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1. Introduction

The current size and trend of the Pacific walrus (Odobenus

rosmarus divergens) population is unknown, and recent changes in
the Bering and Chukchi sea ecosystems (e.g., Hunt and Stabeno,
2000; Maslanik et al., 2007) increase the need for a reliable
technique to monitor the status of this population. Between 1975
and 1990, visual aerial surveys were carried out by the United
States and the former Soviet Union at 5 years intervals, producing
population estimates for Pacific walruses ranging from about
200,000 to 230,000 animals. Observers counted or estimated
numbers of walruses hauled out on pack ice and land, but could not
accurately detect or enumerate walruses that were swimming in
the water. Surveyed areas were limited to less than 5% of available

habitat. The population estimates generated from these surveys
are considered minimum values that cannot be used for detecting
trends in population size (Hills and Gilbert, 1994; Gilbert et al.,
1992). Efforts to estimate the size of the Pacific walrus population
were suspended after 1990 due to these and other unresolved
problems with survey methods, which produced population
estimates with unknown biases and unknown, but presumably
low, precision (Gilbert et al., 1992; Gilbert, 1999).

A workshop on walrus survey methods, hosted by the U.S. Fish
and Wildlife Service (USFWS) and U.S. Geological Survey (USGS),
concluded that it would not be possible to obtain a population
estimate with adequate precision for tracking trends using the
existing visual methodology and any feasible amount of survey
effort (Garlich-Miller and Jay, 2000). Workshop participants
recommended exploring new survey tools, including remote
sensing systems, prior to conducting another aerial survey. Remote
sensing systems have the potential to address many of the
shortcomings of visual aerial surveys by sampling larger areas per
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In recent years, application of remote sensing to marine mammal surveys has been a promising area of

investigation for wildlife managers and researchers. In April 2006, the United States and Russia

conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared

sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to

estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-

established methods resulted in lower detectability of walrus groups in the imagery and higher

variability in calibration models than was expected based on pilot studies. This paper describes an

improved procedure for detection and enumeration of walrus groups in airborne thermal imagery.

Thermal images were first subdivided into smaller 200 � 200 pixel ‘‘tiles.’’ We calculated three

statistics to represent characteristics of walrus signatures from the temperature histogram for each tile.

Tiles that exhibited one or more of these characteristics were examined further to determine if walrus

signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine

which pixels belonged to each group. We then calculated a thermal index value for each walrus group in

the imagery and used generalized linear models to estimate detection functions (the probability of a

group having a positive index value) and calibration functions (the size of a group as a function of its

index value) based on counts from matched digital aerial photographs.

The new method described here improved our ability to detect walrus groups at both 2 m and 4 m

spatial resolution. In addition, the resulting calibration models have lower variance than the original

method. We anticipate that the use of this new procedure will greatly improve the quality of the

population estimate derived from these data. This procedure may also have broader applicability to

thermal infrared surveys of other wildlife species.
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unit of time (Garlich-Miller and Jay, 2000), objectively detecting
and quantifying walruses, and reducing observer error (Burn et al.,
2006).

One of the first applications of remote sensing technology to
marine mammal surveys was the Bering Sea Marine Mammal
Experiment (BESMEX) conducted in the mid-1970s (Wartzok and
Ray, 1980), which demonstrated the utility of thermal imagery for
detecting walrus groups on ice floes. More than a decade later,
Barber et al. (1991) used a forward-looking infrared radiometer
(FLIR) system to determine the relation between the number of
walruses in a group and the size (in pixels) of the group in a
corresponding thermal image. More recently, thermal imagery has
also been used to detect and count harp seals (Pagophilus

groenlandicus) in the White Sea, Russia (V. Chernook, GiproRybFlot,
unpublished data).

Burn et al. (2006) further demonstrated the feasibility of using
airborne thermal imagery to detect and enumerate walrus groups
as they rest on the pack ice in the Bering Sea. In order to determine
the limits of this technique, Burn et al. (2006) collected thermal
imagery at spatial resolutions ranging from 1 m to 4 m per pixel.
Digital photographs of a subset of walrus groups were taken
concurrently. Analysis of matched photographs and thermal
images indicated there was a linear relation between the number
of walruses in a group and the amount of heat they produced (Burn
et al., 2006). This relation existed across all spatial resolutions
tested, indicating that the number of walruses in a group on sea ice
could be estimated using their thermal signatures.

Based on the successful results of the Burn et al. (2006) study,
a pilot survey was conducted in the area of St. Lawrence Island
in the Bering Sea in 2003 (Udevitz et al., 2008). The pilot survey
obtained infrared images of nearly 30,000 km2 of sea ice habitat,
an area larger than that covered in any previous visual aerial
survey of Pacific walruses, and provided the first size estimate of
a walrus population based on an infrared survey (Udevitz et al.,
2008).

In spring of 2006, the USFWS, in collaboration with the USGS
and the Russian institutes GiproRybFlot and ChukotTINRO,
conducted a range-wide survey to estimate the size of the Pacific
walrus population. The survey used thermal imagery and the
methods of Burn et al. (2006) and Udevitz et al. (2008) to estimate
the number of walruses hauled out on sea ice. The study also used
satellite-linked tags to record the haul-out status of individual
walruses and estimate the proportion of the population in the
water (Jay et al., 2006).

Initial analysis of the data collected in the U.S. portion of the
survey area revealed that a large number of photographed walrus
groups were not detected in the thermal infrared imagery. In
addition, many of the groups that were detected appeared to have
spatial footprints that were much smaller than their corresponding
aerial photographs, which likely underestimated the magnitude of
their thermal signatures. The initial calibration models for these
data had large variances that would result in population estimates
with unacceptably low precision. These unexpected results forced
us to re-examine our image processing methodology and develop a
more robust procedure for detecting walrus groups on sea ice in
airborne thermal imagery. Here, we describe the new methodology
and compare it to the original image processing techniques
developed by Burn et al. (2006).

2. Methods

2.1. Study area and data collection

In late winter and early spring, Pacific walruses are found in the
Bering Sea pack ice where open leads, polynyas, or thin ice occur
(Fay et al., 1984). Walruses use floating pack ice as a substrate for

birthing, nursing, resting, and for passive transport to new feeding
areas. Although capable of diving to deeper depths, walruses
usually feed in shallow waters of 100 m or less (Fay, 1982; Fay and
Burns, 1988). The survey targeted the extent of Bering Sea pack ice
where the sea floor depth is less than 200 m. Under these criteria,
all potential spring walrus habitat was included in the survey.
Airborne thermal infrared surveys of Pacific walrus were
conducted in the Bering Sea beginning on April 4, 2006, and
ending on April 22, 2006. With the exception of a single
reconnaissance flight on April 15, 2006, all flight operations were
conducted south of the Bering Strait, and north of Nunivak Island,
Alaska (Fig. 1). All surveys were conducted over U.S. territorial
waters where pack ice conditions ranged from 50 to 100% total
concentration.

Survey operations were conducted with two aircraft. The first
was an Aero Commander 690B turbine engine aircraft. This aircraft
contained the thermal infrared (8.5–12.5 mm) scanner with a
0.625 mrad instantaneous field of view. The system, built by Argon
ST (Ann Arbor, Michigan) was equipped with a 3000 pixel detector
array and had 12-bit radiometric resolution and absolute
sensitivity of 0.12 8C. The system also included a position and
orientation system (POS) to georeference the thermal imagery
(Applanix Corp., Richmond Hill, Ontario, Canada).

Survey transects were oriented north-south and ranged in
length from 60 to 225 km. Initial survey operations for the scanner
aircraft were conducted at 6400 m above ground level (AGL),
producing imagery with 4 m pixel size. On April 19, 2006, we
conducted surveys at both 6400 m and 3200 m AGL to collect
imagery with both 4 m and 2 m pixel sizes, respectively. Survey
operations on April 21, 2006, and April 22, 2006, were conducted at
3200 m AGL.

The second aircraft was an Aero Commander 680 piston engine
aircraft equipped with a vertical camera port. We photographed
walrus groups with a high-resolution digital SLR 12.4 megapixel
camera that produced images with dimensions of 4288 � 2848
pixels. Photographs were taken from a nominal altitude of 700 m
AGL using an image-stabilized 200 mm f2.8 camera lens and 1.4�
teleconverter. Each photograph included latitude and longitude
coordinates determined by a Global Positioning System (GPS). The
objective was to photograph as many walrus groups as possible
within the strip surveyed by the thermal scanner within one hour
of scanning, to minimize the effect of changes in group size over
time. Depending on the time differential between collection of
thermal imagery and aerial photography, wind and ocean currents
created a slight spatial offset between the two data sources. This
offset ranged from a few hundred meters up to 2 km, but was
relatively constant in direction and magnitude for each thermal
image and therefore did not affect our ability to match photo-
graphs with thermal images.

2.2. Data processing

We imported the thermal infrared imagery using a custom
software application (Rapid Mapper) developed by Argon ST. This
program integrates the thermal data and POS information to create
georeferenced thermal images in Universal Transverse Mercator
(UTM) projection. We used ERDAS Imagine (Leica Geosystems,
Atlanta, GA) software for initial data visualization and export to
ASCII format. Sensor artifacts (i.e., temperature values that were
impossibly high or low) were re-coded to missing values before the
data were processed with the original methods presented by Burn
et al. (2006) and with the new methods presented in this paper.
The following Sections describe the new methods, with the
differences between the new methods and those of Burn et al.
(2006) outlined in Section 2.2.4. The same procedures were used
for processing both the 2 m and 4 m resolution thermal images.

D.M. Burn et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 324–333 325
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2.2.1. Counting walruses in photographed groups

Each photograph was overlaid on its corresponding thermal
image to match each walrus group with its thermal signature
(Fig. 2a and c; Burn et al., 2006). A walrus group was considered
distinct from other groups if their corresponding thermal
signatures were separated by one or more pixels (2–4 m,
depending on resolution). The number of walruses in each
photographed group was counted using ERDAS Imagine. Each
photographed walrus group was counted three times by the same
analyst, who marked each walrus with a uniquely colored symbol.
If the three counts were not identical, we simultaneously displayed
the symbols for all three counts and made a fourth count to rectify
differences. To ensure that groups of walruses in photographs
reflected the same groups that were recorded by the thermal
scanner, only walruses hauled out completely on an ice floe were
counted.

2.2.2. Detecting walrus groups

Each thermal image was subdivided into a series of 200 � 200
pixel ‘‘tiles’’ (Fig. 2a). The tiles covered an area 800 m on a side in
4 m imagery, and 400 m on a side in 2 m imagery. Depending on
the orientation of each transect in UTM projection, tiles at the edge
of each thermal image were of irregular size. Any edge tile with less
than half the number of pixels of a full tile (40,000 pixels) was
merged with an adjacent full tile. The temperature value for each
pixel was rounded to the nearest tenth of a degree Celsius to create
a temperature histogram for the pixels in each tile.

We derived three statistics from the temperature histogram for
each tile in each thermal image: (1) maximum temperature; (2)
length of right-hand tail, calculated as the difference between the
maximum temperature and the warmest histogram bin with a
frequency of 10 or more pixels; (3) maximum gap between
histogram values (Fig. 3). Temperatures near maximum for a tile
are characteristic of thermal signatures of walrus groups because
walruses are typically the warmest objects in their immediate

environment. Long right-hand tails and large gaps are also
characteristics of walrus thermal signatures because walruses
are relatively rare features, typically present in less than 0.1% of the
pixels in a tile.

We determined lower threshold values for each of these three
parameters based on tiles that contained photographed walrus
groups. Tiles were then assigned a set of three scores based on the
values of these parameters relative to their threshold values. Tiles
with a maximum temperature that exceeded the threshold value
were given a score of 4. Tiles with a right-hand tail value that
exceeded the threshold value were given a score of 2, and those
that had a maximum gap value that exceeded the threshold were
given a score of 1. Scores were set to 0 for each parameter that did
not exceed its threshold value. The three scores were then
summed to give a total score, which could range from 0 to 7 for
each tile.

We eliminated from further consideration any tiles with total
scores of 0. We then examined the data for each of the remaining
tiles in greater detail, focusing on the spatial arrangement of the
warmest pixels and their degree of contrast with adjacent pixels.
Features consisting of warm pixels that corresponded to such
features as open leads and rock faces along the shoreline could be
easily eliminated based on visual inspection of the images. Walrus
groups are typically located on thicker ice floes that register colder
temperatures and therefore tend to be represented by pixels that
have a high degree of contrast with adjacent pixels. We used these
characteristics to identify which of the remaining tiles contained
pixels that corresponded to walrus groups.

2.2.3. Calculating walrus thermal index values

Next, we determined which pixels belonged to each detected
walrus group. We used a disjoint cluster analysis to assign every
pixel in each tile to one of 10 clusters, based on their locations
within the tile (row and column coordinates) and temperatures.
The cluster algorithm made assignments by minimizing Euclidian

Fig. 1. Survey area for airborne thermal imagery data collection.
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distances, relative to these three normalized variables, among
pixels in the same cluster (Anderberg, 1973). By definition, the
warmest cluster in a tile was always included as part of a group.
However, in some cases, walrus groups consisted of more than one
contiguous cluster. Clusters were ranked in order of their mean
temperatures. We then added additional clusters to walrus groups
until a cluster was more similar to the next coldest cluster
(background) than it was to the next warmest cluster (previously
designated as belonging to a walrus group).

We defined two scalar thermal indices for each walrus group.
The first index (h1) was similar to the index used by Burn et al.
(2006) and was calculated by summing the temperatures of all the
pixels in the walrus group and subtracting the temperature of the
warmest non-walrus pixel in the tile. However, depending on
whether there was thin ice or open water present within a tile, the
threshold temperatures of the warmest non-walrus pixels were
highly variable from tile to tile within a thermal image. We
therefore calculated a second thermal index (h2) for each walrus

Fig. 2. (A) Airborne thermal image indicating tile structure and location of photographed walrus group (green square); (B) three-dimensional plot of data for selected (red)

tile; (C) photograph of walrus group located in selected tile.

D.M. Burn et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 324–333 327
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group as the sum of the temperatures for all pixels in the group
minus the modal temperature for all non-walrus pixels in the tile.
Using the modal temperature of each tile had the effect of
standardizing the index relative to the local ambient temperature,
thereby reducing overall variability of the relation between the
index and the number of walruses in a group.

2.2.4. Comparison with original methods

We also processed both the 2 m and 4 m data using the original
methods described in Burn et al. (2006) to detect walrus groups,
match them with their corresponding aerial photographs, and
calculate their thermal index values. In that study, walrus groups
were first visually located by the pilots or observers, and digitally
photographed from an altitude of 457 m. After several groups had
been photographed and their locations recorded by GPS, they
collected thermal imagery of those groups at 1 m, 2 m, 3 m, and
4 m resolution. Walrus group size was determined using the
counting procedures outlined in Section 2.2.1. Thermal imagery
was processed by developing a temperature histogram for each
image, and level-slicing it at the temperature value where the
histogram frequency decreased sharply from thousands of pixels
to fewer than 10 pixels (Burn et al., 2006). The detected walrus
groups were differentiated in the thermal imagery if they were
separated by a distance of 20 m or more. Burn et al. (2006)
calculated their thermal index (h0) by summing the temperatures
of all the pixels in a walrus group and subtracting the temperature
of the warmest non-walrus pixel in the entire image.

The major differences between the two methods were: (1) the
criterion used to differentiate walrus groups in the thermal
imagery; (2) treatment of each image as a single unit (original
method) vs. subdividing the image into tiles (new method); (3)
detection of walrus groups by level-slicing the temperature
histogram (original method) vs. cluster analysis (new method);
(4) calculating the thermal index relative to the threshold
temperature of the entire image (h0) or tile (h1), or relative to
the modal temperature for the tile (h2).

2.3. Estimating detection probabilities

We used logistic regression (Hosmer and Lemeshow, 2000) to
estimate probabilities of detecting walrus groups in the thermal
images, based on the data from all photographed groups. A
separate analysis was conducted at each resolution, for the Burn

et al. (2006) detection algorithm and for the new detection
algorithm. For both detection algorithms, we considered group size
and the log of group size as possible predictors. Using the log of
group size allowed the probability of detection to increase more
slowly with increasing group size than with the untransformed
variable. For the new algorithm, we also considered the modal ice
temperature for the tile (ice temperature) and the log of ice
temperature as possible predictors. Equivalent ice temperature
variables were not available for the Burn et al. (2006) algorithm
because images were not partitioned into tiles in that algorithm.
For each algorithm, at each resolution, we fit models containing all
combinations of the predictors, except that both transformed and
untransformed versions of a predictor were not used in any single
model. Models were fit with maximum likelihood. We used
Akaike’s Information Criterion (AIC, Burnham and Anderson, 2002)
to select the final detection model for each algorithm, at each
resolution. We evaluated the fit of the final models with the
Hosmer–Lemeshow goodness-of-fit test (Hosmer and Lemeshow,
2000).

2.4. Calibrating thermal indices

We developed calibration models to estimate the number of
walruses in each group based on its thermal index, given that it
was detected in the thermal image (i.e., it had a positive thermal
index). For calibration, we only used observations of photographed
groups that were detected by the thermal scanner, because the
calibration models are conditional on the group being detected. We
again conducted separate analyses for each of the two detection
algorithms at both 2 m and 4 m resolutions.

For the Burn et al. (2006) algorithm, there were no ice
temperature variables and only one thermal index (h0) to consider.
Therefore, for this algorithm, we considered only calibration
models that were functions of h0.

For the new algorithm, we had ice temperature values and two
thermal indices (h1 and h2). We considered calibration models
that included functions of h1 with and without ice temperature,
and models that were functions of h2. Because the h2 index was
based on the modal ice temperature, we did not consider models
that included functions of ice temperature along with h2.

We estimated calibration models using generalized linear
models (McCullagh and Nelder, 1999) with identity links. For each
calibration model, we considered Normal, Poisson, negative
binomial, and gamma distributions for fitting the error structure.
Models were fit with maximum likelihood. We used AIC (Burnham
and Anderson, 2002) to select the final calibration model for each
algorithm, at each resolution. We used deviance and deviance
residuals to assess the fit of the final models (McCullagh and
Nelder, 1999).

3. Results

During the April 2006 aerial survey of Pacific walrus, we
collected a total of 63 thermal images at 4 m resolution, and an
additional 21 images at 2 m resolution. We also collected
photographs of 124 unique walrus groups from the areas that
were scanned at 4 m resolution, and photographs of 85 unique
walrus groups from the areas that were scanned at 2 m resolution.
Photographed walrus groups ranged from 1 to 446 in size
(mean = 27).

At 4 m resolution, 25% of the detected walrus groups had
summary tile scores of 7, meaning that the tile exceeded the
threshold values for maximum temperature, right-hand tail, and
maximum gap (Table 1). We also detected eight groups ranging in
size from 9 to 70 walruses by the maximum gap value alone, and
four groups ranging from 26 to 93 walruses by the right-hand tail

Fig. 3. Temperature histogram indicating features characteristic of walrus

signatures: (1) maximum temperature (red); (2) maximum histogram gap

(blue); (3) right-hand tail (green).
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value alone. All of these groups with a summary tile score of 1 or 2
had gone undetected using the original method of Burn et al.
(2006). In the 2 m imagery, nearly all detected walrus groups had
summary tile scores of 7.

The new procedure detected more photographed walrus
groups than the original method in both the 4 m and 2 m
thermal imagery (Table 2). In addition, this method was capable
of detecting smaller walrus groups in 4 m thermal imagery than
the methods of Burn et al. (2006). The sizes of the largest
undetected walrus groups were also smaller using the new
method.

3.1. Estimating detection probabilities

Group size was strongly related to detection probability for
both algorithms at both resolutions (Table 3). For the Burn et al.
(2006) algorithm, models based on the log of group size fit
substantially better (DAIC > 2.2) than those based on untrans-
formed group size. For the new algorithm, there was essentially no
difference (DAIC < 1.4) between fits of models with transformed
and untransformed group size variables.

Although ice temperature (or its log) was included in some of
the best models for the new algorithm, it did not substantially

Table 1
Summary tile scores for walrus groups that were photographed and present in thermal imagery.

Resolution

(m)

Summary

tile score

Maximum

temperature

Right-hand

tail

Maximum

gap

N groups Mean group

size

Minimum

group size

Maximum

group size

4 7 + + + 31 58 9 446

5 + � + 12 22 10 34

3 � + + 12 22 7 49

2 � + � 4 48 26 93

1 � � + 8 31 9 70

0 � � � 57 9 2 24

2 7 + + + 70 26 2 168

6 + + � 1 10 10 10

0 � � � 14 3 1 6

Summary tile scores of zero indicate groups that were not detected. Plus symbol (+) indicates threshold value exceeded for the parameter; minus symbol (�) indicates

threshold value not exceeded for the parameter. All group sizes were determined by photographic counts.

Table 2
Summary of detected walrus groups in airborne thermal imagery at 2 m and 4 m resolution.

Algorithm Resolution

(m)

Number of photographed

groups

Number of photographed

groups detected

Size of smallest

detected group

Size of largest

undetected group

Burn et al. (2006) 2 80 61 2 26

4 112 35 12 93

New 2 85 71 2 6

4 124 67 7 24

The number of photographed groups was slightly larger for the new algorithm, as this method uses a different criterion for distinguishing walrus groups. All group sizes were

determined by photographic counts.

Table 3
AIC values for considered detection models.

Algorithm Resolution (m) Model structurea Number of parameters AIC DAICb

Burn et al. (2006) 2 log(size) 2 51.20 0.00

Size 2 53.51 2.30

Null 1 89.71 38.51

4 log(size) 2 88.86 0.00

Size 2 101.24 12.39

Null 1 141.12 52.27

New 2 Size 2 32.63 0.00

log(size) 2 33.99 1.36

Size, temperature 3 34.62 1.99

Size, log(temperature) 3 34.62 1.99

log(size), temperature 3 35.97 3.35

log(size), log(temperature) 3 35.98 3.36

Temperature 2 76.27 43.65

log(temperature) 2 76.77 44.15

Null 1 78.06 45.43

4 Size 2 81.23 0.00

Size, log(temperature) 3 81.31 0.08

log(size) 2 81.84 0.61

log(size), log(temperature) 3 82.21 0.97

Size, temperature 3 82.96 1.73

log(size), temperature 3 83.71 2.48

log(temperature) 2 171.01 89.78

Null 1 173.09 91.86

Temperature 2 174.26 93.03

a Null model include only an intercept. All other models include an intercept and the listed variables.
b DAIC is the difference between the AIC value for the specified model and the model with the lowest AIC value.

D.M. Burn et al. / International Journal of Applied Earth Observation and Geoinformation 11 (2009) 324–333 329
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improve models that already included group size (Table 3). The
estimated linear effect of ice temperature was negative in all of the
2 m models that included it, but positive in the corresponding 4 m
models, suggesting that there was insufficient data to reliably
estimate this effect.

The final selected models for estimating detection probabilities
were functions of only group size or log of group size (Table 4;
Fig. 4). These models had the form:

Yi�Bernoullið piÞ;

where

logitðpiÞ ¼ b0 þ b1Xi;

Yi is a binary variable indicating whether group i was detected or
not, and Xi is the size (or log of size) of group i. Hosmer–Lemeshow
tests did not indicate lack of fit for any of the final models
(P � 0.45).

3.2. Calibrating thermal indices

For both algorithms at both resolutions, calibration model
variances increased with the means. Negative binomial and gamma
models fit this variance structure substantially better than Normal
(DAIC > 38.0) or Poisson (DAIC > 240.0) models. There was very
little difference in AIC values for negative binomial and gamma
models, with negative binomial models having slightly lower AIC
values for the 2 m models (best models for the Burn et al. (2006)
algorithm DAIC > 2.2, new algorithm DAIC> 1.2) and essentially no
difference for the 4 m models (best models DAIC < 0.9). Based on
this, we confined further consideration to negative binomial models.

At both resolutions, the h0 and h1 indices had linear relations to
group size (Table 5, Fig. 5). For the new algorithm, the h2 index also
had a linear relation to group size and models based on h2 were
substantially better than those based on h1 (Table 5). Adding ice
temperature did not substantially improve any of the models based
on h1 (Table 5). Based on this, we selected the linear models in h0 for
the Burn et al. (2006) algorithm and the linear models in h2 for new
algorithm calibrations. Examination of deviance and deviance
residuals did not indicate any lack of fit for any of the final models.

Final calibration models had the form:

Yi�Negative Binomialðhi; kÞ;

where

hi ¼ b0 þ b1Xi;

Yi is the size of group i, Xi is the thermal index value for group i, and

varðYiÞ ¼ EðYiÞ þ kEðYiÞ2;

where k is the dispersion parameter. Parameter estimates for the
final calibration models are presented in Table 6, along with
estimates for models based on the h1 index for the new algorithm
for comparison. Comparison of estimated dispersion parameters
(Table 6) and variance functions (Fig. 6) indicates that variances
were larger for models based on the h0 and h1 indices than those
based on the h2 index. This is consistent with the lower AIC values
for the h2-based models. Variances at the 2 m resolution were not
much different than those at the 4 m resolution for the new
algorithm, but variances were substantially lower at the 2 m
resolution than those at the 4 m resolution for the Burn et al.
(2006) algorithm. For models based on the h0 and h1 indices,
variances were substantially lower for the new algorithm than for
the Burn et al. (2006) algorithm.

4. Discussion

The new procedure for detection and classification of walrus
groups in thermal imagery described in this paper marks a

Table 4
Parameter estimates for final selected detection models.

Algorithm Resolution (m) Coefficient (SE)

Intercept Group size

Burn et al. (2006) 2 �3.63 (1.09) 2.18a (0.51)

4 �8.52 (1.70) 2.56a (0.53)

New 2 �3.65 (1.32) 0.85 (0.27)

4 �4.14 (0.77) 0.27 (0.05)

a Coefficient of log(group size).

Fig. 4. Detection models for walrus groups in infrared imagery using the new

algorithm and the Burn et al. (2006) algorithm at 2 m and 4 m resolutions.

Table 5
AIC values for considered negative binomial calibration models.

Algorithm Resolution (m) Model structurea Number of parameters AIC DAICb

Burn et al. (2006) 2 h0 3 474.13 0.00

Null 2 543.14 69.01

4 h0 3 317.02 0.00

Null 2 348.99 31.97

New 2 h2 3 481.59 0.00

h1 temperature 4 514.00 32.41

h1 3 515.44 33.85

Null 2 606.38 124.79

4 h2 3 513.26 0.00

h1 3 545.09 31.83

h1 temperature 4 545.49 32.23

null 2 630.08 116.82

a Null model includes only an intercept. All other models include an intercept and the listed variables.
b DAIC is the difference between the AIC value for the specified model and the model with the lowest AIC value for the same algorithm and resolution.
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significant improvement over the methods previously developed
by Burn et al. (2006). Smaller groups were detectable in both 4 m
and 2 m imagery using this procedure, and the resulting calibration
models based on the h2 index were substantially more precise than
the model for the original h0 index. Use of the new image
processing procedure should result in a substantial improvement
in both accuracy and precision of the population estimate from the
2006 survey (Speckman et al., 2009).

We believe the main reason for the poor performance of the
Burn et al. (2006) image processing procedure was the colder
ambient temperatures encountered during the 2006 survey effort
compared to temperatures encountered during the 2003 pilot
study. Air temperatures recorded at the base of operations in
Nome, Alaska, averaged 5–8 8C colder on survey days in 2006
compared to the conditions encountered in 2003 (Burn et al.,
2006). Walrus skin temperature is known to vary with ambient
temperature (Ray and Fay, 1968). At extremely cold temperatures,
walruses vasoconstrict to reduce blood flow to the skin as a
mechanism for conserving body heat. In addition, colder air
temperatures are accompanied by colder ice temperatures. For
‘‘mixed’’ pixels that contained both ice and walruses, the sensor

would therefore average colder walrus skin with even colder ice,
which shifted those pixels to the left in the temperature histogram.
This effect is demonstrated by the greater improvement in the
detection function at 4 m resolution. An adult Pacific walrus can
reach lengths of up to 3 m, so there are likely fewer mixed pixels in
2 m resolution thermal imagery. In fact, groups of 7 or more
walruses were always detected at this finer scale.

The differences in physical size of the images also may have
limited the effectiveness of the Burn et al. (2006) method applied
to the 2006 survey data. During the earlier (Burn et al., 2006) study,
walruses were first located visually and photographed before
thermal imagery was collected. Those images were therefore
considerably smaller than the ones collected in 2006, which
typically had over 100 million pixels. By tiling these large images
and looking for characteristic walrus signatures, we were able to
identify features that were distinct on a local level, but may have
been masked when examining the image as a single unit. For
example, the original method did not detect any walrus groups
during survey operations on April 10, 2006, despite visual
observation of numerous small walrus groups made from the
photography aircraft. Using the new method, we were able to

Fig. 5. Calibration models for estimating walrus group size as a function of thermal indices h0, h1 and h2 in infrared images at 2 m and 4 m resolutions.
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detect 12 walrus groups that had previously been missed on that
survey date. Although we did not have photographs of these
groups, the area where they were detected corresponded to the
area where many small groups were seen from the photography
aircraft.

The most common non-walrus features that had high summary
tile scores (i.e., ‘‘false positives’’) were open leads that extended
only slightly into a tile that otherwise contained only ice. These
tiles typically did not exceed the maximum temperature threshold,
and were easily identified with visual inspection of the neighbor-
ing tiles to verify that the feature was an open lead. The process of
visually inspecting all tiles with summary scores greater than zero
could be improved by adding an additional step that centers the
warmest pixel within a new tile and then re-examines the
temperature histogram. Walrus groups would still be relatively
rare features, whereas open leads would not, likely resulting in low
values for the right-hand tail and maximum gap parameters and a
reduction in the number of false positives.

An additional feature that created false positives that exceeded
the maximum temperature threshold occurred when survey lines
intersected land. Bare rock faces, especially those facing south,
typically had relatively warm temperatures. These features were
also easy to identify by overlaying GIS data layers for land onto the
thermal images.

During the process of developing this new method, we also
examined a variety of other techniques that were unsuccessful.
Regardless of the ambient temperature, walruses always have a
high degree of thermal contrast in comparison to the ice floes
upon which they rest. We initially investigated a suite of kernel
operations (Russ, 2002) including edge detection, standard
deviation, variance, and minimum-maximum difference using
both 3 � 3 and 5 � 5 kernel sizes. Results with these techniques

were equivocal, and in many cases they did not detect photo-
graphed walrus groups that were detected using the original
methods of Burn et al. (2006). Performance of the kernel
operations may have been affected by the high degree of
variability in walrus group sizes, which may range from 1 to
more than 100 pixels in 4 m imagery. In very large groups that
contain multiple ‘‘pure’’ walrus pixels, there was often relatively
little contrast in the center of the group.

The use of airborne thermal imagery to survey marine mammal
populations has the potential to sample considerably larger areas
per unit time than visual or photographic surveys. The procedure
described in this paper would be directly applicable to the Atlantic
walrus (O. rosmarus rosmarus), and may also have broader
applicability to surveys of other ice-associated pinnipeds, includ-
ing harp (P. groenlandicus), ribbon (Phoca fasciata), spotted (Phoca

largha), ringed (Phoca hispida), and bearded (Erignathus barbatus).
These species do not form dense concentrations similar to
walruses, and their detection would probably require smaller
pixel sizes, which would reduce the amount of area that could be
surveyed per unit time. A pilot study similar to that of Burn et al.
(2006) using the image processing procedures we describe here
may help identify the sampling resolution that optimizes the
compromise between the ability to detect animals in the imagery
and the amount of area that can be surveyed.
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Burn et al. (2006) 2 h0 10.08 (1.47) 1.16 (0.15) 0.19 (0.04)

4 h0 30.29 (3.64) 1.84 (0.47) 0.25 (0.06)

New 2 h1a 7.79 (1.06) 0.29 (0.03) 0.16 (0.04)

h2 5.34 (0.83) 0.09 (0.01) 0.08 (0.02)

4 h1a 15.90 (1.93) 1.25 (0.17) 0.16 (0.03)

h2 9.91 (1.70) 0.33 (0.03) 0.09 (0.02)

a These were not selected models, but are included here for comparison.

Fig. 6. Variance functions for thermal index calibration models using h0, h1 and h2

indices at 2 m and 4 m resolutions.
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