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Introduction 
James W. Sewall Company performed analyses of Maryland DNR LiDAR data under contract to the US 
Fish and Wildlife Service, Chesapeake Bay Field Office, to assist in identification of Delmarva Fox 
Squirrel (Scirus niger cinereus) habitat in Dorchester County, Maryland.  The Delmarva fox squirrel (DFS) 
is an endangered species previously found in mature forests of mixed pines and hardwoods throughout the 
Delmarva Peninsula (USFWS 1993).  The DFS prefers tall, mature stands of pine/hardwood forest with a 
closed canopy and a somewhat open understory (Dueser 1988, Dueser 2000, Morris 2006).  The most 
important variables in defining their habitat is the presence of large mature trees as these provide the 
greatest abundance of food and den sites for this species.   Existing imagery and remote sensing data sets 
primarily enabled distinction of forest stands by species composition, but did not enable distinctions of 
stands by forest maturity.   The goal of this analysis was the production of a grid of canopy heights and 
canopy closure (ESRI grid format), and a transformation of the grid data to polygons (shape file format) 
indicating forests of different height and canopy closure classes, and interpretive polygons of potential DFS 
habitat.  The primary source of information about the forest canopy was scanning LiDAR for Dorchester 
County from a Maryland-wide data set acquired by the Maryland DNR in 2003.  The U. S. Fish and 
Wildlife (USFWS) principal investigator for the study is Cherry Keller, Senior Wildlife Biologist, 
Threatened and Endangered Species Program, who supplied the requirements and reviewed results of pilot 
work to refine the process. Collaborating investigators in the development of this project include Ross 
Nelson, Goddard Space Center, NASA, Leslie Gerlich, GIS specialist, USFWS, and Jeff Horan, Maryland 
Department of Natural Resources, Forest Service.  The work was performed at Sewall by Dan Boss, Senior 
Resource Consultant in the Forestry Department. 

Summary of Process 
 
The process for producing the final deliverables consisted of the following major steps.  A more detailed 
description of each step is provided in the following sections of the report.   
 

1. Receive and prepare data.  First-return LiDAR data were provided on a mobile hard drive in 
ASCII (x,y,z coordinate) format, in 1200 x 1800-meter tiles covering the County.   Data for bare 
earth elevations were also provided in the tile structure, pre-processed as the mean bare earth 
elevation in 2-meter grid cells.  Other data included NWI wetlands and land use polygon data sets. 

2. Transform point data to grid data.  LiDAR point data were grouped into 6-meter square grids 
resulting in a 200 x 300 cell grid for each tile.  For each grid cell, four different canopy height 
measures, as well as percent canopy closure (cc) were computed from the LiDAR points falling in 
that cell.    

3. Combine the measures within each tile, and then merge the grid tiles into larger groups.      
Grids with all five measures in each of two data types (integer and reclassified) were created for 
each tile.  The tiles were then combined into 25 grids covering the County, using groups of about 
40-50 tiles each. 

4. Transform grid cells to polygons.   The primary product of the analysis, and the primary 
analytical challenge, was the production of meaningful DFS habitat polygons.  This involved 
developing a classification of habitat in terms of height and canopy closure, generalizing from the 
gridded data to useful polygons, and incorporating wetlands and land use polygon data to add 
information not provided by LiDAR for discriminating various classes of non-forested land. 

5. Combine all groups to create county-wide data sets.   After polygons were generated for all 
groups, the final step was to combine the 25 groups of data into a single county-wide data set.  In 
addition to the countywide polygon data set, two county-wide grids were created (one having 
integer values for height and cc and the other with the values reclassified into 9 height groups and 
5 cc groups). 



 
Most of the processing was done in the Arc Workstation (v 9.1) environment, supplemented by SAS for 
initial processing of the LiDAR data.  Review was done primarily in ArcGIS (v. 9.1). The data set and 
other files referred to are listed relative to the root directory (“M:”) on the primary delivery medium, a 250-
gigabyte mobile hard drive (MHD) provided for the study by USFW.  Procedures were encoded as ArcInfo 
macros (aml's), which are included with the delivery in folder M:\JWS\process\aml. 
Each of the above steps will be reviewed in more detail below. 

Step 1.  Receive and prepare data 
 
The LiDAR data for this analysis originated in a project conducted for the Maryland DNR in 2003 and 
2004.  First return LiDAR data points were obtained from DNR by USFWS and provided to Sewall on 
MHD.  The first returns for Dorchester County were flown in the spring of 2003 (April 16 – June 11) and 
were provided in 1,026 tiles, each 1200 meters x 1800 meters.  The tiles are indexed in the shapefile 
smallgrid.shp (M:\JWS\process\arc\smallgrid.shp).    
 
Also provided in this tile structure were bare earth elevation points for the center of each 2-meter x 2-meter 
grid cell.  These had been pre-processed for MD DNR by the LiDAR contractor.  Quality control showed 
that vertical data had an RMSE value of 14.3 cm at the 95% confidence level (see 
M:\LiDAR2004GriddedDEM.htm).     
 
Other data critical to the analysis included National Wetland Inventory (NWI) polygons for the County 
(provided by USFW in a county-wide data set), the Maryland landuse\landcover data for Dorchester 
County (dorclu02.zip downloaded from  http://www.mdp.state.md.us/zip_downloads_accept.htm), and 
2005 National Agricultural Imagery (NAIP) true color orthophotography downloaded by Sewall through 
the USDA data gateway (http://datagateway.nrcs.usda.gov/).    
 
The NWI data were re-processed to create an ArcInfo polygon coverage with three polygon classes – (1) 
open water, (2) emergent wetland, and (3) upland.   An excel spreadsheet 
(M:\JWS\process\doc\wetland_list.xls) is included on the MHD showing how each of the detailed wetland 
classes was re-coded to the general class.  The resulting, dissolved, water/wetlands/upland coverage is 
M:\JWS\process\arc1\dorwetlddsd1. 
 
An ArcInfo polygon coverage indicating the general location of forested land was created by extracting 
forested polygons from the Dorchester land use coverage.  The horizontal accuracy of the polygon 
boundaries in this data set was less than the other data sets due to its origin in LANDSAT (see 
M:\JWS\process\base\landuse_landcover\Metadata\metalu02.htm).  The resulting forest polygon coverage 
is M:\JWS\process\arc1\dorcforest. 
 
The 2005 NAIP imagery was used as a backdrop during processing and review of the classifications 
because this provided the most recent imagery of the area.  
 

Step 2.  Transform Point Data to Grid Data.  Extract heights from 
LiDAR data and prepare gridded height and canopy closure data for 
each data tile. 
 
In this step, we transformed the original LiDAR x,y,z points to a mean height and mean canopy closure 
value for a 6-meter grid.  We chose a 6 meter grid size for two reasons.  First, the 6 meter grid is large 
enough to include a reasonable sample of points (numbers varied considerably but averaged about 23 
points/6-meter grid) to calculate heights and crown closure, and it provided nine 2-meter cells that 
contained ground elevation data.   Second, we wanted the grid size to be an even devisor of a 30 m Landsat 
Thematic Mapper pixel.  Three TM-based land cover data sets are available for Dorchester County and 
surrounding areas, and we wished to mitigate the need to resample the gridded data should the need arise to 
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co-register the laser grids with TM products.  The three TM land cover maps include(1)  the Maryland 
Department of Planning/Land Use Land Cover (1992, 1993); (2) The 2001 National Land Cover Dataset 
available from the USGS; and (3) the 1995 GAP land cover map. 
 
The LiDAR data points are x,y,z data points where z  is the elevation of the first return or canopy (x and y 
provide location on the earth).  To compute actual canopy height from the ground, we subtracted the 
ground elevation described for the 2-meter grid from the z value of every point that fell in that 2-meter grid.   
We then calculated the four measures of canopy height and a measure of canopy closure for all the points in 
the 6-meter grid area.  These values were then transformed to integers (rounded up so there were no 
decimals) to enable grid processing. 
 

2m   2m 2m 
2m 2m 2m 
2m 2m 2m 

 
We chose to calculate four measures of height beca
means were more or less appropriate for different e
(Nelson et al. 2003; 2005) utilized average canopy 
linear laser profile, to identify "tall" stands where D
data was taken with leaf-on in the summer of 2000
taller trees more heavily, and this variable often pro
characteristics, e.g., merchantable volume and total
provide better estimates of canopy height when LiD
data flights occurred from April 16 to June 11 2003
off.  Other estimates of height may be better for est
 
Specific Processing Steps:  Specific processing for
grid_heights.aml with parameters appropriate to the
a SAS routine.  The SAS routine grouped the point
required mean values (see below) for each 6-m squ
used by ArcInfo to build a floating point grid for th
measures.  Data were then processed for each tile a
(height measures ranged from 0 to 35 meters and c
reclassified grid (9 classes for height measures and
 
The essential basic data for computing heights are d
and the bare earth values within each cell.  The req
mean height for all pulses;  2) qmhc - quadratic me
including all raw measures greater than 3 meters;  3
height, canopy pulses.  Canopy closure was compu
meters.   Formulas for computing the five different
were provided by Ross Nelson (Ross.F.Nelson@na
(quoted from Ross Nelson e-mail): 
 

• quadratic mean height, all pulses (qmha), 
of squared heights.  So, for instance, if you
heights (range to ground minus range to fi
quadratic mean height, all pulses (qmha) w
            qmha = square root [(10**2 + 12*

• quadratic mean height, canopy hits only (q
>=3m, is:  
            qmhc = square root[(10**2 + 12**

• average height, all pulses (hta) would be: 
            hta = (10+12+2+8)/4 = 8m 

 

5 Values – (four measures of average height and 
one canopy closure value) 
 

use past research using LiDAR had found that different 
stimates.  For example, initial work in Delaware 
height (hta), i.e., the average height of all pulses along a 
elmarva fox squirrels might be found.   This Delaware 

.   The quadratic mean height (qmhc) tends to weight 
ves useful for predicting forest biophysical 
 aboveground biomass.  The quadratic mean may also 
AR data are flown at leaf off.  The Dorchester County 
, and about half the flights were likely flown with leaf 
imating forestry values of interest (Nelson et.al 2003). 

 this step was driven tile-by-tile by executing 
 tile.  This macro set up the appropriate data and called 

 data of the LiDAR first-returns and produced the five 
are grid cell.  The output of the SAS routine was then 
e tile on each of the five height/canopy closure 
nd each measure to create a combined integer grid 
anopy closure ranged from 0 to 100 %) and a combined 
 5 classes for percent canopy closure).    

erived from the difference between first return values 
uested height parameters were:  1) qmha - quadratic 
an height for canopy pulses, where canopy is defined as 
) hta – average height, all pulses; and 4) htc – average 

ted as the percent of pulses within the cell exceeding 3 
 parameters for each cell from a number of first returns 
sa.gov).   Their calculation is described as follows 

is calculated as the square root of the average of the sum 
 have 4 first returns in a given grid cell, and the 4 tree 

rst target) are as follows:  10m, 12m, 2m, 8m, then the 
ould be:  

*2 + 2**2 + 8**2)/4] = 8.83 m 
mhc), where a canopy hit is defined as any height 

2 + 8**2)/3] = 10.13 m 
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• average height, canopy hits only (htc)  would be:  
            htc = (10+12+8)/3 = 10m.  

• canopy closure (cc) for this grid cell would be the number of first return heights >=3m divided by 
the total number of pulses in the grid cell, or  
            cc = (3/4)*100 = 75%. 

 
Quadratic measures tend to place more emphasis on the taller trees. 
 
Because the data for bare earth were provided in 2-meter grid cells, the heights and squared heights were 
computed first on 2-meter cells (subtracting the 2-meter bare earth value from each first return in each 2-
meter cell).  The five means were then computed for the 6-m cell.   Following all computations for a tile, 
ArcInfo commands were used to create a floating point grid for each of the parameters.   
 
Transform specific heights to height and canopy classes.  In the last processing of this step, the floating 
point grids were processed to create a set of integer grids and a set of reclassified grids.  The 
reclassification grouped the individual measures into height and canopy classes.   In addition to the two 
output grids for canopy, this step creates a 6-meter bare earth grid that can be used for reference during data 
review.  This is an average of the 2-meter cells.   
 
The height classes created are as follows (class intervals in meters):  
 
 
 

Class >= Low < High 
1 0.00 3.00 
2 3.00 6.60 
3 6.60 9.70 
4 9.70 12.80 
5 12.80 16.40 
6 16.40 20.00 
7 20.00 25.00 
8 25.00 30.00 
9 30.00 50.00 

 
 
 
 
 
 
 
 
 
 
 
 
The reclassification for canopy closure was as follows: 
   

Class >= Low < High 
1 0.00 0.10 
2 0.10 0.30 
3 0.30 0.60 
4 0.60 0.80 
5 0.80 1.00 

 
These height classes were based on information obtained from Delaware LiDAR profile data paired with on 
the ground vegetation surveys (Nelson et al. 2003, 2005).  This data set suggested that DFS habitat 
identified by ground surveys, was more often found in forests where LiDAR data indicated the trees were 
greater than 20 m tall and had 80% canopy closure.  To enable collaboration with foresters, these data were 
also analyzed to estimate the LiDAR height cutoffs that best distinguished between the forest classes of 
sawtimber, poletimber and sapling forest stands.  In the Delaware LiDAR data set these height cutoffs 
separating these three stands types were 12.8 m and 6.6 m.   These forest classes are typically defined by 
the dbh size of the trees and further evaluation is need to determine if the LiDAR data will ultimately 
enable distinctions of these forest classes as well.  However, the height classes chosen were intended to 
make the data more relevant to foresters and to reflect DFS habitat.   
 

 4



Step 3.  Combine the measures within each tile, and then merge the 
grid tiles into larger groups. 
 
In this step, five input grids for each tile in a group are converted to group grids, each with all five 
measures.  This is done for each of the two data types (integer and reclassified) that were created for each 
tile in step 2.  The grid grouping scheme is contained in M:\JWS\process\shapes\ batch_group_setup.shp.  
The figure below shows how the grids were grouped.  Tiles determined to be all water are indicated in a 
light blue crosshatch.  These tiles were not processed.    The macro that performs the grouping is 
M:\JWS\process\aml\combine_grids_by_group.aml. 

                
 
 
                                                          Figure 1:  Tile groups used in processing 
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Step 4.  Transform Grid Data to Polygons. 
 
This step combined grid cells into polygons based on habitat classes that reflected combinations of canopy 
cover and canopy height and a developed model as to suitable habitat for Delmarva fox squirrels.  Several 
tasks were involved in this step, but Figure 3 provides an illustration of several phases of this process.  The 
process, driven by M:\JWS\process\aml\make_polygons.aml (this controls the process and executes several 
other aml’s), was conducted group by group on the reclassified grids and involved the following tasks: 
 

• Define nine habitat classes based on canopy height and canopy closure and reclassify 
the 6-meter grids using these habitat classes.  (Input was reclassified height and cc grids 
“GRPnnCOMBRC”, where the three habitat classes considered potentially suitable for 
DFS are 1, 3, and 5 (see below); 

• Using this habitat class grid, create polygons based on the habitat classes; 
• Use land use and wetlands/water coverages to separate the shortest height class into 

agriculture, wetlands, and shortest forest (recent clearcuts or young forest); 
• Execute "cleanup_small_clusters.aml" to group small clusters within their habitat type; 
• Using the proposed model for identifying potential Delmarva fox squirrel habitat, 

identify area of potential habitat meeting the specified criterion.  These were habitat 
classes 1 and 3 (the tallest forest) and habclass 5 if there was at least 20% of the area in 
habclass 1 and 3; 

• Perform cleanup to eliminate small polygons. 
 
 
Task 1 - Develop Habitat Classification Scheme (nine classes used).   The assignment of habitat 
suitability classes was based on the scheme diagrammed in Figure 2.  County-wide acres for the final 
polygon classes are shown within each cell as well as the general habitat suitability class that was assigned.   
This habitat classification scheme was developed to help identify Delmarva fox squirrel habitat (mature 
forest with a closed canopy) and to provide foresters with information on regenerating stands of forest.  
Development of the habitat classification scheme is based on the following. 
 
Delmarva fox squirrel habitat is mature forest with a mix of hardwoods and pines.  The larger mature trees 
produce larger quantities of food (both hard and soft mast) and provide potential den sites.  Several studies 
have identified variables that can be useful in identifying DFS habitat.   Dueser et al. (1988) determined 
that forest stands with a higher proportion of trees with 12 inch or greater dbh, higher canopy closure, and a 
more open understory were more likely to support DFS.   Morris (2006) also determined that the presence 
of taller trees and a closed canopy were significant predictors of points within a forest where Delmarva fox 
squirrels were detected.  In addition, LiDAR transects conducted in Delaware found that 40-meter transects 
where canopy height (qmhc) was greater than 20m tall and canopy cover was 80% or greater were more 
likely than not (78%) to also be considered DFS habitat using the Dueser habitat model (Dueser 2000).   
Thus we developed a LiDAR model for the polygons that was informed by this previous work, and the 
relationships identified.  Habclass 1 (greater than 20 m tall and greater than 80% canopy) reflects the 
LiDAR transect data from Nelson et al. (2005).   We included habclass 3 (next tallest trees), and habclass 5 
only if the polygon contained at least 20% of the area in hablcass 1 and 3 (tallest trees).   We included these 
because polygons of mature forest tend to be larger mixes of uneven tree heights and DFS will use stands 
with some younger trees if there is sufficient abundance of large trees as well.   This LiDAR “model” of 
DFS habitat suitability is not a proven or tested model for predicting DFS occurrence, however, it is 
informed by previous work and is,at the very least, a description of mature forest.  This model can be 
compared to known DFS stands in the future to further evaluate its usefulness.   The height classes of 
young, regenerating stands of forests are intended to provide data useful to foresters.   
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QMHC (Height) 5 (80-100%) 4 (60-80%) 3 (30-60%) 2 (10-30%) 1 (0-10%)

9  ( >= 30 m)

8 (25-29.99 m)

7 (20-24.99 m)

6 (16.4-19.99 m)

5 (12.8 -16.39 m)

4 (9.7-12.79 m)

3 (6.6 - 9.69 m)

2 (3.0 - 6.99 m)

1 (0 - 2.99 m)

Figure 2:  Polygon Generalization Codes Followed by Habitat Eligibility (Y = Eligible, N = Not 
Eligible) Based on Height, Canopy Closure from LiDAR, Modified by Wetlands and Land Use 

Canopy Closure

1 - Y
17679 a.

6 - N
171 a.

7 - N
43518 a.

2 - N
0.5 a

3 - Y
26849 a.

4 - N
0.2 a

5 - Y (if with > 20% 1,3) - 27614 a.

Classes 1 and 3 are considered suitable DFS habitat.  Class 5 is also considered habitat if there is a 
sufficient proportion of the taller classes (1 and 3).   In order for class 5 to participate as DFS habitat it 
must occur in conjunction with classes 1 and 3.  The cutoff proportion of area used was 20% (required 
minimum % 1 and 3 associated with a 1, 3, 5 grouping).

8 - N
77816 a.

9, 10, or 11 - N* - 211078 a.

*  9 - recently clearcut; 10 - emergent wetland; 11 - other non-forest (agricultural, developed, etc).  Open 
water is null.

 
 
 
 
Task 2 – Using the habitat classification scheme, move from grid to polygons.   Following assignment 
of each grid to a habitat class, a habitat class grid was created.   A filter was run on the initial grid to 
replace cells in the grid based upon the majority of their contiguous neighboring cells (ArcInfo GRID 
command MAJORITYFILTER (arguments 8, HALF)).  The region used for this filter was restricted to the 
8 surrounding cells.  Following this, polygons were generated by habitat class.    
 
The initial polygons created were very detailed, with polygon boundaries surrounding each unique 
grouping of habitat class codes.    The first cleanup step eliminated all non-habitat, non-edge polygons that 
corresponded to one grid cell (parameter non_hab_elim = 36 (sq meters)).    
 
Task 3 – Use land use data to separate shortest height class by covertype.    The next step incorporated 
the information from the land use coverage identifying forested areas and the wetlands data identifying 
emergent wetlands (assigned class 10) and open water and separating them from open (non-forested) land 
(assigned class 11).  The macro executed for this process was id_forest.aml.     
The macro finished by defining a generalized habitat class attribute, with polys with habitat classes 1,3, and 
5 being classed as habitat (gen_hab = "Y") and all others classed as non-habitat. 
 
Task 4 – Clean up small clusters.  Another cleanup step followed.  This involved 4 passes of a macro 
(cleanup_small_clusters.aml) that combined small polygons with larger neighbors of the same general 
habitat class (using attribute GEN_HAB to determine the general habitat class).    Four passes of this 
routine were needed to converge to a point where the most polygons meeting the criterion that was chosen 
had been eliminated (parameter small_cluster = 972 – approximately .1 hectare). 
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Task 5 – Identify areas of potential habitat that can be considered suitable only if it is proximate to 
taller habitat classes.  The next step was to determine which predominantly habitat class 5 polygons were 
eligible to be considered DFS habitat and which were not.  The criterion arrived at, couched in terms of the 
habitat classes developed in the study, was that classes 1 and 3 needed to represent at least 20% of a 
polygon’s area in order for the polygon to qualify as habitat.   The macro that performed this analysis was 
remove_ineligible_habitat.aml.    The key parameter for this was prp_1_3, which was set to 0.2.  Statistics 
were generated for each general habitat polygon (GEN_HAB = “Y”) showing the total proportion of habitat 
classes 1 and 3 in the polygon.   If this number was less than 0.2, the polygon’s GEN_HAB value was 
changed to “N”. 
 
An issue with early pilot runs was a difficulty that arose because of the relative inaccuracy of the landuse 
polygons compared with the LiDAR data sets.  Due to this inaccuracy, large open areas along the edges of 
fields were being classed as cleared forest and assigned the “recent clearcut” value of 9 due to overlap with 
"forest" polygons from the land use coverage.  Early attempts to correct this problem by simply using a 
minimum acreage criterion were inadequate, resulting in many areas still being misclassified.    The macro 
that was created and used to correct this problem was set_clearcut_by_fnf_proportion.aml.   The need was 
to determine if polygons identified as recent clearcut were really forest that had been cleared, or a sliver 
polygon that was more likely to be of agricultural or other cleared land use. The rule-of-thumb used was 
that if more than 70% of the boundary was with forest, the polygon was considered to be cleared area under 
forest land use.  Otherwise, it was considered other-cleared-land use.  70% criterion was a cutoff value that 
seemed to make the distinction between agriculture and forest land use fairly consistently.  The aml 
computed the proportion of the boundary that was between forest and non-forest (fnfprop), and tested that 
value against 0.7 to determine which way to assign it. 
 
Task 6 – Perform cleanup to eliminate small polygons.  Following the elimination of small non-habitat 
holes (the criterion used for this was 144 square meters (4 grid cells)), polygon boundaries were 
generalized to remove some of the stair-stepping (using the ArcInfo generalize command, with a weed 
tolerance of 11 on the bendsimplify option).   The resulting polygon coverage was then dissolved to create 
two final polygon coverages – one for the detailed habitat classes (GRPxxHCDTL) and one for the general 
habitat classes (GRPxxHCGEN).   See Figure 3 for illustration of final product. 
 

Step 5.  Combine all groups to create county-wide data sets 
 
After completion of grid processing and polygon creation for all groups, group data sets were merged to 
create county-wide deliverable data sets.   The processes for this were driven by macros 
combine_all_grid_groups.aml for the grids, and combine_all_poly_groups.aml for the polygons.   The 
resulting grid data sets were combintall (the combined integer grid) and combrcall (the combined 
reclassified grid.  A water mask was used to eliminate open water from these grids.  Due to limitations of 
the ArcInfo GRID processor, the combined integer grid contained a reduced set of attributes (qmhc, qmha, 
htc, hta, and rccc – the 5-class reclassified canopy closure).  However, the combined reclassified grid 
included all reclassified heights and canopy closure (RCQMHC, RCQMHA, RCHTC, RCHTA, RCCC), 
the habitat class assignment before (HABCLSINI) and after (HABCLSPLY) polygonization, and the 
general habitat class (GENHABCLS).   This table was used to do the crosstabulation shown in Table 1 of 
the final habitat classes (per the polygons) with the grid height and crown closure values.  Table 1 therefore 
reflects the grouping that occurred during the generalization process.   
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Table 1: Acres by final polygon HABCLASS, RCQMHC and RCCC

Sum of ACRES RCQMHC 
HABCLSPLY RCCC 9 8 7 6 5 4 3 2 1 Grand T

1 5 57 1,362 9,783 3,577 1,164 157 27 4 16,130
4 0 18 279 309 244 56 17 5 928
3 0 4 75 136 166 45 19 9 453
2 0 1 16 25 33 20 10 10
1 0 0 4 5 7 5 3 6 25

1 Total 58 1,385 10,156 4,051 1,614 282 76 33 25 17,681
2 5 0 0

4 0 0 0
3 0 0 0
2 0 0 0 0
1 0 0

2 Total 0 0 0 0 0 0 0
3 5 0 16 3,106 14,431 4,824 500 62 7 22,946

4 1 192 1,041 793 170 41 9 2,246
3 0 54 291 429 128 44 18 964
2 0 11 50 79 47 23 22 0 232
1 0 3 10 15 9 6 12 45

3 Total 0 18 3,365 15,822 6,140 854 176 68 45 26,488
4 4 0 0 0

3 0 0
2 0 0 0
1 0 0 0

4 Total 0 0 0 0 0 0
5 5 0 6 532 4,438 15,125 2,066 132 10 22,308

4 0 0 52 425 1,838 428 77 14 2,835
3 0 49 329 1,072 304 85 31 1,869
2 0 9 55 168 103 46 39 421
1 0 3 12 29 18 12 24 82

5 Total 0 7 644 5,260 18,231 2,919 351 118 82 27,613
6 5 0 0 0 1 0 0

4 0 1 1 1 1 0 0
3 0 1 7 7 5 2 1
2 0 6 25 32 10 4 4
1 0 3 9 10 3 3 6 26

6 Total 0 11 42 50 21 9 11 26 171
7 5 0 24 342 3,038 12,798 8,176 682 25,059

4 0 4 45 433 2,289 2,675 649 6,095
3 0 0 3 31 307 1,889 2,607 1,057 5,894
2 0 0 6 39 234 833 1,482 1,080 0 3,674
1 0 3 16 71 215 393 556 1,546 2,800

7 Total 0 1 40 472 4,082 18,025 15,332 4,024 1,546 43,522
8 5 0 0 3 20 78 181 566 1,813 2,661

4 0 0 2 12 40 119 332 1,868 2,373
3 0 0 3 14 46 141 391 3,548 4,144
2 0 0 4 17 43 75 227 3,339 1 3,705
1 0 0 2 7 13 23 68 1,462 1,576 3,149

8 Total 0 1 15 70 219 539 1,583 12,030 1,576 16,033
9 5 0 2 11 35 73 29 11 161

4 0 1 3 10 22 55 34 17 143
3 0 2 9 27 55 110 91 77 0 372
2 0 1 17 58 114 133 154 269 0 747
1 0 1 11 30 57 68 94 326 4,937 5

9 Total 0 6 42 137 283 439 401 700 4,938 6,947
10 5 0 1 7 45 95 52 19 0 218

4 1 3 23 85 68 44
3 0 1 5 28 126 154 188 503
2 0 0 2 11 47 109 211 519 0 898
1 0 0 1 6 23 56 128 539 74,995 75,749

10 Total 0 0 5 33 165 471 613 1,309 74,995 77,590
11 5 0 0 6 49 235 531 317 207 0 1,344

4 0 0 3 15 63 266 268 236 853
3 0 1 6 26 87 358 479 675 1,632
2 0 1 12 52 156 290 482 1,221 1 2,216
1 1 1 8 30 92 174 276 1,096 118,594 120,271

11 Total 1 2 35 172 634 1,619 1,822 3,435 118,594 126,314
Grand Total 60 1,420 14,314 26,058 31,420 25,168 20,365 21,728 201,828 342,360

otal

114
56

0

0

1

100

0

179

2
5

23
82
59

,523

223

     
 
Note that because the polygon habitat class acreage values in this table originate from a 6-m grid version of 
the final polygon habitat class, they are close to but do not exactly match the acreages obtained by 
summarizing acreage by habitat class in the polygon data set (Table 2).   The acres shown here include the 
detail of small isolated 6-m grids of different height classes that were subsequently filtered and gouped into 
a larger polygon of  one habitat class.  The polygon coverages grp_allhcdtl (the detailed habitat classes) and 
grp_allhcgen (the general habitat classes) were converted to shapefiles and the water and other hab_class 
null polygons deleted.  The final  shapefiles were grp_allhcdtl polygon.shp and grp_allhcgen polygon.shp. 
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Land in Dorchester County 
Table 2:  Summary of Polygon Acreages by DFS Habitat Class

HAB_CLASS Acres Percent
1 17,679            5.2%
2 1                     0.0%
3 26,489            7.7%
4 0                     0.0%
5 27,614            8.1%
6 171                 0.0%
7 43,519            12.7%
8 16,032            4.7%
9 6,945              2.0%

10 77,816            22.7%
11 126,318          36.9%

Total 342,584          100.0%                                  
  
Note that habitat class 2 and 4 and 6 (tall trees with very low canopy closure) are only found in less than 
one percent of the county.  Habitat class 6 may reflect areas where salt-water intrusion is causing some die-
offs in forest near the water, but this interpretation needs to be further investigated.   Habitat Class 10 was 
interpreted as wetlands, and 11 is agriculture or other cleared lands.  Also, there were 22,377 acres of 
Habitat Class 5 that was considered suitable for DFS and 5236 acres that were not considered suitable.  
Thus there was 66,546 acres of habitat considered suitable for DFS using this model, and 71,732 acres of 
forest considered unsuitable for DFS.  Further evaluation of this model for DFS is needed. 
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The maps in Figure 3 depict the transformation from grid data to polygon data for a small area of the 
County. 

 
 
Figure 3:  Sequence showing effects of generalization.  All frames show the final polygon layer 
superimposed for reference (fine black outlines).  Images shown are:  Top: NAIP color photography, 
QMHC grid (red is tallest).  Bottom:  habitat classes before (left) and after (right) polygonization and 
generalization.  Red represents the most suitable habitat.  The tan color in the left represents all non-forest; 
in the right this is broken down further to show wetlands (light blue), agriculture or other cleared land (tan), 
and pink (recent clearcut – see middle left of lower right frame).  
 

Summary 
Based on the feedback from USFW’s field checking of the polygons, there is a useful predictive 
relationship between the habitat classification developed in the analysis and the kind of forest that is 
considered to be good DFS habitat.   The LiDAR data were consistent and appear to have been appropriate 
to the task.  The collaborative relationship between USFW and Sewall was productive in defining and 
implementing the final process and the refinements to develop a useful classification. 
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Note on aml’s included with the delivery: 
 
All aml’s used in the process are included on the mobile hard drive in the folder M:\JWS\process\aml.  The 
folder M:\JWS\process\aml\batch_amls contains batch aml’s.  These were used to drive the process through 
the various tiles.   All aml’s are set up to run with the folder structure provided on the MHD, with the 
amlpath set to M:\JWS\process\aml, M:\JWS\process\aml\batch_amls.   The two primary macro’s are 
grid_heights.aml, which drives the process of creating grids from the LiDAR first return and bare earth 
values; and make_polygons.aml, which is run by group and acts on the combined grids to create the 
generalized polygons for each group.  In order to facilitate the re-execution of the polygon creation process, 
should there be a need to change some of the parameters, make_polygons.aml can be re-run with different 
parameters.  A batch aml that will re-run all groups is provided - batch_rerun_polygon_creation.aml.   
However, neither this aml nor the batch commands for re-running groups, call make_polygons.aml with all 
parameters – re-running these as provided will currently use the default values (those mentioned in the text 
above) unless different values are provided as arguments.   The SAS routine that is called by 
grid_heights.aml to process the LiDAR data to gridded heights has not been provided.   The macros are not 
guaranteed in any way, and should only be used by USFW’s Chesapeake Bay Field Office with the 
Dorchester County data. 
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