merganser	2 * (S + Pr) + Fl	1992-2011	20	523	0.084	1.088	1.051-1.126	0.384	21.1	1.012	0.972-1.055
Mallard	2 * (S + Pr) + Fl	1992-2011	20	173	-0.076	0.927	0.862-0.996	0.771	33.5	0.852	0.710-1.021
Am. wigeon	2 * (S + Pr) + Fl	1992-2011	20	348	-0.081	0.922	0.847-1.004	0.685	31.0	0.847	0.641-1.118
Am. Green-winged teal	2 * (S + Pr) + Fl	1992-2011	20	267	-0.070	0.932	0.878-0.990	0.531	26.1	1.175	1.087-1.270
Northern pintail	2 * (S + Pr) + Fl	1992-2011	20	47,344	-0.017	0.984	0.959-1.009	0.102	8.7	0.982	0.928-1.039
Northern shoveler	2 * (S + Pr) + Fl	1992-2011	20	175	-0.018	0.982	0.893-1.081	0.692	31.2	0.873	0.686-1.110
Greater scaup	$S+2{}^{\ast}Pr+Fl$	1992-2011	20	5,036	0.065	1.067	1.049-1.086	0.183	12.9	1.060	1.000-1.123
Long-tailed duck	2 * (S + Pr) + Fl	1992-2011	20	30,935	-0.005	0.995	0.981-1.010	0.071	6.8	1.035	0.986-1.087
Spectacled eider	2 * (S + Pr) + Fl	1993-2011	19	6,580	-0.008	0.992	0.980-1.005	0.112	9.2	0.997	0.965-1.029
Common eider	2 * (S + Pr) + Fl	1992-2011	20	503	0.024	1.024	0.957-1.095	0.783	33.9	1.125	0.914-1.384
King eider	2 * (S + Pr) + Fl	1993-2011	19	14,236	0.027	1.027	1.018-1.037	0.091	8.1	1.040	1.019-1.061
Steller's eider	2 * (S + Pr) + Fl	1992-2011	20	144	-0.010	0.990	0.904-1.084	0.829	35.2	0.966	0.776-1.201
Black scoter	2 * (S + Pr) + Fl	1992-2011	20	126	-0.005	0.995	0.925-1.071	0.862	36.1	1.172	1.006-1.366
White-winged scoter	2 * (S + Pr) + Fl	1992-2011	20	629	0.085	1.089	1.028-1.153	0.570	27.4	1.163	0.982-1.377
Snow goose	$S+2{}^{\ast}Pr+Fl$	1992-2011	20	8,717	0.196	1.217	1.126-1.314	0.563	27.2	1.288	0.981-1.691
Gr. White-fronted goose	2 * (S + Pr) + Fl	1992-2011	20	95,546	0.055	1.057	1.037-1.077	0.074	7.1	1.113	1.065-1.164
Taverner's Canada goose	2 * (S + Pr) + Fl	1993-2011	19	8,285	0.008	1.008	0.976-1.040	0.254	16.0	1.075	0.974-1.188
Black brant	2 * (S + Pr) + Fl	1992-2011	20	7,519	0.089	1.093	1.069-1.117	0.250	15.8	1.016	0.972-1.062
Tundra swan	$S+2{}^{\ast}Pr+Fl$	1992-2011	20	7,064	0.037	1.038	1.025-1.051	0.108	9.0	1.070	1.046-1.095
Sandhill crane	$S+2{}^{\ast}Pr+Fl$	1992-2011	20	178	0.083	1.087	1.039-1.136	0.604	28.5	1.236	1.109-1.378
Unid. Shorebird	$S+2{}^{\ast}Pr+Fl$	1997-2011	15	52,141	-0.009	0.991	0.968-1.014	0.108	9.0	1.008	0.966-1.051
Common raven	S + 2*Pr + Fl	1992-2011	20	70	0.042	1.043	0.985-1.104	0.660	30.2	1.160	0.997-1.350
Short-eared owl	S + 2*Pr + Fl	1992-2011	20	86	0.079	1.082	0.990-1.183	0.596	28.2	1.195	0.966-1.478
Snowy owl	S + 2*Pr + Fl	1992-2011	20	880	0.004	1.004	0.927-1.086	0.359	20.1	1.082	0.850-1.377
Golden eagle	S + 2*Pr + Fl	1992-2011	20	46	0.057	1.059	1.005-1.116	0.815	34.8	1.033	0.894-1.194

Table 5. Mean population indices, population growth rates, and years to detect a population trend equivalent to a 50 percent growth or decline in 20 years, for observations of selected bird species in early to mid-June 1992-2011 sampling Arctic Coastal Plain wetlands in Alaska. Variance estimates used were based on within-year sampling error among transects as stratified by 10 physiographic regions (northern coastal strata). Significant growth rates are highlighted green for positive trend, red for negative.

Table 6. Breeding population estimates, standard Alaska ACP Survey, 1986-2006 means (Mallek et al. 2007) compared with estimates from the current ACP survey, 2011 and averages from 2007-2010. Duck indices were converted to population estimates by multiplying by tundra visibility correction factors calculated for the Alaska-Yukon Breeding Population Survey (Conant et al. 1991).

		ACP Survey	All ACP strata	All ACP strata
Species	VCF	mean 1986-2006	2007-2010 (95%CI)	2011 (95%CI)
Yellow-billed loon	1.00	2,778	2,465 (1,817-3,113)	2,588 (1,726-3,449)
Pacific Loon	1.00	29,756	35,161 (23,031-39,541)	41,955 (34,115-49,796)
Red-throated loon	1.00	3,240	2,820 (2,030-3,610)	2,209 (1,516-2,903)
Jaegers	1.00	7,197	9,571 (7,706-11,436)	9,937 (8,207-11,667)
Glaucous gull	1.00	17,188	20,127 (16,445-23,808)	19,230 (11,967-26,493)
Sabine's gull	1.00	11,810	13,303 (10,074-16,532)	11,877 (9,245-14,509)
Arctic tern	1.00	23,544	22,506 (18,766-26,247)	19,313 (15,445-23,181)
Red-breasted merganser	1.27	2,340	1,900 (714-3,086)	1,575 (707-2,443)
Mallard	4.01	1,848	1,560 (74-3,174)	1,077 (16-2,482)
Am. wigeon	3.84	4,123	1,618 (380-2,905)	3,095 (46-6,186)
Am. Green-winged teal	8.36	3,210	3,781 (1,250-6,308)	6,670 (652-12,690)
Northern pintail	3.05	220,494	197,936 (162,581-233,291)	125,717 (99,037-152,399)
Northern shoveler	3.79	987	2,161 (271-4,247)	402 (8-1,016)
Greater scaup	1.93	32,721	39,450 (29,364-49,537)	50,883 (36,355-65,412)
Long-tailed duck	1.87	107,041	87,642 (76,487-98,796)	129,294 (104,095-154,492)
Spectacled eider	1.00	619	5,987 (4,436-7,537)	8,419 (6,499-10,339)
Common eider	1.00	441	935 (38-2,641)	344 (14-859)
King eider	1.00	3,999	20,444 (16,677-24,210)	21,703 (16,688-26,718)
Steller's eider	1.00	743	102 (6-348)	49 (2-145)
Black scoter	1.17	43	259 (8-579)	57 (2-165)
White-winged scoter	1.17	247	7,362 (2,801-11,924)	22,069 (4,213-39,925)
All scoters	1.17	10,381	7,621 (2,809-12,503)	22,126 (4,215-40,090)
Snow goose	1.00	3,025	27,110 (NA)	23,661 (1,007-52,805)
Gr. White-fronted goose	1.00	123,963	220,202 (175,484-261,903)	208,632 (174,865-242,399)
Taverner's Canada goose	1.00	18,309	17,796 (7,565-21,964)	9,859 (5,282-14,435)
Black brant	1.00	9,792	10,831 (4,621-17,333)	9,684 (4,818-14,550)
Tundra swan	1.00	9,971	14,458 (11,761-18,001)	14,421 (12,630-16,213)
Sandhill crane	1.00		451 (341-974)	576 (275-877)
Common raven	1.00		317 (63-610)	562 (76-1,048)
Short-eared owl	1.00		285 (32-555)	475 (194-756)
Snowy owl	1.00	1,219	814 (234-636)	2,543 (990-4,097)
Golden eagle	1.00	426	273 (122-499)	220 (6-441)

w/ sample error CV = 14.3

Figure 4. Population trend for Yellow-billed Loons (*Gavia adamsii*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

	TALO				<u>-</u>	J, 4 00 Kill	-30	NOL 10 3		
birds	Aerial index: Total	StdErr	Index	lg flk	md flk	sm flk	2*npr	sg	year	
20	n yrs =	1174	16103	0	0	227	7944	7931	1992	
21310	mean pop index =	958	18512	0	0	251	13592	4669	1993	
4405	std dev =	1329	22146	0	266	354	16753	4773	1994	
985	std error =	1438	24347	0	584	467	17703	5592	1995	
19379	low 90%ci =	1193	23387	0	0	71	17495	5821	1996	
23241	high 90%ci =	1848	24981	0	490	696	18298	5497	1997	
all years :	trend over	1370	12833	0	0	222	9392	3220	1998	
0.0082	In linear slope =	1386	20385	0	0	625	15690	4070	1999	
0.0082	SE slope =	1364	23152	0	137	1161	16556	5299	2000	
1.008	Growth Rate =	1330	19675	0	0	581	15326	3767	2001	
0.995	low 90%ci GR =	1250	21330	0	0	431	16020	4880	2002	
1.022	high 90%ci GR =	1701	20397	0	177	842	14842	4536	2003	
0.212	regression resid CV =	1269	19014	0	148	312	13751	4802	2004	
0.070	avg sampling err CV =	1760	20351	0	0	1283	14728	4340	2005	
10 years :	trend of most recent	1532	17018	0	147	250	12783	3839	2006	
1.019	Growth Rate =	1525	30507	0	144	505	22807	7051	2007	
0.978	low 90%ci GR =	1647	21315	0	0	290	15853	5172	2008	
1.061	high 90%ci GR =	1736	27276	0	0	751	20878	5647	2009	
20yr rate :	min yrs to detect -50%/2	1233	15362	0	0	175	11777	3410	2010	
14.2	w/ regression resid CV =	2107	28111	0	0	466	21866	5780	2011	
6.8	w/ sample error CV =									

Figure 5. Population trend for Pacific Loons (*Gavia pacifica*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 6. Population trend for Red-throated Loons (*Gavia stellata*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

20	n yrs =	297	2298	0	0	409	301	1588	1992
4218	mean pop index =	706	6131	0	0	405	1014	4713	1993
1872	std dev =	353	2007	0	0	0	671	1335	1994
419	std error =	650	7365	0	0	144	1232	5989	1995
3398	low 90%ci =	485	3992	0	0	253	842	2897	1996
5038	high 90%ci =	316	2984	0	0	0	638	2346	1997
all years :	trend over	384	2817	0	0	164	952	1702	1998
0.0143	In linear slope =	477	4572	0	0	154	1143	3276	1999
0.0168	SE slope =	526	5018	0	0	221	1124	3673	2000
1.014	Growth Rate =	604	4946	0	0	286	1005	3655	2001
0.987	low 90%ci GR =	232	2147	0	0	0	525	1622	2002
1.043	high 90%ci GR =	300	2863	0	0	0	785	2078	2003
0.434	regression resid CV =	242	2459	0	0	0	666	1793	2004
0.117	avg sampling err CV =	278	2471	0	0	0	390	2081	2005
10 years :	trend of most recent	589	8930	0	0	147	1891	6893	2006
1.090	Growth Rate =	909	5502	0	392	99	1125	3886	2007
1.014	low 90%ci GR =	717	4630	0	0	392	620	3618	2008
1.171	high 90%ci GR =	335	3666	0	0	0	737	2929	2009
<u>:Oyr rate :</u>	min yrs to detect -50%/2	514	3690	0	0	0	1423	2267	2010
22.9	w/ regression resid CV =	563	5871	0	0	41	1008	4821	2011
9.5	w/ sample error CV =								

Figure 7. Population trend for jaeger species (*Stercorarius parasiticus, S. pomarinus, S. longicaudus*) observed on aerial survey transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 8. Population trend for Glaucous Gulls (*Larus hyperboreus*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

							*			
l birds	Aerial index: Total	StdErr	Index	lg flk	md flk	sm flk	2*npr	sg	year	
20	n yrs =	1264	8158	0	4076	833	1276	1974	1992	
7604	mean pop index =	737	6487	0	372	1043	2525	2546	1993	
2312	std dev =	624	5234	0	0	446	1852	2935	1994	
517	std error =	1482	8098	0	1122	696	3221	3059	1995	
6591	low 90%ci =	954	6632	0	1184	335	2547	2567	1996	
8617	high 90%ci =	738	7655	0	898	966	3160	2631	1997	
all years :	trend over	409	2793	0	0	165	909	1719	1998	
0.0298	In linear slope =	812	5249	0	1443	689	1836	1280	1999	
0.0120	SE slope =	844	6705	0	895	1818	1841	2150	2000	
1.030	Growth Rate =	869	6342	0	788	1028	2328	2198	2001	
1.010	low 90%ci GR =	822	8651	0	1816	1232	3179	2423	2002	
1.051	high 90%ci GR =	448	4004	0	146	196	1389	2272	2003	
0.311	regression resid CV =	1182	7833	0	2100	784	2909	2040	2004	
0.132	avg sampling err CV =	866	7018	0	1741	625	2388	2264	2005	
10 years :	trend of most recent	1509	8984	1220	1072	374	3679	2640	2006	
1.068	Growth Rate =	1105	10113	0	2676	414	3781	3242	2007	
1.021	low 90%ci GR =	1124	9901	0	1929	893	3410	3669	2008	
1.118	high 90%ci GR =	1633	12429	944	2774	543	4317	3852	2009	
20yr rate :	min yrs to detect -50%/2	1521	10338	0	2315	707	3750	3565	2010	
18.3	w/ regression resid CV =	1064	9456	0	973	226	3755	4502	2011	
10.3	w/ sample error CV =		-					-		

Figure 9. Population trend for Sabine's gulls (*Xema sabini*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

			ARTE
e	lex	StdErr	Aerial index: Total birds
77	377	1340	n yrs = 20
82	i82	692	mean pop index = 10875
00	00	933	std dev = 2393
32	32	1186	std error = 535
83	183	906	low 90%ci = 9826
74	274	891	high 90%ci = 11923
9	91	838	trend over all years :
08	608	1230	In linear slope = 0.0292
4	41	1361	SE slope = 0.0059
3	35	1236	Growth Rate = 1.030
78	'78	1800	low 90%ci GR = 1.020
93	93	1128	high 90%ci GR = 1.040
48	:48	1509	regression resid CV = 0.151
66	:66	1195	avg sampling err CV = 0.110
26	26	917	trend of most recent 10 years :
4()40	1227	Growth Rate = 1.003
19	19	1475	low 90%ci GR = 0.977
9:	i93	1369	high 90%ci GR = 1.031
88	88	1377	min yrs to detect -50%/20yr rate :
2!	\$25	959	w/ regression resid CV = 11.3
			w/ sample error CV = 9.2

Figure 10. Population trend for Arctic terns (*Sterna paradisaea*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 11. Population trend for red-breasted mergansers (*Mergus serrator*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 12. Population trend for mallards (*Anas platyrhynchos*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

2011 0 0 0 0 0 12 11 48.3 w/ regression resid CV = 31.0 w/ sample error CV = Figure 13. Population trend for American wigeon (Anas americana) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To

needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Figure 14. Population trend for green-winged teal (*Anas crecca*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

20	n yrs =	6591	62230	8491	20018	4752	5630	23339	1992
47344	mean pop index =	3261	35141	0	6905	2668	5126	20441	1993
17483	std dev =	2589	24768	802	5590	1550	1573	15254	1994
3909	std error =	8012	78872	6892	24109	4396	7281	36195	1995
39681	low 90%ci =	9306	69020	2558	18034	5743	4794	37891	1996
55006	high 90%ci =	2624	23452	0	4812	1439	1984	15217	1997
all years :	trend over	5576	66775	1832	11094	5255	10126	38469	1998
-0.0165	In linear slope =	3896	65443	0	11702	2264	14400	37076	1999
0.0153	SE slope =	6031	74466	1999	11843	3134	19056	38434	2000
0.984	Growth Rate =	4392	43625	0	6882	1749	10029	24965	2001
0.959	low 90%ci GR =	6030	56557	881	12529	2602	4630	35915	2002
1.009	high 90%ci GR =	3873	34075	0	3387	643	4725	25320	2003
0.395	regression resid CV =	4796	50885	0	7817	1804	6991	34272	2004
0.102	avg sampling err CV =	2544	25205	481	6047	592	1703	16381	2005
10 years :	trend of most recent	2551	28290	0	5627	1118	2265	19280	2006
0.982	Growth Rate =	4828	44232	0	11796	1758	2669	28009	2007
0.928	low 90%ci GR =	5222	59450	820	6877	1202	7417	43134	2008
1.039	high 90%ci GR =	5521	40451	0	2651	528	4351	32921	2009
20yr rate :	min yrs to detect -50%	4501	40057	596	7045	2379	10280	19757	2010
21.4	w/ regression resid CV =	3039	29094	0	7861	2483	3670	15080	2011
8.7	w/ sample error CV =								

Figure 15. Population trend for northern pintails (*Anas acuta*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with *p*=0.10, beta at *p*=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 16. Population trend for northern shovelers (*Anas clypeata*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

	0040				<u>-</u>	<i>5,</i> 4 00 Km2		NOL 103	
birds	Aerial index: Total	StdErr	Index	lg flk	md flk	sm flk	2*npr	sg	year
20	n yrs =	572	2109	0	563	400	607	539	1992
5036	mean pop index =	636	3004	0	411	192	1946	455	1993
2408	std dev =	366	2080	0	0	0	1486	594	1994
538	std error =	719	4133	0	912	209	2453	560	1995
3981	low 90%ci =	526	3849	0	0	120	2292	1437	1996
6091	high 90%ci =	661	3735	0	145	245	2396	948	1997
all years :	trend over	470	3857	0	582	0	2240	1035	1998
0.0651	In linear slope =	452	2565	0	143	0	1847	576	1999
0.0106	SE slope =	556	3325	0	0	87	2659	579	2000
1.067	Growth Rate =	784	4802	0	480	0	3556	766	2001
1.049	low 90%ci GR =	982	7915	0	2342	120	4147	1306	2002
1.086	high 90%ci GR =	545	3403	0	483	0	2266	655	2003
0.272	regression resid CV =	611	4041	0	524	119	2319	1079	2004
0.183	avg sampling err CV =	1043	5269	937	421	0	3404	507	2005
10 years :	trend of most recent	1550	6370	976	1177	125	3103	988	2006
1.060	Growth Rate =	1514	7488	0	2237	0	3567	1685	2007
1.000	low 90%ci GR =	3418	11468	1397	3290	0	4709	2072	2008
1.123	high 90%ci GR =	872	7145	0	895	0	3966	2283	2009
20yr rate :	min yrs to detect -50%/2	1068	6680	0	1509	239	4055	877	2010
16.7	w/ regression resid CV =	1726	7487	0	2053	146	4157	1131	2011
12.9	w/ sample error CV =								

Figure 17. Population trend for scaup (primarily *Aythya marila*, possibly some *A. affinis*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total bird population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

	LTDU				NSE 10 strata =30,465 km2									
ated total	Aerial index: Indic	StdErr	Index	lg flk	md flk	sm flk	2*npr	2*sg	year					
20	n yrs =	3513	32221	2268	2818	1123	11116	14896	1992					
30935	mean pop index =	1989	29858	0	1432	346	14871	13208	1993					
6381	std dev =	2090	27312	0	2434	623	11684	12570	1994					
1427	std error =	2361	35021	0	3463	913	17440	13206	1995					
28139	low 90%ci =	2419	37614	849	4023	1099	15597	16046	1996					
33732	high 90%ci =	2087	35853	0	3215	1021	17009	14607	1997					
all years :	trend over	1612	30310	0	1162	942	13963	14244	1998					
-0.0046	In linear slope =	1811	27584	0	2742	872	12640	11329	1999					
0.0086	SE slope =	2773	37252	0	5529	1737	15833	14154	2000					
0.995	Growth Rate =	2016	34810	0	2572	807	19161	12270	2001					
0.981	low 90%ci GR =	2097	39931	0	2953	257	18405	18317	2002					
1.010	high 90%ci GR =	1227	19642	0	1168	0	8894	9579	2003					
0.222	regression resid CV =	1658	20199	0	391	198	9380	10230	2004					
0.071	avg sampling err CV =	1583	26912	0	2122	0	14197	10594	2005					
10 years :	trend of most recent	2150	26669	0	716	0	14036	11917	2006					
1.035	Growth Rate =	1857	24479	0	2046	645	10191	11597	2007					
0.986	low 90%ci GR =	2755	33345	1405	2078	0	14283	15579	2008					
1.087	high 90%ci GR =	1787	33950	0	1561	425	15526	16439	2009					
20yr rate :	min yrs to detect -50%	1569	24557	0	2405	567	10554	11030	2010					
14.6	w/ regression resid CV =	4853	44382	1449	4939	672	18921	18401	2011					
6.8	w/ sample error CV =													

Figure 18. Population trend for long-tailed ducks (*Clangula hyemalis*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

	-	NSE 10 s	trata =30),465 km2	2				SPEI	
_	year	2*sg	2*npr	sm flk	md flk	lg flk	Index	StdErr	Aerial index: Indica	ated total
	1992	657	602	0	0	0			n yrs =	19
	1993	4828	4339	0	0	0	9167	900	mean pop index =	6580
	1994	2945	3885	122	0	0	6951	733	std dev =	1209
	1995	2679	3951	0	0	0	6630	677	std error =	277
	1996	2964	2580	0	0	0	5544	680	low 90%ci =	6037
	1997	2594	2553	0	0	0	5148	515	high 90%ci =	7124
	1998	4963	4223	0	0	0	9186	1001	trend over	all years :
	1999	1723	4517	0	0	0	6240	541	In linear slope =	-0.0080
	2000	3170	2628	0	0	0	5798	487	SE slope =	0.0077
	2001	2611	4537	0	0	0	7148	675	Growth Rate =	0.992
	2002	3284	2938	0	216	0	6439	812	low 90%ci GR =	0.980
	2003	4058	2918	0	0	0	6976	635	high 90%ci GR =	1.005
	2004	3165	2716	0	0	0	5881	574	regression resid CV =	0.183
	2005	3186	4374	0	0	0	7561	964	avg sampling err CV =	0.112
	2006	3259	3356	0	0	0	6615	947	trend of most recent	10 years :
	2007	2864	1813	0	0	0	4676	668	Growth Rate =	0.997
	2008	3019	3188	0	0	0	6207	592	low 90%ci GR =	0.965
	2009	2549	2468	0	0	0	5018	854	high 90%ci GR =	1.029
	2010	3435	2714	137	0	0	6286	719	min yrs to detect -50%/	20yr rate :
	2011	4568	3312	71	0	0	7952	864	w/ regression resid CV =	12.8
									w/ sample error CV =	9.2

Figure 19. Population trend for spectacled eiders (*Somateria fischeri*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with *p*=0.10, beta at *p*=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur.

Figure 20. Population trend for common eiders (*Somateria mollissima*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Figure 21. Population trend for king eiders (*Somateria spectabilis*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur.

	STEI				2	0,465 km2	strata =30	NSE 10 s	
ated total	Aerial index: Indic	StdErr	Index	lg flk	md flk	sm flk	2*npr	2*sg	year
20	n yrs =	12	13	0	0	0	0	0	1992
144	mean pop index =	147	260	0	0	118	94	48	1993
188	std dev =	47	47	0	0	0	47	0	1994
42	std error =	166	326	0	0	0	327	0	1995
62	low 90%ci =	12	13	0	0	0	0	0	1996
226	high 90%ci =	112	145	0	0	0	145	0	1997
all years :	trend over	12	13	0	0	0	0	0	1998
-0.0102	In linear slope =	458	791	0	168	0	527	96	1999
0.0551	SE slope =	12	13	0	0	0	0	0	2000
0.990	Growth Rate =	206	284	0	0	0	189	95	2001
0.904	low 90%ci GR =	12	13	0	0	0	0	0	2002
1.084	high 90%ci GR =	93	93	0	0	0	0	93	2003
1.427	regression resid CV =	50	48	0	0	0	0	48	2004
0.829	avg sampling err CV =	64	94	0	0	0	47	47	2005
10 years :	trend of most recent	137	296	0	0	0	147	150	2006
0.966	Growth Rate =	251	338	0	0	0	145	193	2007
0.776	low 90%ci GR =	23	25	0	0	0	0	25	2008
1.201	high 90%ci GR =	50	47	0	0	0	47	0	2009
20yr rate :	min yrs to detect -50%	12	13	0	0	0	0	0	2010
50.5	w/ regression resid CV =	49	49	0	0	0	49	0	2011
35.2	w/ sample error CV =								

Figure 22. Population trend for Steller's eiders (*Polysticta stelleri*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Figure 23. Population trend for black scoters (*Melanitta nigra*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

41

w/ sample error CV = 27.4

Figure 24. Population trend for white-winged scoters (*Melanitta fusca*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The indicated total birds population index is the sum of males in groups of <5, an equal number of unseen but indicated females, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341(equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Figure 25. Population trend for snow geese (*Chen caerulescens*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The total bird population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

43

Figure 26. Population trend for white-fronted geese (*Anser albifrons*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

NSE 10 strata =30,465 km2									CAGO	
	year	2*sg	2*npr	sm flk	md flk	lg flk	Index	StdErr	Aerial index: Indica	ated total
	1992	530	260	1211	11482	16621			n yrs =	19
	1993	387	531	595	3111	1061	5685	2514	mean pop index =	8285
	1994	666	1047	592	3099	0	5405	1389	std dev =	3455
	1995	1233	534	1033	8052	0	10851	2889	std error =	793
	1996	741	1754	991	5981	1678	11145	3494	low 90%ci =	6732
	1997	436	1425	1721	4726	1977	10284	2911	high 90%ci =	9839
	1998	559	641	1000	3240	0	5441	1221	trend over	all years :
	1999	448	1661	912	6822	0	9843	2784	In linear slope =	0.0076
	2000	960	1128	962	4454	920	8424	2810	SE slope =	0.0194
	2001	527	1015	983	3327	0	5851	2327	Growth Rate =	1.008
	2002	917	1151	596	362	0	3025	372	low 90%ci GR =	0.976
	2003	1516	1875	1647	4312	0	9351	2192	high 90%ci GR =	1.040
	2004	613	1273	1124	3396	1039	7444	1359	regression resid CV =	0.463
	2005	730	1016	886	3463	602	6696	1933	avg sampling err CV =	0.254
	2006	683	1706	673	2139	0	5201	1037	trend of most recent	10 years :
	2007	2010	2922	2312	9057	983	17285	3775	Growth Rate =	1.075
	2008	1608	1134	374	187	0	3304	586	low 90%ci GR =	0.974
	2009	1478	6514	224	3192	0	11408	2182	high 90%ci GR =	1.188
	2010	1375	1742	500	6316	2742	12676	3213	min yrs to detect -50%/2	20yr rate :
	2011	1865	1296	467	4273	0	7902	1192	w/ regression resid CV =	23.8
									w/ sample error CV =	16.0

Figure 27. Population trend for Taverner's Canada geese (*Branta hutchinsii taverneri*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

1.062

19.5

15.8

high 90%ci GR =

w/ regression resid CV =

w/ sample error CV =

min yrs to detect -50%/20yr rate :

Figure 28. Population trend for black brant (*Branta bernicla*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The indicated total birds population index is the sum of birds observed as singles, an equal number of unseen but indicated single birds, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

birds	Aerial index: Total	StdErr	Index	lg flk	md flk	sm flk	2*npr	sg	year
20	n yrs =	1219	7924	0	809	394	3591	3129	1992
7064	mean pop index =	534	5120	0	0	72	2682	2366	1993
2054	std dev =	444	4188	0	0	177	2429	1582	1994
459	std error =	690	5824	0	280	138	2826	2581	1995
6164	low 90%ci =	583	5503	0	131	0	2126	3246	1996
7964	high 90%ci =	504	3898	0	0	260	1942	1697	1997
all years :	trend over a	656	5788	0	473	314	2525	2476	1998
0.0372	In linear slope =	1029	5887	839	0	449	2317	2282	1999
0.0076	SE slope =	1037	7380	0	655	461	3989	2276	2000
1.038	Growth Rate =	645	6237	0	142	71	3265	2758	2001
1.025	low 90%ci GR =	758	6668	0	0	420	3223	3025	2002
1.051	high 90%ci GR =	629	5641	0	0	211	3050	2381	2003
0.196	regression resid CV =	529	6754	0	0	322	3320	3112	2004
0.108	avg sampling err CV =	566	6607	0	0	250	3495	2862	2005
0 years :	trend of most recent	667	7262	0	0	376	3862	3024	2006
1.070	Growth Rate =	672	10231	0	174	749	4414	4894	2007
1.046	low 90%ci GR =	1126	10575	0	622	453	5073	4428	2008
1.095	high 90%ci GR =	706	9991	0	584	413	4071	4923	2009
<u>Oyr rate :</u>	min yrs to detect -50%/2	1132	10012	0	860	0	5480	3672	2010
13.4	w/ regression resid CV =	670	9792	0	0	272	5540	3980	2011
9.0	w/ sample error CV =								

Figure 29. Population trend for tundra swans observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The total bird population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

w/ sample error CV =

9.0

Figure 30. Population trend for shorebirds (families *Charadriidae, Scolopacidae*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 2007-2011. The total bird population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. We did not record shorebirds prior to 1997.

Figure 31. Population trend for short-eared owls (*Asio flammeus*) observed on aerial transects sampling 30,465 km² of wetland tundra on the North Slope of Alaska during early to mid-June, 1992-2011. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Figure 32. Population trend for snowy owls (*Bubo scandiacus*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341 (equivalent to a 50% decline in 20 years), if it were to occur.

Figure 33. Population trend for Golden Eagle (*Aquila chrysaetos*) observed on aerial transects sampling 30,465 km2 of wetland tundra on the North Slope of Alaska during early to mid June, 1992-2011. The total birds observed population index is the sum of birds observed as singles, birds in pairs, and all birds in flocks, indicated by column divisions from bottom to top. Average annual growth rate is calculated by log-linear regression. Power calculations use alpha with p=0.10, beta at p=0.20, and a coefficient of variation based on either regression residuals or averaged sampling error. The power to detect a significant trend can be compared among species as the estimated minimum number of years needed to detect a growth rate of -0.0341, a 50% decline in 20 years, if it were to occur. To calculate slope, an index value equal to one-half the minimum index >0 was substituted for years with no observations.

Common Name	Scientific Name
Loons: (Family Gaviidae)	
Yellow-billed loon	Gavia adamsii
Pacific loon	G. pacifica
Red-throated loon	G. stellata
Gulls, terns, jaegers: (Family Lard	idae)
Glaucous gull	Larus glaucescens
Sabine's gull	Xema sabini
Arctic tern	Sterna paradisaea
Long-tailed jaegers	Stercorarius longicaudus
Parasitic jaeger	S. parasiticus
Pomarine jaeger	S. pomarinus
Ducks, geese, swans: (Family An	patidae)
Red-breasted merganser	Mergus serrator
Mallard	Anas platyrhynchos
American wigeon	A. americana
Am. Green-winged teal	A. crecca
Northern pintail	A. acuta
Northern shoveler	A. clypeata
Greater scaup	Aythya marila,
Lesser scaup	A. affinis
Long-tailed duck	Clangula hyemalis
Spectacled eider	Somateria fischeri
Common eider	S. mollissima
King eider	S. spectabilis
Steller's eider	Polysticta stelleri
Black scoter	Melanitta nigra
White-winged scoter	M. fusca
Snow goose	Chen caerulescens
Taverner's Canada goose	Branta hutchinsii taverneri
Black brant	B. bernicla
Greater white-fronted goose	Anser albifrons
Tundra swan	Cygnus columbianus
Shorebirds: (Families Scolopacia	lae, Charadriidae)
	Charadrius spp., Pluvialis spp., Calidris spp., Arenaria spp.,
	Numenius spp., Limnodromus sp
<u>Cranes</u> : (Family <i>Gruidae</i>)	
Sandhill crane	Grus canadensis
<u>Ravens</u> : (Family <i>Corvidae</i>)	
Common raven	Corvus corax
<u>Owls</u> : (Family <i>Strigidae</i>)	
Short-eared owl	Asio flammeus
Snowy owl	Bubo scandiacus
Eagles: (Family Accipitridae)	
Golden eagle	Haliaeetus chrysaetos

APPENDIX 1. Common and scientific names of species mentioned in this report.