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TECHNICAL NOTE

Efficacy and Physiological Responses of Grass Carp
to Different Sedation Techniques: II. Effect of Pulsed DC
Electricity Voltage and Exposure Time on Sedation
and Blood Chemistry

John C. Bowzer, Jesse T. Trushenski,* and Brian R. Gause
Fisheries and Illinois Aquaculture Center, Southern Illinois University Carbondale, 1125 Lincoln Drive,
Life Science II, Room 173, Carbondale, Illinois 62901-6511, USA

James D. Bowker
U.S. Fish and Wildlife Service, Aquatic Animal Drug Approval Partnership Program,
4050 Bridger Canyon Road, Bozeman, Montana 59715, USA

Abstract
Owing to the current absence of an approved “immediate-

release” chemical sedative for use on fish, researchers have been
exploring alternative methods that would allow treated fish to be
released immediately after sedation, including the use of electrose-
dation. To address the efficacy of this approach, we evaluated in-
duction and recovery times, survival, and postsedation hematology
of grass carp Ctenopharyngodon idella (291 ± 6.7 g, 30.6 ± 0.3 cm
TL, mean ± SE) sedated by exposure to 100, 150, or 200 V of
pulsed DC (30 Hz and 25% duty cycle) for 5 or 10 s. Regard-
less of voltage strength or exposure time, all fish were sedated to
Stage IV sedation within 0.75 min and recovered within 1.5 min.
Although recovery times for fish exposed to electrosedation for 10 s
were longer than those for fish electrosedated for 5 s using 100
and 150 V, the opposite trend was observed among fish sedated us-
ing 200 V. Overall, induction and recovery times were short: total
time elapsed from induction to full recovery ranged from 1.0 to
2.1 min (mean, 1.6 min). No mortalities were observed 24 h postse-
dation. Hematological changes observed were consistent with an
acute stress response, but these effects were transient and few dif-
ferences were observed among the electrosedation protocols used.
Our results indicate that pulsed DC electrosedation is an effective
strategy for quickly and easily sedating grass carp.

Grass carp Ctenopharyngodon idella are an herbivorous
species introduced from China to the United States as a bio-
logical control for aquatic vegetation in aquaculture ponds and

*Corresponding author: saluski@siu.edu
Received October 24, 2011; accepted April 13, 2012

other private and public waters (Masser 2002). As grass carp
are a nonnative species, there is concern that these fish may re-
produce and establish selfsustaining populations in U.S. waters.
This has led officials from many states to ban stocking fertile
(diploid) individuals (Kelly et al. 2011), whereas triploid grass
carp may be allowed in some cases (Masser 2002). Triploidy
induction results in “functional sterility” (Benfey 1999; Zajicek
et al. 2011) and is recognized as an effective strategy to con-
trol undesired reproduction. A rapid detection method to verify
triploidy was developed by Wattendorf (1986), and this simple
blood test is used to verify the chromosome number of every
grass carp prior to sale and transfer to states with diploid grass
carp bans (Zajicek et al. 2011).

To facilitate testing, fish are typically sedated so that they
can be easily handled during blood sampling. Currently, there
are very few practical and effective chemical sedative options
available to fish culturists to facilitate sample collection, and
none of the sedative products available in the United States
are legal (i.e., approved by the U.S. Food and Drug Admin-
istration [FDA]) for use on food fish (including fish that may
be consumed after stocking in U.S. waters) without adhering
to a lengthy withdrawal period (3–21 d) following exposure
(see Gause et al. 2012, this issue). Although tricaine methane-
sulfonate (MS-222), benzocaine, eugenol, or carbon dioxide
(CO2) may be used as fish sedatives under certain circumstances,
none of these are fully suitable for procedures such as blood
sampling and triploidy verification of grass carp because they
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568 BOWZER ET AL.

require lengthy withdrawal times, are difficult to use, or are not
legally available for such use.

Given the constraints associated with chemical sedatives and
the amount of time and resources required to gain FDA-approval
of these compounds for use in fish, fish culturists have been ex-
ploring alternative sedation techniques, including electroseda-
tion. Although electrofishing has been used as a field sampling
technique for decades by fisheries professionals, the technique
has recently been modified specifically for the purpose of sedat-
ing fish (Zydlewski et al. 2008; Trushenski et al. 2012). “Elec-
troanesthesia”, or more accurately, electrosedation, can immo-
bilize fish via electronarcosis (stunning) or electrotetany (tetanic
muscle contraction) caused by electrically induced interference
with neurotransmission. Although present electrosedation tech-
nology may be somewhat limited in fish with comparatively
fragile vertebrae (e.g., salmonids; C. V. Burger, Smith-Root,
personal communication), in many species it may offer several
advantages over chemical sedatives in terms of withdrawal pe-
riods, chemical disposal, and potentially, ease of use. Perhaps
more importantly, electrosedation of fish is currently not subject
to FDA regulation and can be used legally without having to go
through the arduous, multiyear, multimillion dollar process of
getting a chemical sedative approved for use in fish. However, it
is important to develop use protocols to ensure that fish can be
effectively sedated with minimal risk of adverse postsedation
outcomes, including mortality. Although preliminary experi-
mentation suggested pulsed-DC electricity is suitable for sedat-
ing grass carp (described below), it is unclear whether different
waveforms (e.g., different voltage strengths, frequencies) or ex-
posure durations affect induction or recovery times, blood chem-
istry responses, or overall efficacy. Accordingly, we evaluated
electrosedation effects (induction and recovery times, survival,
and postsedation blood chemistry) on grass carp (a representa-
tive warmwater fish) using three different voltage strengths and
two different exposure durations.

METHODS
Electrosedation procedures.—A reference population of

triploid grass carp (291 ± 6.7 g, 30.6 ± 0.3 cm total length,
mean ± SE) was held at Keo Fish Farm, Keo, Arkansas, in an
outdoor raceway configured as a partial flow-through system
(static raceway, periodically flushed with screened surface wa-
ter) with supplemental aeration. Prior to experimentation, fish
were fasted for a minimum of 24 h. To determine an appropriate
“control” waveform from which to derive other waveforms for
experimentation in the principal investigation, a preliminary ex-
periment was conducted to determine whether a relatively mild
waveform (based on our previous experience with electroseda-
tion) would effectively sedate grass carp to Stage IV of sedation
(see below). A group of 15 fish were randomly collected from
the reference population and transferred into a 142-L cooler
prefilled with 70 L of aerated culture water to achieve a depth of

approximately 8 cm and equipped with an electrosedation unit
(PES Portable Electroanesthesia System, Smith-Root, Vancou-
ver, Washington). These fish were exposed to 100 V of pulsed
DC (60 Hz, 25% duty cycle, 5-s exposure). Using this wave-
form, mean sedation and recovery times were 0.5 and 1.8 min,
respectively, and no overt signs of postsedation distress were
observed. Accordingly, we determined that this waveform was
effective and would serve as the lowest intensity waveform in
the subsequent, principal investigation with one modification:
given that higher voltages and exposure durations were to be
investigated, we decided that the experimental protocols would
use a lower frequency of 30 Hz.

For the principal investigation, groups of 15 fish were ran-
domly collected from the reference population and transferred
into the electrosedation unit configured as described above and
filled with fresh culture water from the holding system. Fish
groups were exposed to 100, 150, or 200 V of pulsed DC (30 Hz
and 25% duty cycle) for 5 or 10 s in a 3 × 2 factorial de-
sign (100 V for 5 s, 100 V for 10 s, 150 V for 5 s, 150 V
for 10 s, 200 V for 5 s, 200 V for 10 s). Culture water in
the sedation chamber was aerated after sedating each group
of fish but was not exchanged over the course of the experi-
ment. A water sample was collected from the holding system at
time (t) = 0, and the sample was analyzed in duplicate for the
following: temperature and dissolved oxygen (YSI 550 meter,
Yellow Springs Instruments, Yellow Springs, Ohio), conductiv-
ity, pH, salinity (Multi-Parameter PCSTestr 35, Eutech/Oakton
Instruments, Vernon Hills, Illinois), hardness, alkalinity (digital
titrator and reagents, Hach, Loveland, Colorado), total ammonia
nitrogen, nitrite-nitrogen, and nitrate-nitrogen (DR 2800 spec-
trophotometer and reagents, Hach). All measured water quality
characteristics were within ranges appropriate for grass carp
(Masser 2002) (Table 1).

Fish were monitored during sedation to determine induction
to Stage IV of “anesthesia” (Summerfelt and Smith 1990; al-
though “anesthesia” is the term used by Summerfelt and Smith,
we have used the term “sedation” throughout the manuscript to
better reflect the behavioral responses we observed), which is

TABLE 1. Holding system water quality measured at the beginning of the
experiment to examine electrosedation in grass carp.

Characteristic Value

Temperature (◦C) 18.6
Dissolved oxygen (mg/L) 7.98
Total ammonia nitrogen (mg/L) 0
Nitrite-nitrogen (mg/L) 0.003
Nitrate-nitrogen (mg/L) 0.9
Alkalinity (mg/L) 240
Hardness (mg/L) 374
Salinity (‰) 0.427
Conductivity (µS/cm) 877
pH 7.5
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TECHNICAL NOTE 569

associated with the total loss of equilibrium, muscle tone, and
responsiveness to visual and tactile stimuli, but maintenance
of a slow, steady, opercular ventilation rate. After the loss of
equilibrium, slight manual pressure was applied along the trunk
and caudal peduncle as a tactile stimulus. Fish were consid-
ered induced to Stage IV when they no longer responded to this
stimulus, but the ventilation rate remained steady albeit reduced
relative to unsedated fish. A tremor was observed immediately
following electrosedation. Although fish were not responsive
during this tremor (and were perhaps momentarily in Stage V
or VI of sedation), induction was considered complete after
the tremor had ceased and fish resumed ventilating. Immedi-
ately after induction, blood samples were collected from three
fish using procedures described below. The remaining 12 fish
were returned to holding tanks and monitored to determine re-
covery from sedation (return of normal equilibrium and tactile
responsiveness). The group was considered recovered when the
last fish recovered, (i.e., recovery time = time for last fish to
recover). Assessment of induction and recovery can be some-
what subjective so bias was minimized by having the same ob-
server apply all stimuli and assess when fish were sedated and
recovered. Recovered fish were transferred to a second race-
way (configured in the same manner as the one housing the
reference population) and kept separated by raceway dividers
positioned at ∼1-m intervals along the length of the recovery
raceway.

Sample collection and analysis.—In addition to collecting
blood from fish sampled immediately after sedation (t = 0),
blood samples were collected from three fish per group at
0.5, 1, 2, and 6 h postsedation (three fish per group per time
point, individuals sampled once). Prior to sampling, all fish
were immersed in a bath of metomidate hydrochloride (Aqua-
calm, Western Chemical, Ferndale, Washington; ∼5–10 mg/L
for ∼30 s) to facilitate handling. Although additional sedation
was not necessary for fish sampled at t = 0, these fish were also
exposed to a metomidate hydrochloride bath to ensure consis-
tent treatment of all fish. Once handleable, fish were weighed
(to the nearest gram) and measured (total length to the near-
est 0.5 cm), and a blood sample was collected from the caudal
vasculature using heparinized, evacuated blood collection as-
semblies (Vacutainer, Becton Dickinson, Franklin Lakes, New
Jersey). Although metomidate hydrochloride was selected, in
part, because it limits or prevents corticosteroid increase during
sampling (Olsen et al. 1995; Davis and Griffin 2004), all blood
samples were collected within 5 min of capture to minimize
the possibility of other confounding responses of handling and
venipuncture. In addition to fish sampled at set time points after
sedation, two fish from the reference population were also sam-
pled every hour over the course of the experiment (experiment
duration, 7 h; no fish were sampled more than once). After blood
collection, all fish were returned to a separate area in the recov-
ery system and monitored for adverse behavior and survival for
24 h. Blood samples were kept on wet ice (<36 h) until anal-
ysis for glucose, lactate, cortisol, and osmolality as described

by Gause et al. (2012). Although 36 h might be considered a
lengthy period of time to hold blood samples prior to analysis,
some assays could not be immediately conducted in the field
and samples had to be transported back to the Fisheries and
Illinois Aquaculture Center, Carbondale, Illinois. It is possible
that levels of metabolically relevant molecules (e.g., glucose and
lactate) could have changed slightly during this holding period;
however, all samples were treated in the same manner to ensure
validity of comparisons among treatments. Briefly, hematocrit
(Statspin centrifuge, Fisher Scientific, Pittsburgh, Pennsylva-
nia) and glucose (Freestyle Freedom Lite glucose meter, Ab-
bott Laboratories, Abbott Park, Illinois) were determined using
aliquots of whole blood, and then the remaining whole blood
was centrifuged (3,000 × g, 4◦C, 45 min). Resultant plasma
was collected and stored at −80◦C until further analysis. Plasma
samples were analyzed to determine lactate (Accutrend lactate
meter, Roche, Mannheim, Germany), osmolality (Vapro 5520,
Wescor, Logan, Utah), and cortisol (EIA 1887, DRG Interna-
tional, Mountainside, New Jersey). Although portable lactate
and glucose meters such as those used in this study can slightly
underestimate metabolite levels in fish blood relative to labora-
tory methods, they are considered precise and reliable for use in
generating comparative data (Wells and Pankhurst 1999; Venn
Beecham et al. 2006).

Although multiple fish were sampled from each treatment
group at each time point, they were group-sedated and cohoused
after sedation. Therefore, we determined that individual fish did
not represent truly independent observations. Since the exper-
iment lacked replicate experimental units, qualitative compar-
isons of within-group mean values were assessed rather than
using statistical analysis to try to make quantitative compar-
isons.

RESULTS
All fish were successfully induced to Stage IV sedation in less

than 1 min (mean = 0.6 min, range = 0.5–0.7 min), regardless
of voltage strength or exposure duration (Figure 1). Recovery
times were more variable, but recovery of equilibrium (mean =
0.7 min; range, 0.3–1.3 min) and tactile responsiveness (mean
= 0.9 min; range, 0.5–1.4 min) were achieved in less than 2 min
postsedation. Although a positive relationship was evident be-
tween longer exposure durations and increasing recovery times
in fish sedated using 100 and 150 V, recovery times were shorter
among fish sedated using 200 V. Overall, induction and recov-
ery times were short, total time elapsed from induction to full
recovery ranged from 1.0 to 2.1 min (mean = 1.6 min), there
was minimal group-to-group induction or recovery variability,
and no mortalities were observed 24 h postsedation.

Although most blood chemistry parameters did not vary sub-
stantially by electrosedation protocol at any single timepoint,
hematocrit, blood glucose, and plasma cortisol, lactate, and os-
molality varied over time following sedation (Figure 2A–E).
Plasma cortisol and lactate concentrations initially increased
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FIGURE 1. Schematic illustrating induction and various stages of recovery of grass carp electrosedated to Stage IV sedation using various pulsed DC voltage
strengths and exposure durations.

after sedation and then decreased over time. The cortisol re-
sponse was rapid and transient, peaking (162–288 ng/mL) at
0.5 h postsedation and returning to resting levels (0–100 ng/mL)
between 2 and 6 h postsedation. The peak lactate response de-
veloped more slowly than cortisol, reaching maximum levels
(6–9 mmol/L) between 0.5 and 2 h postsedation, but dropped
below resting levels by 6 h postsedation. Peak levels of blood
glucose (98–124 mg/dL) observed within the first 0.5 h postse-
dation, decreased slightly over the next 0.5 h and then increased
slightly from 1 to 6 h postsedation. Hematocrit and plasma os-
molality fluctuated near resting levels throughout the sampling
period. There was no indication that any one combination of
voltage strength and exposure duration consistently produced
the highest or lowest blood chemistry responses.

During electrosedation, fish exhibited opercular flaring, fin
extension, and body rigidity but regained normal posture after
resolution of the postsedation tremor. Slight petechial hemor-
rhaging was observed along the lower flank and opercular area
in a few fish during electrosedation.

DISCUSSION
Pulsed DC, applied at voltage strengths of 100–200 V and ex-

posure durations of 5 or 10 s, was effective in sedating grass carp

to Stage IV sedation. Voltage strength and exposure duration had
little effect in terms of time to induction and recovery from se-
dation. In addition, there was little variability among electrose-
dation protocols on the effects on blood chemistry responses
following sedation. Although slight numeric differences were
noted for induction and recovery times, the maximum difference
observed (0.23 and 1.12 min, respectively) would probably not
be considered practically relevant to most fisheries profession-
als. All fish recovered within 2 min of induction, which would
probably be considered adequate for sedating grass carp to fa-
cilitate procedures such as triploidy verification. The observed
changes in blood chemistry were consistent with an acute stress
response (Barton 2002), but these physiological responses were
resolved or nearly resolved within 6 h of sedation, and no postse-
dation mortality was observed. Slight epidermal hemorrhaging
was observed in some electrosedated fish. However, we con-
cluded that these relatively uncommon lesions were probably
unrelated to electrosedation since petechiae were also observed
in some fish prior to electrosedation. Based on these data, it
would appear that juvenile grass carp are resilient to electrose-
dation at the range of voltage strengths and exposure durations
tested in this experiment, and that the electrosedation protocols
tested are reasonably safe with respect to postsedation survival
and physiological status of these fish. In the present work, we
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TECHNICAL NOTE 571

FIGURE 2. Time course of blood chemistry responses (A = plasma cortisol, B = blood glucose, C = hematocrit, D = plasma lactate, E = plasma osmolality) of
grass carp following electrosedation using various pulsed DC voltage strengths and exposure durations. Points represent mean values; grey reference bars represent
means of values observed for fish sampled from the reference population throughout the course of the experiment.

D
ow

nl
oa

de
d 

by
 [

So
ut

he
rn

 I
lli

no
is

 U
ni

ve
rs

ity
] 

at
 0

6:
52

 2
4 

Se
pt

em
be

r 
20

12
 



572 BOWZER ET AL.

did not examine fish for vertebral or other internal injuries fol-
lowing electrosedation. These types of injuries have been ob-
served following exposure to pulsed DC electrosedation in some
(Gaikowski et al. 2001; Zydlewski et al. 2008) but not all fishes
(Vandergoot et al. 2011). Electrically induced injury and mortal-
ity rates are a function of the type and strength of the waveform
used, as well as the fish involved (Snyder 2003). In general,
short duration exposure to low-intensity, pulsed DC waveforms
is considered less risky than longer duration exposure to high
intensity, AC waveforms, though the reported effects of these
and other factors are “sometimes sparse, difficult to compare,
and often questionable” (Snyder 2003). Regardless, the absence
of direct or delayed mortality and overt signs of injury sug-
gest that each of the protocols assessed in the present work are
reasonably safe when used to sedate grass carp.

Blood chemistry responses observed in this experiment were
comparable with those reported in two experiments conducted
on hybrid striped bass (white bass Morone chrysops × striped
bass M. saxatilis) using the same Portable Electroanesthesia
System and in the experiment conducted by Gause et al. (2012)
in which grass carp were sedated using a variety of chemical
sedatives. Trushenski et al. (2012) reported a slightly greater
plasma cortisol pulse and greater plasma glucose and lactate
pulses, but similar hematocrit and osmolality levels, in hybrid
striped bass (510 ± 12 g, 33.7 ± 0.2 cm, mean ± SE) elec-
trosedated at 100 V, 30 Hz, and 25% duty cycle for 3 s than we
observed in grass carp in this experiment. In another experiment,
Trushenski and Bowker (in press) used similar electrosedation
protocols to sedate smaller hybrid striped bass (211 ± 4 g,
26.1 ± 0.1 cm total length, mean ± SE), and found that grass
carp plasma cortisol levels were lower than or comparable with
those observed in the smaller hybrid striped bass at t = 0, 1,
2, and 6 h. However, the plasma cortisol levels observed in
grass carp were much lower (150–300 ng/mL) at t = 0.5 h than
observed in the smaller hybrid striped bass (400–650 ng/mL)
(Trushenski and Bowker, in press). Responses of lactate, hema-
tocrit, and osmolality noted for grass carp were of a comparable
or smaller magnitude than those reported for smaller hybrid
striped bass by Trushenski and Bowker (in press), but followed
the same basic patterns of acute response and resolution within
6 h of sedation. The somewhat attenuated lactate response ob-
served in grass carp, in comparison with hybrid striped bass, is
probably the result of the comparatively lower metabolic rate
of grass carp (Tuncer et al. 1990; Brougher et al. 2005; Fu
et al. 2009). Increased lactate formation results from anaerobic
metabolic activity occurring during periods of limited or no oxy-
gen availability, such as when environmental oxygen availability
is limiting or during exhaustive physical activity when respira-
tion is insufficient to meet tissue oxygen demand for aerobic
metabolism (Bennett 1978; Burton and Heath 1980). Sedated
fish exhibiting reduced ventilation rates may accumulate lactate,
particularly if their metabolic rate and oxygen demand is high.
Juvenile hybrid striped bass have a considerably higher oxy-
gen demand at rest (132 mg O2·kg−1·h−1) (Tuncer et al. 1990;

Brougher et al. 2005) than some other fish, including grass carp
(56 mg O2·kg−1·h−1; Fu et al. 2009); for purposes of compar-
ison, Clarke and Johnston (1999) modeled the metabolic rate
of 55 species of fish, and estimated the resting oxygen con-
sumption of a 50-g fish at 15◦C to range from 27 to 133 mg
O2·kg−1·h−1 depending on species. This may explain why elec-
trosedated hybrid striped bass experience greater postsedation
lactate pulses than do electrosedated grass carp. The blood glu-
cose response of grass carp observed in this experiment fluctu-
ated near 100 mg/dL compared with the smaller hybrid striped
bass in the previous experiment by Trushenski and Bowker
(in press); in that study blood glucose displayed a pulse from
resting levels of approximately 55 mg/dL to a peak at t = 1 h of
180–220 mg/dL. The reduced metabolic rate and lower plasma
cortisol levels of grass carp may explain the relatively minor glu-
cose response observed in the current experiment. Cortisol can
activate glycogenolysis and gluconeogenesis processes in fish,
which cause increases in substrate levels (glucose) in the blood
to produce enough energy to meet the demand of the organism
(Barton and Iwama 1991; Martı́nez-Porchas et al. 2009), and
since grass carp have lower metabolic demands and experienced
a lower cortisol response to electrosedation than hybrid striped
bass (and possibly a lower catecholamine response), a lower
glucose response may be expected. This and other research with
chemical sedatives and various methods of electrosedation (AC,
continuous DC, pulsed DC) or electroshock (Schreck et al. 1976;
Mesa and Schreck 1989; Barton and Grosh 1996; Barton and
Dwyer 1997) have demonstrated that fish undergo the general-
ized stress response (Barton 2002) following sedation (Bourne
1984; Bernier and Randall 1998; Davidson et al. 2000; Davis
and Griffin 2004; Woods et al. 2008; Feng et al. 2009; Neif-
fer and Stamper 2009; Sattari et al. 2009; Carter et al. 2011;
Trushenski et al. 2012; Gause et al. 2012). Because these effects
also occur after exposure to sedatives in the absence of handling
further emphasizes that the sedatives themselves act as stres-
sors (Zahl et al. 2010). Differences in the magnitude of physio-
logical responses aside, our present results are broadly consis-
tent with our previous work sedating adult hybrid striped bass
(Trushenski et al. 2012) and the majority of published works
on the subject.

In conclusion, pulsed DC electrosedation is an effective strat-
egy for sedating grass carp quickly and easily for routine han-
dling procedures. Electrosedation offers one distinct advantage
over other currently available options: fish can be released im-
mediately after treatment. Like other sedatives, electrosedation
induces an acute stress response in fish. Although electrosedated
grass carp exhibited responses consistent with the generalized
stress response in fish, none of the protocols used elicited re-
sponses that were particularly severe in comparison with the
others or the reported effects of chemical sedatives (Gause et al.
2012), and fish were observed to recover from these effects
within 6 h. Although slight differences in induction and recov-
ery times were associated with different voltage strengths and
exposure durations, all of the protocols used yielded sedation
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TECHNICAL NOTE 573

patterns that would be considered acceptable for handling grass
carp and testing them for triploidy. However, to minimize the
incidence of unforeseen injuries or physiological alterations, we
recommend that users employ the lowest voltage strength and
exposure duration that yields effective electrosedation.
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