
Tools and Technology

Bayesian Belief Network Models for
Species Assessments: An Example
With the Pacific Walrus

JAMES G. MACCRACKEN,1 United States Fish and Wildlife Service, Alaska Regional Office, 1011 E Tudor Road, MS-341, Anchorage,
AK 99503, USA

JOEL GARLICH-MILLER, United States Fish and Wildlife Service, Alaska Regional Office, 1011 E Tudor Road, MS-341, Anchorage, AK 99503,
USA

JONATHAN SNYDER, United States Fish and Wildlife Service, Alaska Regional Office, 1011 E Tudor Road, MS-341, Anchorage, AK 99503, USA

ROSA MEEHAN,2 United States Fish and Wildlife Service, Alaska Regional Office, 1011 E Tudor Road, MS-341, Anchorage, AK 99503, USA

ABSTRACT In 2008, the U.S. Fish and Wildlife Service was petitioned to list the Pacific walrus (Odobenus
rosmarus divergens) under the U.S. Endangered Species Act (ESA). Research into stressors that may be
negatively affecting walruses is incomplete.We developed a Bayesian belief network model structured around
the ESA 5-factor analysis during a workshop attended by walrus and ESA experts to 1) elicit expert opinion
on important stressors and their effects, 2) develop the model, and 3) develop and analyze plausible future
scenarios. The listing factors and associated stressors were organized as sub-models, capturing the cumulative
effects of the factors through model output, which was the probability of negative, neutral, or positive effects.
We found that in a time-constrained workshop, the graphical display of Bayesian belief networks allowed
for rapid development, assessment, and revision of model structure and parameters. We modeled up
to 3 scenarios (most likely-, worst-, and best-case) for each of 4 time periods (recent past, contemporary,
mid-century, and late-century). Model output for the recent past (reference condition) was consistent with
observations and provided a baseline for comparison of the outcomes of other periods and scenarios; stressor
effects became increasingly negative with time. However, scenario analyses indicated that mitigation of
relatively few stressors could reduce the cumulative effects of the listing factors. Uncertainty in model output
was lowest for the past but differed by only 7% among the other time periods. We used 4 types of sensitivity
analyses to identify explanatory variables that had the greatest influence on model outcomes. Published 2012.
This article is a U.S. Government work and is in the public domain in the USA.
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Delineation of species conservation needs, including legal
protections, requires assessments of the current and pre-
dicted status of a population. A number of processes have
been developed to place species in legal and conservation
status categories, many with unique classification schemes
(e.g., International Union for Conservation of Nature Red
List, NatureServe Conservation Status, U.S. Endangered
Species Act [ESA], U.S. Marine Mammals Protection
Act). Species for which status assessments are most impor-
tant are those that are rare or facing stressors that may result
in large population declines. Unfortunately, most of these

species are not well-studied and data are non-existent, sparse,
or of low quality.
The U.S. Fish and Wildlife Service (USFWS) received a

petition to list the Pacific walrus (Odobenus rosmarus diver-
gens) as threatened or endangered under the ESA in 2008
(Center for Biological Diversity 2008). A review of the
petition found that it contained information that suggested
listing may be warranted (USFWS 2009), which triggered a
formal threats assessment that was completed in 2010
(Garlich-Miller et al. 2011). The results of the threats as-
sessment indicated that listing the subspecies was warranted,
but precluded by higher priority species (USFWS 2011). The
Pacific walrus is currently a candidate for listing under the
ESA and is scheduled to either be proposed for listing or
removed from the candidate list by 2017.
The Pacific walrus population is wide-ranging, considered

panmictic (Fay 1982), and occupies the Bering and Chukchi
Seas (�1,600,000 km2) in both the Russian Federation and
the United States. The basic biological and ecological rela-
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tionships of the subspecies are well-known (Fay 1982), but
details are lacking. The Pacific walrus is adapted to exploiting
the dynamics and physical characteristics of sea ice, which
they use as a resting platform between feeding bouts, passive
transportation, parturition, and shelter from storms and
predators (Fay 1982). They are most often associated with
broken pack ice within 50 km of the ice edge and around
persistent polynyas. The entire population winters in the
Bering Sea and breeding occurs in January–February.
Females with dependent young, sub-adults, and some males
migrate with the ice edge into the Chukchi Sea in summer
and then return to the Bering Sea in winter. Many mature
males stay in the Bering Sea throughout the year. The
population is currently large (�130,000; Speckman et al.
2011), but population estimates are imprecise (Udevitz
et al. 2001, Speckman et al. 2011) and do not allow for
assessments of population trend (Garlich-Miller et al. 2011).
The age and sex composition of the population and vital rates
have been approximated based on several lines of indirect
evidence (Fay 1982, Fay et al. 1997), but there are no
contemporary estimates. Diets (primarily benthic inverte-
brates) have been well-documented (Sheffield and
Grebmeier 2009), but also need updating and finer taxo-
nomic resolution. Spatial and temporal patterns of prey
availability are based on limited sampling (Grebmeier
et al. 2006) and the carrying capacity of walrus habitats
can only be crudely inferred (Garlich-Miller et al. 2006).
One of the most extensive databases available on Pacific
walrus comes from monitoring the subsistence harvest
(Garlich-Miller et al. 2006, J. Snyder, USFWS, unpublished
data), but the biases inherent in those data have not been
thoroughly examined. Furthermore, the habitat changes
currently underway (accelerating loss of summer sea ice)
may make much of the available data based on previous
sea-ice dynamics less relevant and also facilitates the expan-
sion of potential stressors currently at low levels (shipping,
oil, and gas development) or non-existent (commercial fish-
ing). The current research program is focused on population
genetics, movements, foraging energetics, and behavior
(http://alaska.usgs.gov/science/biology/walrus). Because
the available information on nearly every variable that influ-
ences the Pacific walrus is either outdated, non-existent, or
not of the appropriate temporal and spatial scales (Garlich-
Miller et al. 2011), we had to rely heavily on expert opinion in
assessing current conditions and predicting the consequences
of future projections.
To help deal with the challenges associated with data

quality and incompleteness and inform our ESA threats
assessment, we developed a Bayesian belief network model
with the following goals: 1) organize, clarify, and graphically
display the important stressors and the opinions of the
experts on how those stressors operate; 2) define important
interactions among the stressors; 3) account for the cumula-
tive effects of the listing factors on the population; 4) identify
which stressors had the greatest effect on model outcomes to
assist in developing management and research programs; 5)
determine how uncertainties in future conditions, and how
stressors, alone or in combination, potentially affect the

population through scenario analyses; and 6) ultimately in-
form a recommendation for an ESA classification (not war-
ranted, threatened, or endangered) for the Pacific walrus.
The purpose of this article is to provide an example of the

use of Bayesian belief network modeling in species assess-
ments when information is scarce, and demonstrate how
Bayesian belief network models help meet the 6 goals de-
scribed above.

METHODS

Bayesian belief network models (also known as Bayesian
networks, causal probability networks, acyclic directed
graphs) have grown in use in the ecological sciences over
the past decade (Marcot et al. 2001, Amstrup et al. 2008,
Howes et al. 2010, Jay et al. 2011) and descriptions and
guidelines for their use and construction have been published
(Marcot et al. 2006, Jensen and Nielsen 2007, Kragt 2009,
Chen and Pollino 2011). A Bayesian belief network model
consists of 3 elements: 1) nodes representing key explanatory
variables and one or more response variables; 2) links be-
tween nodes that represent cause–effect relationships; and 3)
joint probabilities representing the belief that node states will
have certain probabilities, given the probabilities of the states
of connected nodes (Fig. 1). Nodes are composed of states
that are quantified as probabilities, summing to 1. Node
states can be the amount, intensity, or categories, etc., of
a variable. Nodes representing continuous variables have to
be divided into discrete states or categories. Nodes that do
not have links to other nodes that influence their prior
probabilities are referred to as parent nodes. Nodes that
have links to other nodes that influence their prior probabil-
ities are called child nodes. Each node contains a conditional
probability table that specifies the relationships among all
combinations of the states of the parent node(s), if any, and
the states of the child node.Multiple links to a child node can
represent interactions among parent nodes and capture the
cumulative effects of several variables. A value for each cell of
a conditional probability table may be derived from data, or
specified by the modeler(s) through a process whereby
experts express their certainty about the relationships. The
advantages and disadvantages of Bayesian belief network
models have been described by Uusitalo (2007) and Kragt
(2009). One of the greatest benefits of a Bayesian belief
network model is the graphical display of the model, which
promotes transparency and understanding among stakehold-
ers (Zorrilla et al. 2010). Another important advantage is
that Bayesian belief network models can be easily updated
with new data and other types of information. This feature is
particularly important for our situation because both govern-
ing laws (U.S. Marine Mammals Protection Act, ESA)
require an annual review of the status of the Pacific walrus
population and any new information can easily be incorpo-
rated through updates of nodes, node states, and conditional
probability tables.
We conducted a status review for the Pacific walrus that

summarized all the available scientific (e.g., research, moni-
toring, modeling, etc.) and commercial (e.g., fisheries by-
catch) data, as well as recent observations of Alaskan and
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Russian natives and Russian biologists, to serve as the
knowledge base for model building (Garlich-Miller et al.
2011). Because we relied on expert opinion and the assess-
ment had major policy implications, the Bayesian belief
network model was developed by a team of 4 walrus and
3 ESA experts during a 5-day workshop in April 2010
(Garlich-Miller et al. 2011) and went through extensive
sensitivity analyses and peer review (Marcot et al. 2006,
Pollino et al. 2007b). The team specified all the character-
istics of the model (nodes and node states, links among
nodes, conditional probability tables), as well as time periods
(past, current, mid-century, and late-century), and scenarios
(most likely, worst-, and best-case) examined. We relied on
open negotiations among team members to elicit expert
opinions and come to consensus on model structure, node
states, and conditional probability table values. The work-
shop resulted in a working, first approximation of the model.
We then solicited open reviews of the model by 4 marine
mammal ecologists, 2 ecologists familiar with Bayesian belief
network modeling, and 3 upper-level managers. After incor-
porating those review comments, a blind review was then
conducted resulting in further refinements.
The specification of probabilities in a conditional proba-

bility table can be difficult and time-consuming for nodes
with many states and parents (Marcot et al. 2006, Uusitalo

2007). There are several solutions to this problem (Marcot
et al. 2006), but most authors recommend limiting model
complexity (no. of nodes and states/node). We followed this
advice and also used an automated linear interpolation pro-
cedure (G. Wilhere, Washington Department of Fish and
Wildlife, personal communication) to complete the more
complex conditional probability tables in our model.
Our Bayesian belief network model was structured around

4 of the 5 listing factors of the ESA (Fig. 1) including: A) the
present or threatened destruction, modification, or curtail-
ment of habitat or range; B) overutilization for commercial,
recreational, scientific, or educational purposes; C) disease or
predation; and E) other natural or manmade factors. Listing
factor D (adequacy of existing regulations) was assessed in
another venue. Garlich-Miller et al. (2011) and expert elic-
itations identified the stressors faced by the population,
trends in those stressors, and walrus response(s) to those
stressors. Those stressors were assigned to 1 of the 4 listing
factors and became the explanatory nodes in the model
(Table 1). The nodes and links associated with each listing
factor comprise sub-models that inform the model outcome
(response variable); the probability of negative, neutral, and
positive effects of the listing factors on the walrus population.
Appendix S1 (supplementary materials) contains the values
of the conditional probability tables for each node.

Figure 1. The Bayesian belief networkmodel used to assess the cumulative effects of 4 of the U.S. Endangered Species Act listing factors (habitat modification,
overutilization, disease and predation, and othermanmade factors [yellow nodes]) on the Pacific walrus population (red node).Green nodes comprise the habitat
modification sub-model, white the overutilization sub-model, blue the disease or predation sub-model, and pink the other-factors sub-model. The probabilities
of node states were set to unity for illustrative purposes only and do not represent the outcome of any model run.
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Table 1. Node, state definitions, and state weightings (where appropriate) for a Pacific walrus Endangered Species Act (ESA) 5-factor analysis Bayesian belief
network model.

Node Definitions and quantification

Greenhouse gas (GHG)
emissions

CO2 atmospheric concentrations at 3 time periods; current (�400 ppm), and projections for mid-century (2045–2054,
�500 ppm) and late-century (2090–2099,�800 ppm) based onA1B andA2 2007 Intergovernmental Panel onClimateChange
scenarios

Summer sea ice The spatial distribution of ice over the outer continental shelf of the Chukchi Sea (709,000 km2) during Jul–Nov. Adequate was
defined as the presence of the ice edge (�50-km-wide strip of broken pack ice) over the continental shelf. Some ice was defined as
the presence of remnant broken pack ice (�15% cover) over the continental shelf as observed in 2008, but with the ice edge over
the Arctic basin. None was no ice over the continental shelf. Probabilities for current conditions were based on observations from
2001 to 2010, where 6 of those summers had no ice (inadequate). Sea-ice projections were made by Douglas (2010)

Winter sea ice The spatial distribution of sea ice during theDec–Mar breeding period in the Bering Sea (934,000 km2). Adequatewas defined as
the ice edge extending south of traditional breeding areas in the northern Bering Sea in Dec and some as ice over those breeding
areas by Jan. None is no ice in these areas during the breeding period

Spring sea ice The spatial distribution of sea ice during theApr–Jun birthing, foraging, andmigrating season in the Bering Sea and theChukchi
Sea. Adequate was defined as the presence of ice in Apr in traditional breeding areas, and some as ice cover in those same areas in
Jun. None is no ice in these areas during this period

Ocean condition Change in ocean acidification and temp as affected by ice conditions, currents, and GHG emissions. Low was defined as
relatively small changes based on current observations (0.1 pH unit decline, 28 C increase), medium was defined as another
0.2 pH unit decline and 38 C, and high 0.3 pH units, 3–68 C increase. In developing the conditional probability table for this
node, both factors were weighted equally

Calf and juv mortality Due to trampling events at summer–autumn terrestrial haulouts along the Chukchi Sea coast. Lowwas equal to levels in the past
(100–1,000 deaths) that occurred infrequently (1 of 5 yr), medium was�1,000 deaths more frequently (1 of 3 yr), and high was
current observations of �3,000 deaths every other yr

Walrus prey The amount of prey (mass) as affected by ocean conditions and access to prey via sea-ice platforms. Lowwas a decline in prey due
to 0.3 pH unit decline, no summer ice as defined for the summer ice node, and limited to foraging from the coast.Mediumwas a
decline in prey mass due to 0.3 pH unit decline and some summer ice. High was levels of adequate prey mass and adequate ice
based on the recent past. In developing the conditional probability table for this node, all inputs were weighted equally

Habitat modification ESA listing factor A, integrating the effects of seasonal ice conditions, ocean condition, and walrus prey. Low was defined as
levels observed in 1990s that correspond to low levels for each input node, moderate was levels observed in 2000–2010, and high
was levels forecast for the future (mid- and late-century as defined above). In developing the conditional probability table for this
node, all factors were weighted equally

Harvest Subsistence harvest rates. Based on percent of assumed population size (200,000), modeled max. growth rate (0.8/yr), and past
harvest levels (3,000–16,000/yr). Low was �2% of the population, moderate 3–4%, and high �5% annual harvest

Other removals 0–30 calves/yr for zoos and aquaria and 0–3 ad/yr in fishing bycatch. States are defined the same as for the harvest node above
Overutilization ESA listing factor B. The cumulative effects of harvest and other removals. States were relative to sustainable levels as defined in

the harvest node in terms of percent of the population. Current levels are assumed to bemoderate and as harvest or other removals
increase or decrease, the states change as per the conditional probability table. In developing the conditional probability table for
this node, harvest was weighted 1,000� more important than other removals

Disease The cumulative effects of both disease and parasitism as both are expected to change in similar ways with climate change. Current
levels are considered to be low. It was not possible to quantify these states because there is no to little information on current
infection or infestation levels, rates of change, or mortalities due to disease or parasites

Predation The effect of predation by polar bears (Ursus maritimus), brown bears (U. arctos), and killer whales (Orcinus orca). Current levels of
predation were considered to be low. It was not possible to quantify these states because there is no to little information on
predation rates or mortalities due to predation

Disease and predation The cumulative effects of both disease and predation. Current conditions define the low state. The other states are relative to
current conditions as defined in the conditional probability table. In developing the conditional probability table for this node,
predation was weighted twice as important as disease and/or parasitism

Geographic extent The spatial extent (km2) of commercial activities. These nodes capture the potential for expanded activities in the future, and put
the scope of current activities in context of the range of the Pacific walrus. Currently the geographic extent of oil and gas
development is localized relative to the summer distribution of walrus (the lease area is about 10% of the Chukchi Sea). Activities
may be considered widespread if they become�50% of the area. There is a single, small salmon fishery in Kotzebue Sound of the
Chukchi Sea and trawl fishing is restricted to the southern Bering Sea on the edge of the walrus distribution. Current activities
are considered localized. Activities may be considered widespread if they become �50% of the area

Oil and
gas development

The cumulative effects of the geographic (spatial) extent and intensity (type) of activities. This node is the intensity of
development. Seismic exploration only was low intensity, exploratory drilling medium intensity, and full development and well
production high intensity

Commercial fishing The cumulative effects of geographic extent and amount of activities. This node is the amount of activity occurring in the range of
the Pacific walrus. Current fishing levels (1 of 21 Bering Sea and/or Aleutian Island fisheries within the walrus range, and a
salmon fishery in Kotzebue Sound) were considered low. We did not quantify moderate and high levels other than how those
states would be affected based on the conditional probability table

Shipping Domestic shipping along the Alaskan and Chukotkan coasts and emerging international commercial shipping originating in the
Northwest Passage or Northern Sea Route transiting through the Bering Strait and further south. The states of this node
represent the levels of shipping traffic (vessel transits/yr) along defined shipping lanes. Current levels of shipping (277–338
transits/yr) for all purposes are considered low. We had no data to quantify and define medium and high states, other than
incremental increases over current conditions (e.g., 50% and 100%, respectively)

Other factors ESA listing factor E. The cumulative effects of oil and gas development, commercial fishing, and shipping. The low state
represents current conditions; medium and high states were defined as indicated above for each activity. In developing the
conditional probability table for this node, oil and gas was weighted 2� more important than fishing or shipping

Effect on population The cumulative effects of the 4 ESA listing factors in terms of the probability of negative, neutral, and positive outcomes on the
Pacific walrus population. Changes in the probabilities of each state were defined to reflect changes in the intensity of stressors
with each time period (past, current, mid-century, and late-century). Although stressors are primarily negative, because their
effects and walrus response to those effects are largely hypothetical they may also be neutral, and there is a chance that positive
interactions could occur
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Time Periods and Scenario Analyses

To assess model accuracy, provide context for interpretation
of model results, and assess the future, 4 decadal periods were
modeled: the past (1979–1988), which served as a reference
condition, current conditions (1989–2010), projections for
mid-century (2045–2054), and late-century (2090–2099;
Table 2). The past was a period when habitat conditions
were favorable for walrus, the population was large, subsis-
tence harvests were considered sustainable, and many loom-
ing stressors were inconsequential. For current conditions,
the states of many stressors were unknown or poorly docu-
mented, and for mid-century and late-century periods could
only be guessed at. As a result, we identified several combi-
nations of plausible states for each node, excluding green-
house gas emissions, for each time period.
Because the future is unknowable, surprises are common

(Doak et al. 2008), and past trends may not provide reliable
predictions (Kass et al. 2011), scenario analysis is increasing
in use (Peterson et al. 2003, Gray 2011, Kass et al. 2011). For
our scenario analyses, node states were set to conditions
defined by a scenario (often a probability of 1.0 for either
the high or low state), and we assessed how those scenarios
affected model output for best-case, worst-case, and most-
likely case scenarios. However, a most-likely case scenario
could not be developed for the late-century period because of
a high level of uncertainty in the states for most explanatory
nodes that far into the future. For the past, the habitat
modification sub-model was disabled and levels for the other
nodes were set consistent with observations from that time
period. Best-case scenarios were based on setting node states
to reflect conditions that would occur through successful
mitigation of threats associated with overutilization, disease
or predation, and other manmade factors (Garlich-Miller
et al. 2011). Most-likely case scenarios were based on setting
node states to those reflecting little change from current
conditions. The worst-case scenarios for each time period
were modeled by setting node states to reflect increasing,

unmitigated effects on the population. In evaluating the
results of these analyses we focused on the dominant 2 states
as defined by the posterior probabilities of the response
variable node.

Sensitivity Analyses and Model Evaluation

We used four methods to evaluate model effectiveness: peer
review, scenario analyses, diagnostic analyses, and sensitivity
analyses (Marcot et al. 2006, Pollino et al. 2007b,
Kragt 2009; Chen and Pollino 2011). In addition, we also
assessed the relative uncertainty of response variable states
for each time period and scenario combination with
entropy estimates (H), the degree to which the probability
of the outcome is spread out over the 3 different states, as
H ¼ �P

[Pix � xlog3(Pi)], where Pi is the probability of
each state.
The Netica� software (Norsys Software Corp., Vancouver,

British Columbia) used to build our model contains 2 sen-
sitivity analyses that are based on entropy calculations—
entropy reduction and mutual information (see Pollino
et al. 2007b for details). For those analyses, explanatory
(input) nodes were set to current conditions. In addition,
we conducted 2 additional sampling-based empirical sensi-
tivity analyses. For the first (state sensitivity), we systemati-
cally varied the prior probabilities of the states of one
explanatory node, while holding the prior probabilities of
the states of all other explanatory nodes constant, and quan-
tified changes in the posterior probabilities of the states of
the response node (Table 3). Due to the large number of
possible combinations of nodes and node states we only
evaluated the extreme cases for each node. For example,
in assessing the influence of the harvest node on model
responses, we set the probability of the states of the other
parent nodes at 1.0 for high (other states ¼ 0), set the states
of the harvest node at 1.0 high, and recorded the probability
associated with each state in the response (effect on popula-
tion) node.We then set the harvest node states to 1.0 low and
recorded the outcome. For the next iteration, we then set the

Table 2. Model node state specifications for each of 4 time periods for the walrus Bayesian belief network model threats assessment.

Node Past (1979–1988) Current (1989–2010) Mid-century (2045–2055) Late-century (2090–2099)

Explanatory nodes
Greenhouse gas emissions Not applicable Lowa Moderate High
Harvest High Low or moderate Low, moderate, and high Low, moderate, and high
Other removals Low Low Low Low
Disease Low Low Low or moderate Low or moderate
Predation Low Low or moderate Low or moderate Low or moderate
Geographic extent Not applicable Local Local or widespread Local or widespread
Shipping Low Low Low or moderate Low, moderate, and high

Intermediate nodes
Summer sea ice Adequate Predictedb Predicted Predicted
Winter sea ice Adequate Predicted Predicted Predicted
Spring sea ice Adequate Predicted Predicted Predicted
Ocean conditions Low Predicted Predicted Predicted
Oil and gas development Low Predicted Predicted Predicted
Commercial fishing Low Predicted Predicted Predicted

a For each state listed, the prior probability was set to 1.0 for that time period. For nodes and period with multiple states, the probability for each was set to 1.0,
depending on the scenario under consideration.

b The probabilities of the states of these nodes are a function of the states of connected nodes higher in the network and the conditional probability tables of
each node.
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states of the harvest node back to 1.0 high, changed a
different parent node (e.g., predation), set the states to 1.0
low, recorded the outcome, then set the harvest node to 1.0
low, recorded the outcome; and repeated the process until all
possible combinations of parent nodes and states were com-
pleted. We then calculated the mean percent change in the
response probabilities associated with the change in each
parent node.
In the second sampling based analysis (conditional proba-

bility table sensitivity), we systematically varied the param-
eters of the conditional probability tables (Coupé and van der
Gaag 2002, Pollino et al. 2007b) of nodes in a similar manner
as described above, with the states of all parent nodes reflect-
ing current conditions, which served as the baseline for
calculating changes in model output due to conditional
probability table changes. Again, due to the large number
of possible combinations of conditional probabilities, partic-
ularly for nodes with many parents, we limited that analysis
to the extreme cases of complete uncertainty (equal proba-
bilities across sates) and complete certainty (e.g., 1.0 high or
low) of each state for each node. Other potential combina-
tions of node states and conditional probabilities would fall
within these extremes and provide relatively little additional
information to these analyses. We quantified the results of
the state and conditional probability table sampling analyses
as the mean percent change in model output for each node.
To combine the results of the 4 sensitivity analyses, we
ranked each node in descending order based on the associ-
ated percent change in the response node and calculated the
mean rank for each.

RESULTS

Reviewers of the model provided a variety of comments and
suggestions, ranging from agreement with model structure

and results, to suggested structural changes and addition
of new objectives. The majority of suggestions made by
reviewers were incorporated into the model and model doc-
umentation. We did not add other objectives to our model-
ing effort and did not incorporate structural changes that
deviated from the ESA 5-factor analysis.
The model output for the past had a probability of neutral

effects (P¼) of 0.74 (Fig. 2), which was in agreement with
observations from that time period. That is, because the
model was developed to address relatively recent and emerg-
ing stressors, one would expect a largely neutral outcome for
the past. In addition, because themodel structure and param-
eters were based on current conditions and uncertain rela-
tionships among stressors and walrus response, the outcome
for the past indicated that our model accurately depicted
known conditions, should perform well for other time peri-
ods, and set a baseline for judging model output for other
time periods and scenarios.
The probability of negative (P�) effects increased 16–29%

over the past (reference condition) with a 23–28% decrease in
P¼ for current conditions (Fig. 2). Those changes were
lowest for the best-case scenario. Under current conditions,
P¼ was greater than P� by 7–22%, and there was little
difference in model output between the most-likely case
scenario and the worst-case scenario (Fig. 2).
For mid-century projections, P� increased 21–42% and P¼

declined 24–35% compared with the past (Fig. 2). There was
no difference between most-likely and worst-case conditions
for mid-century, with P� being greatest (0.55), followed by
P¼ (0.39). However, under the best-case scenario, P¼ was
greatest (0.50) and the probability of positive (Pþ) effects
increased 10%.
Due to uncertainties in forecasting stressor levels and wal-

rus response to the end of the century, any scenario within

Table 3. Results (mean [SE] percent change in model outcome) of 2 sampling-based sensitivity analyses of a Bayesian belief network model used to assist in
a U.S. Endangered Species Act 5-factor analysis for the Pacific walrus (Odobenus rosmarus divergens). In the node-states analysis we systematically varied the
states of the explanatory (parent) nodes (subsistence harvest, greenhouse gas emissions, predation, disease, international commercial shipping, extent of oil and
gas development and commercial fishing, and other removals), and in the conditional probability tables (CPT) analysis we varied the conditional probabilities of
all nodes. Mean rank is the average rank (descending order) of each node based on these results and the sensitivity analyses performed by the Netica software.

Node

Analysis

Mean (SE) rankNode states CPT

Habitat modification Not applicable 32 (13) 1 (0)
Calf and juv mortalities Not applicable 16 (7) 2 (0)
Summer sea ice Not applicable 31 (8) 3 (1)
Harvest 13 (3) 16 (7) 4 (0.4)
Prey abundance and access Not applicable 8 (2) 4 (0.6)
Greenhouse gas emissions 6 (1) Not applicable 4 (3)
Winter sea ice Not applicable 10 (3) 5 (1)
Ocean condition Not applicable 4 (2) 6 (1)
Spring sea ice Not applicable 6 (2) 7 (1)
Other removals Not applicable 0.3 (0.3) 7 (1)
Disease or predation 1 (0.6) Not applicable 9 (0.4)
Disease 1 (0.2) 3 (1) 10 (2)
Oil and gas Not applicable 1 (0.1) 11 (0.3)
Predation Not applicable 5 (1) 12 (3)
Commercial fishing Not applicable 1 (0.1) 12 (0.3)
Oil and gas extent 0.1 (0.02) Not applicable 14 (3)
Shipping 0.4 (0.1) 1 (0.1) 14 (2)
Commercial fishing extent 0.1 (0.03) Not applicable 15 (3)
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the bounds of the model input was judged to be equally
probable and the worst-case and best-case scenarios repre-
sented those bounds (Fig. 2). Under the worst-case scenario,
P� increased 47% compared with the past with a 39% decline
in P¼. The best-case scenario output was similar to that for
the other time periods.
Uncertainty in model output as measured by entropy

(Fig. 2) was lowest for the past, consistent with the available
information. Entropy estimates among current, mid-century
and late-century periods differed by only 7%, but uncertainty
in model output for those time periods was 29–38% greater
than for the past. The best-case scenario was consistently the
most uncertain when compared with the other scenario(s) at
each time period (Fig. 2).
The entropy reduction and mutual information sensitivity

analyses performed by Netica indicated that model output
was most influenced by the habitat modification node (9.2%)
followed by calf mortalities (1.3%), prey (0.7%), summer ice
(0.6%), and overutilization (0.2%). The sampling-based sen-
sitivity analysis where the states of explanatory nodes were
systematically varied (state sensitivity) indicated that the
mean magnitude of change in model output was greatest
for the harvest node followed by greenhouse gas emissions,
predation, disease, shipping, oil and gas development, and
commercial fishing (Table 3). In contrast, systematically
varying the conditional probability tables of each node (con-

ditional probability table sensitivity) indicated that habitat
modification, summer sea ice, calf and/or juvenile mortalities
and harvest (tied), winter sea ice, and prey nodes influenced
model output the most. Taken together, the 4 methods of
sensitivity analysis indicated that habitat modification, calf
mortalities, summer sea ice, harvest, prey, and greenhouse
gas emissions (the latter 3 were tied) had the greatest effects
on model outcomes (Table 3).

DISCUSSION

Efforts to assess the legal and conservation status of a
species are often hindered by a lack of information or
poor quality information because these species are often
rare or difficult to study. For example, the International
Union for Conservation of Nature Red List process includes
a data-deficient category for such species, which currently
includes the Pacific walrus. The ESA and other processes do
not have that option and more definitive categories must be
used. For many cases, expert opinion provides the basis for
species assessments and Bayesian belief network modeling is
appropriate for eliciting and quantifying expert opinion
(Marcot et al. 2006, Jensen and Nielsen 2007).
We found the Bayesian belief network model to be invalu-

able in conducting an ESA 5-factor analysis where expert
opinion was relied on to compensate for a lack of data. The
greatest advantage in our situation was the graphical display

Figure 2. Bayesian belief network model outcomes (probability of negative [red], neutral [yellow], positive [blue] cumulative effects, and entropy [green]) for
1–3 scenarios (most-likely case, best-case, and worst-case) at 4 time periods (A ¼ past [1979–1989], B ¼ current [1999–2010], C ¼ mid-century
[2045–2055], and D ¼ late-century [2090–2099]). The model was used to assist in a U.S. Endangered Species Act 5-factor analysis for the Pacific walrus
(Odobenus rosmarus divergens).
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of a complex system that helped organize and clarify inter-
actions among sets of related stressors. This was particularly
advantageous in the time-constrained workshop of our
threats assessment because participants could rapidly assess
and revise model structure and parameters, explore different
scenarios, and see how uncertainty affected model outcomes.
In addition, the automation of the interpolation procedure to
complete large conditional probability tables was instrumen-
tal to the timely evaluation and refinement of the model.
Analysis of several scenarios and 4 time periods was

useful in setting a benchmark (the past) for judging the
outcomes at other time periods, and identifying uncertain-
ties. Model results for the past were more than trivial because
the model was developed and parameterized to reflect current
conditions—the past served as a check on model accuracy
in the absence of data (Pollino et al. 2007b). Furthermore, as
we specified node states for current and future decades,
greater uncertainties emerged. For example, due to the po-
tential response of walrus to some stressors (e.g., density-
dependent mortality) and possible implementation of miti-
gation measures of unknown efficacy, etc., many alternative
scenarios of node states were equally plausible. These diffi-
culties precluded identifying a most-likely case scenario for
the late-century decade, which represented a measure of
uncertainty in and of itself.
Scenario analyses can be used as an early warning of major

changes in ecological trajectories and regime shifts. Scenario
analyses along with sensitivity analyses can identify what
variables to monitor, when to monitor, and where to moni-
tor. As the future develops managers can track outcomes,
relate observed outcomes to predicted outcomes, and imple-
ment the appropriate mitigation and monitoring programs.
For example, loss of sea ice in the summer and the subsequent
use of coastal haulouts by Pacific walrus females with calves
and young animals create several stressors with unknown
long-term effects (Garlich-Miller et al. 2011). Models proj-
ect more frequent and longer ice-free summers and managers
can track trends in ice cover on a daily basis (National Snow
& Ice Data Center; http://nsidc.org/arcticseaicenews/), be-
gin monitoring coastal areas for haulout formation based on
ice characteristics, and implement haulout-protective meas-
ures as needed. A more long-term concern is the depletion of
prey near coastal haulouts (Garlich-Miller et al. 2011). This
may occur if large haulouts repeatedly form in the same
area each year and tracking haulout formation along with
a measure of animal condition will alert managers to poten-
tial prey depletion.
An unexpected result of our uncertainty analysis was the

slightly lower entropy estimate for the late-century model
predictions, particularly given the fact that we could not
develop a most-likely case scenario for that time period.
This could be the result of not having a third scenario for
that time period, or our failure to adequately capture those
uncertainties in the conditional probability table. The latter
case seems most likely because sea-ice modeling was based on
the combination of 2 of 6 greenhouse gas emissions scenarios
(Douglas 2010), thus narrowing the range of possible out-
comes; and because those outcomes were invariant with

respect to other scenarios, they were portrayed as having
greater certainty than an assessment of all plausible futures.
We found that the sensitivity analysis employed by the

Netica software emphasized model structure and conditional
probability table specifications. In contrast, the sampling-
based analyses we conducted identified additional variables
(e.g., subsistence harvest) as the most influential factors. Our
results suggest that for models of complex situations it
may be necessary to conduct several types of sensitivity
analyses to insure that important issues are not overlooked.
Pollino et al. (2007b) also noted that both entropy reduction
and mutual information analyses should be considered in
model evaluations.
The states of our response variable node (negative, neutral,

or positive effects on the population) were, as one reviewer
put it, less than satisfying. However, the model displayed and
quantified the probabilities, and by our definition, the inten-
sity of the cumulative effects of the stressors on the popula-
tion, not population status. We felt that attempting to link
the effects of the listing factors to population status at this
time was too uncertain, potentially misleading, and ultimate-
ly unnecessary. As population status changes as a result of
listing decisions, modifications of the model output will be
relatively easy to make. Our modeling effort was only one of
many considerations in making an ESA status recommen-
dation, and as stated above was most valuable in organizing
and clarifying a complex situation and providing guidance for
management and research programs.
At the time of model development, we decided that the

evaluation of regulations (listing Factor D) would be best
handled in another forum.However, given themultiple laws/
regulations of varying effectiveness associated with each
stressor, it may be advantageous, particularly in terms of
organization and clarity, to also incorporate Factor D into
a Bayesian belief network model.
Many modeling exercises are continuous and iterative

(Marcot et al. 2006; Pollino et al. 2007a, b; Howes et al.
2010). One of the strengths of Bayesian belief network
models is that they are easily updated (Marcot et al. 2001,
2006; Chen and Pollino 2011). Our model will be updated
and refined over time because USFWS policy requires the
annual review of ESA candidate species and the U.S. Marine
Mammals Protection Act and ESA require a review of the
status of species listed as strategic and threatened or endan-
gered every 1–5 years, respectively. Our model was subject to
some evaluation and validation, but we do not have the data
to formally update and test the model. In addition, Marcot
(2012) recently presented several other metrics for Bayesian
belief network evaluation that we could use in the future.
There are a number of research and monitoring projects
underway that will provide the types of data needed to update
the model in the future and perhaps make the use of data-
intensive population models or population-viability models
feasible.

MANAGEMENT IMPLICATIONS

Managers routinely make decisions with incomplete and
imperfect information about complex and politically charged
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situations. Climate disruption in the Arctic is outpacing
other regions of the globe (Blunden et al. 2011), and this
will intensify the need for rapid decision-making and likely
outpace the generation of reliable knowledge, placing a
premium on expert opinion. Bayesian belief network models
are useful for clarifying complex situations, quantifying ex-
pert opinion, assessing uncertainties, quantifying cumulative
effects, and conducting scenario analyses. These exercises are
in turn useful for identifying data gaps and research priori-
ties, tracking trends and predicting their outcomes, and
identifying potentially useful management and monitoring
programs. Scenario analyses can identify management
actions that can be applied immediately, no matter how
the future develops. For example, when Pacific walrus are
hauled out on the coast, they are easily disturbed and will flee
en mass to the water, often trampling calves and younger
animals. Preventing disturbances at haulouts is a mitigation
measure that can be implemented under all scenarios of
haulout formation, now and in the future, and will facilitate
the potential adaptation of Pacific walrus to the loss of
summer sea ice.
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