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Zapus hudsonius preblei is one of 12 recognized subspecies of meadow jumping mice found 

throughout North America.  Recent morphometric, phylogeographic, and phylogenetic 

comparisons among Z. h. preblei and neighboring conspecifics have called into question the 

taxonomic status of selected subspecies.  We present additional analyses of the phylogeographic 

structure within Z. hudsonius that contradict previous findings and clearly demonstrate that each 

subspecies considered is genetically differentiated from its neighboring subspecies.  In a more 

comprehensive analysis of genetic data, we compared a larger collection of samples over a 

greater representation of both the mitochondrial and nuclear genomes than was previously 

investigated and placed particular emphasis on the relatedness of Z. h. preblei to each 

neighboring subspecies. A survey of 21 microsatellite DNA loci and 1380 base pairs from two 

mitochondrial DNA regions (control region and cytochrome b) revealed that each Z. hudsonius 

subspecies is genetically distinct to varying degrees, and thus our data do not support the null 

hypothesis of a homogeneous gene pool among the five subspecies found within the 

southwestern portion of the species’ range.  The magnitude of the observed differentiation was 

considerable and was supported by highly significant findings for nearly every statistical 

comparison made, regardless of the genome or the taxa under consideration.  We observed 

strong structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes 

that corresponded directly with the disjunct distributions of the subspecies investigated.  Given 

the level of correspondence between the observed genetic population structure and the 

previously proposed taxonomic classification of subspecies (based on the geographic separation 

and surveys of morphological variation), we conclude that the nominal subspecies surveyed in 

this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and 

Z. h. intermedius. The findings of this study differed in nearly every comparison with 

conclusions drawn from the only other molecular genetics data published on the taxonomic 

status of Z. hudsonius subspecies.  The disparities between the previous and present study 

include differences in sampling design, tissues chosen for analysis, number of molecular 

characters sequenced and microsatellite fragments surveyed, methods used to portray 

genealogical relationships, test statistics applied, and criteria used to determine uniqueness.   
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Preble’s meadow jumping mouse (Zapus hudsonius preblei) is widely believed to be a remnant 

of past proglaciation of the Colorado Piedmont.  The distribution of Z. h. preblei is confined to 

the riparian systems where moisture is most plentiful (Jones et al. 1983).  At present, the range of 

the subspecies stretches along the eastern slope of the Rocky Mountains from east-central 

Wyoming south to Colorado Springs, Colorado.  The availability of suitable riparian habitat is 

declining throughout the range of Z. h. preblei due to degradation caused by agricultural, 

residential, and commercial development (U.S. Fish and Wildlife Service 1998).  As a result of 

diminishing suitable riparian habitat and small population sizes, Z. h. preblei was listed as a 

threatened species under the U.S. Endangered Species Act (ESA) in 1998 (U.S. Fish and 

Wildlife Service 1998).   

Zapus hudsonius preblei is one of 12 recognized subspecies of meadow jumping mice 

found throughout North America (Hafner et al. 1981).  Subspecies recognition within Z. 

hudsonius has been based primarily on geographic disjunction and morphological variation 

(Krutzsch 1954, Hafner et al. 1981).  Subsequently, morphological comparisons among species 

of the genus Zapus have failed to reliably identify diagnostic characteristics (Jones 1981, but see 

Conner and Shenk 2003).  These morphologically similar subspecies present significant 

challenges to conservation biologists because of taxonomic uncertainty (Preble 1899, Krutzsch 

1954, Ramey et al. 2005).  A morphology-based taxonomy may not reveal true phylogenetic 

relationships as the rate of evolutionary change can vary among lineages and similar 

environmental influences may cause convergence (Grant 1987).   Indeed, a taxonomy based 

solely on phenotypic characteristics can complicate resource management efforts and ultimately 

jeopardize the ecological and evolutionary potential of a lineage (Moritz and Hillis 1996).   

An integrative conservation approach that identifies and sustains ecological processes 

and evolutionary lineages is needed to protect and manage the biodiversity present in the 

southwestern portion of the range of Z. hudsonius.  Inherent in such an approach is the 

identification and characterization of the associated migration, colonization, and extinction 

processes among populations of these putative subspecies (Avise 2004).  Molecular markers, 

with a clear heritable genetic basis and the number of characters limited only by genome size 

(Moritz and Hillis 1996), provide insight into these processes and can be used to reveal genetic 

discontinuities and distinctiveness among or between taxa with slight morphological 
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differentiation (Clark et al. 2000).  It has been repeatedly demonstrated that patterns of gene 

exchange, the extent of genealogical relationships, and accurate reflections of true evolutionary 

relationships (i.e., phylogeny) can be revealed through use of the appropriate type and number of 

molecular genetic markers (Moritz and Hillis 1996, Avise 2004).   
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Recent morphometric, phylogeographic, phylogenetic, and ecologic exchangeability 

comparisons among Zapus hudsonius preblei and neighboring con-specifics have called into 

question the taxonomic status of selected subspecies (Ramey et al. 2005).  The multidisciplinary 

study utilized a hypothesis testing approach to determine uniqueness of subspecies, which 

included analyses of cranial morphometrics and contemporary genetic techniques.  Results of 

multivariate morphometric analyses on general cranial measurements failed to support the 

original description of Z. h. preblei as a distinct subspecies.  The genetic components of the 

study compared haplotypes generated from the mitochondrial (mt) DNA control region and 

multilocus genotypes at nuclear microsatellite loci utilizing DNA obtained from museum skins, 

frozen liver, or ethanol-preserved ear punch tissues.  Ramey et al. (2005) concluded that recent 

gene exchange and low levels of genetic structure among subspecies supported synonymization 

of Z. h. preblei, Z. h. campestris (Bear Lodge meadow jumping mouse), and Z. h. intermedius 

(meadow jumping mouse).  The study by Ramey et al. (2005) constitutes the lone published 

molecular population genetic analysis of Z. hudsonius, with important implications for the 

evolution, ecology, and conservation status of Z. h. preblei.  The proposed synonymy of these 

subspecies has prompted a subsequent reevaluation of the status of Z. h. preblei under the ESA 

(US Fish and Wildlife Service 2005).    

Studies of phylogeographic relationships among intraspecific taxa often exact a more 

rigorous study design than that required for interspecific comparisons (Avise 2004).  Further, 

phylogeographic studies can be initially misled by dependence on tissues yielding insufficient 

quality (Kirchman et al. 2001) and consistency of DNA (Steinberg 1999), inadequate portrayals 

of genealogical relationships (Brower et al. 1996) through use of inappropriate methodology 

(Posada and Crandall 2001), or insufficient resolution from too few molecular or morphological 

characters (Smouse and Chevillon 1998, Mitchell et al. 2000). Ramey et al. (2005) utilized dried 

museum skins from selected collections, assessed the differentiation among selected subspecies 

of Zapus hudsonius with a hierarchical pairwise haplotypic distance approach, surveyed 

sequence variation for a 346 base pair (bp) fragment of the mtDNA control region, and 
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represented nuclear DNA variation with the findings of five microsatellite DNA loci.  Ramey et 

al.’s (2005) critical test of uniqueness for Z. h. preblei and related taxa was that greater 

molecular variance was demonstrated between subspecies than within, a test criterion that, to our 

knowledge, is not generally accepted.  In light of the criteria applied to a relatively small 

fragment of mtDNA and minimal number of microsatellite loci, the methods applied and 

conclusions drawn by Ramey et al. (2005) warrant independent verification. 
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 Here, we report on additional results concerning the phylogeographic structure and 

evolutionary distinctiveness of subspecies within Zapus hudsonius, placing particular emphasis 

on the relatedness of Z. h. preblei to each neighboring subspecies by comparing a larger 

collection of samples over a greater representation of both the mitochondrial and nuclear 

genomes than was previously investigated.  Analyses consisted of evaluating sequence variation 

at 374 bp of the mtDNA control region and approximately 1000 bp of the mtDNA cytochrome b 

(cyt b) region, combined with the fragment analysis of a four-fold greater number of nuclear 

microsatellite DNA loci.  We tested the null hypothesis that collections of Z. hudsonius 

distributed among Z. h. preblei, Z. h. campestris, Z. h. intermedius, Z. h. pallidus, and Z. h. 

luteus comprise a single homogeneous unit (i.e., fail to exhibit genetic discreteness) as reflected 

by the spatial distribution of mtDNA haplotypes and microsatellite DNA allele frequencies.  Due 

to the taxonomic revision proposed by Ramey et al. (2005), importance was placed on 

comparisons among Z. h. preblei, Z. h. campestris, and Z. h. intermedius.  In the present study 

we accept as evidence of subspecific distinctiveness the conditions previously defined as 

significant phylogeographic separation of mtDNA alleles between subspecies (or populations), 

combined with congruent phylogeographic structure for nuclear loci (Avise and Ball 1990, 

Moritz 1994a).    

    

METHODS 

Tissue samples - Minimally invasive tissue samples (e.g., ear punches and blood) of Zapus 

hudsonius campestris, Z. h. intermedius, Z. h. pallidus, and Z. princeps were obtained from 

individuals trapped after emergence from hibernation in summer 2005 (Table 1).  Archived 

tissue samples were obtained from Z. h. preblei (ear punch), Z. h. intermedius (frozen liver; one 

collection from Morrison County, Minnesota) and Z. h. luteus (frozen liver).  All tissues were 

forwarded directly from the collector or museum to the U.S.G.S.-Leetown Science Center, 
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Kearneysville, WV for DNA extraction, fragment analysis, and DNA sequencing. 152 

153  

DNA extractions - DNA aliquots were obtained from ear punches (in 95% ethanol), frozen (-80° 

C) liver, or blood tissue (on FTA cards; Whatman Inc., Clifton, NJ, USA) using the PUREGENE 

DNA extraction kit (Gentra Systems, Inc., Minneapolis, MN) and resuspended in TE (10 mM 

Tris-HCl, pH 8.0, 1 mM EDTA).   
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Microsatellite DNA Amplification and Fragment Analysis – Twenty-one microsatellite loci 

developed by three different laboratories were screened in all individuals sampled (Appendix A). 

 The three sets of markers were: 1) Z.7, Z.20, Z.26, Z.48, and Z.52 (Ramey et al. 2005); 2) Ztri2, 

Ztri17, Ztri19, and Ztri24 (isolated from Z. trinotatus; Vignieri 2003); and 3) ZhuC3, ZhuC6, 

ZhuC12, ZhuC104, ZhuC119, ZhuC120, ZhuC129, ZhuC130, ZhuD107, ZhuD108, ZhuD109, 

and ZhuD122 (King et al. in press).  Attempts to obtain tissue or DNA samples for 

standardization with the Ramey et al. (2005) microsatellite DNA allele scoring were 

unsuccessful.  Microsatellite DNA amplification reactions were conducted under laminar flow 

conditions and consisted of 100-200 ng of genomic DNA, 1X PCR buffer (10 mM Tris-HCl, pH 

8.3, 50 mM KCl), 2 mM MgCl
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2, 0.25 mM dNTPs, 0.5 µM forward (fluorescently labeled) and 

reverse primer, and 0.1 U Taq DNA polymerase (Promega, Madison, WI, USA) in a total 

volume of 10 µl.  Amplifications were carried out on either a PTC-200 or PTC-225 thermal 

cycler (MJ Research, Watertown, MA, USA) using the following procedure: initial denaturing at 

94°C for 2 min, 35 cycles of 94°C for 40 sec, 56°C for 40 sec, 72 °C for 1 min, and a final 

extension at 72 °C for 10 min.  Fragment analysis was performed on an Applied Biosystems 

(Foster City, CA, USA) ABI 3100 Genetic Analyzer, under the conditions described in King et 

al. (2001).  Genescan™ 2.1 Analysis software and Genotyper™ 2.0 Fragment Analysis software 

(Applied Biosystems) were used to score, bin, and output allelic (and genotypic) data.  

 

Mitochondrial DNA Amplification and Sequencing - Two regions of the mitochondrial genome 

were amplified under laminar flow conditions and sequenced for this study.  A region of the non-

coding control region (CR) was amplified by double-stranded PCR using the primers L15926 

(5’-TCA AAG CTT ACA CCA GTC TTG TAA ACC - 3’) and H16498 (5’- CCT GAA CTA 

GGA ACC AGA TG -3’) (Kocher et al. 1989; Shields and Kocher 1991) for all Z. hudsonius.  

178 
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182 
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Specimens of Z. princeps (N=7) were amplified using the primers L15398 (5’- ATC AGC ACC 

CAA AGC TGA TAT TC - 3’) (Ramey et al. 2005) and H16498.  Polymerase chain reactions 

consisted of an initial denaturation at 94 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

oC  for 3 min, followed by 35 cycles of 1 min at 94 oC 

(denaturation), 1 min at 48 oC (annealing), and 2 min at 72 oC (extension) followed by a final 

extension period of 5 min at 72 oC.  The mitochondrial cytochrome b (cyt b) gene of each 

specimen was amplified by double-stranded PCR using two primers designed for this study 

L14398A (5’- CCA ATG ACA TGA AAA ATC ATC G - 3’) and H15634A (5’- TGG TTT 

ACA AGA CCA GAG TAA - 3’). Polymerase chain reactions consisted of an initial 

denaturation at 94 oC  for 3 min, followed by 35 cycles of 1 min at 94 oC (denaturation), 1 min at 

55 oC (annealing), and 2 min at 72 oC (extension) followed by a final extension period of 10 min 

at 72 oC.  Polymerase chain reactions consisted of 25 µl total volume, containing 2.5 µl of 

MgCl2-free buffer, 2.5 µl of MgCl2 solution, 0.5 µl of dNTPs (2.5 mM each), 1.25 µl of each 

primer (10 µM), one unit Taq polymerase, three µl of template (ca. 50-100 ng double-stranded 

DNA), and 13.75 µl of sterile water.  Negative controls, which did not include template DNA, 

were set up alongside PCR reactions as checks for contamination of PCR reagents. Polymerase 

chain reaction products were purified with exonuclease I and shrimp alkaline phosphatase. The 

CR and cyt b PCR products were then sequenced using ABI BigDye v3.1 terminator cycle 

sequencing chemistry, with sequences read by an ABI 3100 Genetic Analyzer (Applied 

Biosystems). The control region fragment was sequenced using the primers L15926 or L15398 

and H16498.  The cyt b gene was sequenced using the primers L14398A and H15634A, and 

when necessary, internal primers for the cyt b gene.  Internal primers designed specifically for 

the taxa in this study were: CytbIF1 (5’- CCA TTC CAT ATA TTG GCT CA-3’), CytbIF2 (5’- 

TCC CAT TCC ATC CTT ACT ACA - 3’), CytbIR1 (5’ - CCA ATA TAT GGA ATG GCT GA 

- 3’) and CytbIR2 (5’ – GGG GTA TTT AAT GGG TTT GC – 3’).  Cycle sequencing reaction 

conditions consisted of 30 cycles of 20 sec. at 96 oC (denaturation), 20 sec at 50 oC (annealing), 

and 4 min at 60 oC (extension).  Forward and reverse sequences for each individual were 

assembled using Sequencher 4.5 (Gene Codes Corporation, Ann Arbor, MI), were aligned to a 

reference sequence from GenBank (Z. h. preblei, AY598282 for CR and Z. trinotatus, AF119262 

for cyt b), and were double-checked by two researchers.  Clustal X (Thompson et al. 1994) was 

used to obtain multiple sequence alignments for CR and cyt b. Alignments of both datasets were 

performed with default settings and were straightforward as only three sites had indels in the CR 
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dataset and no indels were encountered in cyt b, as would be expected for this protein-coding 

gene.   
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Data analysis 

Microsatellite DNA – Observed genotype frequencies were tested for consistency with Hardy-

Weinberg and linkage equilibrium expectations using randomization tests implemented by 

GENEPOP 3.1 (Raymond and Rousset 1995).  The Hardy-Weinberg test used the Markov chain 

randomization test of Guo and Thompson (1992) to estimate exact two-tailed p values for each 

locus in each sample.  Global tests combined these results over loci and sampling locations using 

Fisher’s method (Sokal and Rohlf 1994). Tests for linkage equilibrium were conducted using the 

randomization method of Raymond and Rousset (1995) for all pairs of loci. Bonferroni 

adjustments (Rice 1989) were used to determine statistical significance for these and all other 

simultaneous tests.   Average observed (H

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

o) and expected (He) heterozygosities were calculated 

using the program BIOSYS-1 (Swofford and Selander 1981).  The amount of allelic diversity 

(expressed as allelic richness; El Mousadik and Petit 1996), estimates of population subdivision 

(FST), and inbreeding coefficients (FIS) were determined using the program FSTAT (Goudet 

1995).  All pairwise FST estimates were tested for significance (i.e., difference from zero) by 

adjusted permutations using FSTAT.  The statistical significance of genetic differences between 

each pair of collections, clusters, and subspecies was tested using the genic differentiation 

randomization test in GENEPOP (Raymond and Rousset 1995).  Results were combined over 

loci using Fisher’s method (Sokal and Rohlf 1994).  

Several techniques were used to describe genetic relationships between subspecies and 

collections.  We used the model-based clustering method of the program structure (Pritchard et 

al. 2000) to infer population structure among collections and to probabilistically assign all 

individuals to the detected clusters (k).  A sequential method of inferring k was used by first 

identifying the “uppermost” hierarchical level of population structure followed by subsequent 

analysis of each subset revealed to identify within-subset structure (Evanno et al. 2005).   In the 

initial phase, k = 1 to k = 15 clusters were considered for the 13 collections using a burn-in of 

15,000 followed by 100,000 iterations.  For each k, 10 independent analyses were performed.  

The optimum number of clusters (subsets) in the initial phase was identified using the second 

order rate of change of the likelihood function with respect to k (∆k) as described by Evanno et 
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al. (2005).  Subsequent analysis of each subset tested k = 1 to k = c+3 (the number of collections 

(c) included in the subset plus three), with a burn-in of 10,000 followed by 10,000 iterations, and 

20 analyses for each k.  In the subsequent (within-subset) analyses, which included low numbers 

of collections, the inferred k was determined by identifying the level of k in which q values 

produced a consensus pattern across the 20 independent analyses.  Individual assignment success 

to the cluster of origin was recorded both as the highest likelihood of assignment (q) and the 

percentage of individuals in a cluster with q ≥ 0.90 (Pritchard et al. 2000).    
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Differences between each pair of collections and subspecies were summarized with Da (Nei 

et al. 1983), calculated by DISPAN (Institute of Molecular Evolutionary Genetics, The 

Pennsylvania State University, University Park, PA, USA).  Simulation has shown that the 

geometric-based Da exhibits a stronger linear relationship with shorter evolutionary times, and 

therefore, estimates better tree topology than other commonly-used genetic distances when 

analyzing microsatellite DNA variation (Takezaki and Nei 1996). An unrooted phylogenetic tree 

was fitted to the data using the Da distance matrix and neighbor-joining (NJ) algorithm. 

TreeView (Page 1996) was used to visualize the tree.  The strength of support for each node in 

the tree was tested by bootstrapping over loci using NJBPOP (J.-M. Cornuet, INRA, 

Montpellier, France).  Multidimensional scaling (MDS), with a Kruskal linear regression loss 

function, was used to summarize relationships among all collections (Systat 10.2; Systat 

Software, Inc., Point Richmond, CA) based on the Da.  MDS was chosen to provide a 

perspective of the underlying structure of the Da matrix without imposition of a bifurcating 

evolutionary history.  Similarity between pairs of collections was represented by 1-Da.   

 Analysis of molecular variance (AMOVA) was used to partition genetic variation among 

clusters and subspecies (Excoffier et al. 1992).  Arlequin 2.0 (Schneider et al. 2000) was used to 

quantify and test the statistical significance of the observed differentiation between subspecies, 

between clusters of collections, and within subspecies and clusters.   

 

Mitochondrial DNA - Each molecular data partition was tested by maximum parsimony (MP), 

distance-based neighbor-joining, and maximum likelihood (ML) analyses using PAUP* 4.0b10 

(Swofford 2002).  For parsimony analyses, heuristic searches were run using unweighted, 

parsimony-informative (PI) characters with the following settings: starting trees for branch 

swapping obtained via stepwise addition, 100 random additions of sequences per run, and tree 
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275 
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bisection-reconnection (TBR) branch swapping on best trees.  An estimate of support for each 

node on parsimony trees was assessed using bootstrap resampling (Felsenstein 1985) with 1,000 

replicates and the full heuristic search algorithm.  Additionally, Bremer support, or decay indices 

(Bremer 1988, 1994), were calculated for nodes occurring in the strict consensus tree of the 

combined dataset using TreeRot v. 2b (Sorenson 1999).  Z. princeps was used as the outgroup in 

all analyses.   To examine whether differences in phylogenetic signal existed between the two 

mitochondrial data partitions, incongruence length differences (ILD, Farris et al. 1994) were 

calculated in PAUP* by the partition-homogeneity test.  Settings for ILD tests were as in 

parsimony analysis, with uninformative sites excluded, and 1,000 replicates per run.    
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The most appropriate model of DNA substitution for each species and each DNA region 

independently and for combined dataset was determined using Akaike Information Criterion 

(AIC) (Posada and Crandall 2001) in Modeltest 3.7 (Posada and Crandall 1998).  ML analyses 

were run in PAUP* with the best-fit model from Modeltest and consisted of a heuristic search 

with the starting tree obtained by neighbor-joining and utilizing the tree-bisection-reconnection 

algorithm for branch swapping. ML bootstrap analyses were run with the “fast” stepwise 

addition algorithm and 500 replicates. NJ trees were generated using the most appropriate 

genetic distance method based on the results of Modeltest. 

 We investigated intraspecific gene genealogies for each gene region using the haplotype 

networking approach in the TCS computer program (Clement et al. 2000).  This analysis 

implemented the statistical parsimony approach of Templeton et al. (1992) and Crandall et al. 

(1994) and was run on representative haplotypes from each data partition which was determined 

using the program Collapse 1.2 (http://darwin.uvigo.es/software/collapse.html).   

 MtDNA nucleotide diversity was estimated for the CR, cyt b and combined datasets 

using Arlequin 2.0.  Exact tests for subspecies and cluster (as defined by structure) haplotype 

differentiation were performed pairwise with 1000 replications in Arlequin 2.0. 

Total haplotypic variation was partitioned into “among versus within” Z. hudsonius 

subspecies using AMOVA (Excoffier et al. 1992). Subspecies- and cluster-level differentiation 

was assessed using Arlequin 2.0 (Schneider et al. 2000).  All AMOVA analyses were conducted 

in two stages to assess divergence from different evolutionary processes.  The first analysis 

incorporated sequence divergence between haplotypes as well as their frequencies (ΦST) by 

calculating either Kimura 2-parameter (CR) or Tamura-Nei (1993) (cyt b) estimates.  The second 
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analysis, which treated all haplotypes as equally differentiated (i.e., distance = 1.0), assessed the 

variance distribution based on haplotype frequencies alone (F

307 

308 

309 

310 
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312 

ST).  Differences between haplotype 

frequencies are assumed to be due to genetic drift.  The significance of pairwise ΦST and FST 

values were calculated by permuting haplotypes between populations 1,000 times.     

 

RESULTS 

Microsatellite DNA- Genotypes at 21 microsatellite DNA loci were determined for 320 Z. 

hudsonius sampled from 13 locations representing five neighboring subspecies (see Table 1 for 

listing and abbreviations; Figure 1).  A high level of genetic diversity was detected among the 13 

collections; 279 alleles were observed across the 21 loci ranging from 7 alleles at Ztri19, 

ZhuC120, and ZhuC130 to 30 at Z.7 (Appendix A).  The mean number of alleles per locus was 

13.3.  Allelic richness estimates for subspecies ranged from 4.3 (Z. h.luteus) to 9.4 (Z. h. 

intermedius and Z. h. pallidus) (Table 2).  Average heterozygosity was lower in Z. h. preblei 

than in other subspecies.  Observed mean heterozygosity ranged from 54.7% in Z. h. preblei to 

75.2% in Z. h. pallidus.  The number of unique alleles observed ranged from 4 (Z. h. preblei) to 

38 (Z. h. pallidus).  Estimates of individual pair-wise genetic distances, using the proportion of 

shared alleles, indicated that levels of genetic diversity observed among the 21 microsatellite loci 

were sufficient to produce unique multilocus genotypes (i.e., genetic distances > zero) for all 

animals surveyed (distances not presented). 
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When organized at the collection level, randomization tests showed that genotypes for 

the majority of locus-by-collection comparisons were consistent with Hardy-Weinberg 

expectations.  A total of 273 locus-by-collection comparisons were made of which 11 (4.0%) 

were statistically significant after Bonferroni adjustment for multiple tests at overall α = 0.05 (p 

< 0.0038).  These comparisons consisted of six collections at six loci: CCWY at Z.26; BRCSD 

and MCMN at ZhuC119; MCMN, BCSD, KBCNE, and SCNM at ZhuC130; BCSD and KBCNE 

at Ztri19; DCC02 at Ztri24; and KBCNE at Z.7 (all but the last occurrence due to heterozygote 

deficiencies).  This level of deviation is likely due to one or a combination of factors including 

sub-structuring of the sample (i.e., Wahlund effect), inbreeding, or the presence of null alleles.  

Interestingly, only one of the deviations was observed in among collections of Z. h. preblei, the 

subspecies targeted for development of 17 of 21 markers surveyed.  This observation, combined 

with the heterozygote deficiencies observed, suggests that differentiation between Z. h. preblei 
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and the neighboring subspecies may have increased the likelihood that null alleles would be 

present in the non-target subspecies.  The number of deviations from Hardy-Weinberg 

expectations increased (N = 19; 18.1%) when collections were pooled as putative subspecies.  

The majority (N = 13) of the significant deviations (overall α = 0.05; p < 0.013) were observed 

among the collections pooled as Z. h. preblei (N = 9) and Z. h. intermedius (N = 4).  All 

deviations were the result of heterozygote deficiencies.  This result suggests that the allele 

frequencies of the populations pooled to form these two subspecies (Z. h. preblei-North and Z. h. 

preblei-South; Z. h. intermedius-West and Z. h. intermedius-East) have achieved different 

equilibria and that sub-structuring of the sample (i.e., Wahlund effect) has been detected.           
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Minimal linkage disequilibrium was observed as four of 210 (1.9%) comparisons of each 

locus pair across all collections was found to be significant after correction for multiple tests 

(overall α= 0.05, p < 0.0048). The linkage disequilibrium was observed between Z.20 and 

ZhuD122, Z.20 and Z.52, ZhuD107 and ZhuD122, and Z.7 and ZhuD109 with each occurring in a 

single collection.  This finding was likely a result of sampling error, year-class mixing, 

population mixing, or a combination of the three rather than physical linkage among loci.  

 Allele frequency heterogeneity was observed throughout the study area.  Among 1603 

single-locus pair-wise tests of allele frequency heterogeneity, 1186 (74.0%) indicated departures 

from homogeneity after correction for multiple tests (α = 0.05, p < 0.0006).  When testing allele 

frequency heterogeneity across 21-locus genotypes, highly significant heterogeneity was 

observed in all 78 pairs of collections (α = 0.05, p < 0.0006).   

Results from the program structure initially indicated that k = 3 was the appropriate 

number of clusters to be recognized among the 13 collections of Z. hudsonius genotyped at 21 

microsatellite DNA loci.  The three clusters (subsets) resulted from the 320 individuals (and 12 

collections) being combined (and designated) as follows: subset [A] - LCCO1, LCCO2, DCCO1, 

DCCO2, ECCO1, ECCO2 (Z. h. preblei); subset [B] - CCWY, CCSD (Z. h. campestris) and 

BRCSD and MCMN (Z. h. intermedius); and subset [C] - BCSD and KBCNE (Z. h. pallidus) 

and SCNM (Z. h. luteus) (Figure 2).  The three clusters (or subsets) detected the uppermost 

hierarchical level of population structure, suggesting that the collections constituting Z. h. 

preblei form a distinct grouping from the Z. h. campestris and Z. h. intermedius collections, 

which are in turn distinct from the Z. h. pallidus and Z. h. luteus collections.  This structure was 

confirmed by 100% correct assignment of each mouse to the subset-of-origin based on q values 
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(Table 3).  The average value of qMAX for the subsets ranged from 0.96 ([B]) to 0.99 ([A] and 

[C]).  Subsequent analysis of the three subsets suggested a strong pattern of genetic 

differentiation throughout the study area and the presence of k = 7 definable clusters (Figure 2). 

This analysis identified phylogeographic discontinuities present within Z. h. preblei that 

corresponded to the northern and southern collections (clusters 1 and 2, respectively), and Z. h. 

intermedius that associate with the western and eastern collections (clusters 4 and 5, 

respectively), as well as clusters associated with Z. h. campestris (cluster 3), Z. h. pallidus 

(cluster 6), and Z. h. luteus (cluster 7).  The strength of the differentiation among these clusters 

was also evident upon inspection of the individual assignment results and the average value of 

qMAX (Table 3).  That is, when each individual was assigned to cluster based on the largest 

value of q, average assignment success to cluster of origin was 99.7% (319/320 individuals 

correctly assigned).   A lone Z. h. preblei individual from Z. h. preblei-South (cluster 2) was 

incorrectly assigned to Z. h. preblei-North (cluster 1).  Average values of qMAX for the seven 

clusters ranged from 0.95 (Z. h. intermedius-West) to 0.99 (Z. h. pallidus, cluster 6; Z. h. luteus, 

cluster 7).  When using q ≥ 90 as an assignment threshold, the percentage of correct assignment 

to cluster ranged from 89.3% (Z. h. intermedius-West) to 100.0% (Z. h. intermedius-East, Z. h. 

pallidus, and Z. h. luteus).  The correct assignment success at six of the seven clusters exceeded 

90.2%.  When compared at the subspecies level (q ≥ 90 criterion), assignment success ranged 

from 90.2% (Z. h. campestris) to 100% (Z. h. preblei, Z. h. pallidus, and Z. h. luteus).  The 

highest rate of incorrect assignment occurred between Z. h. campestris and Z. h. intermedius.    
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 Pair-wise genetic distance values (Da, Nei et al. 1983) were calculated between all 

collections to investigate evolutionary relationships in allele frequencies (Table 4).  The greatest 

genetic distances occurred between the collection representing Z. h. luteus and all other 

collections; the lowest genetic distances were observed alongside the diagonal between 

collections from the same subspecies or cluster (as defined by structure).  The structure 

underlying the Da matrix is illustrated with an unrooted neighbor-joining (NJ) tree (Figure 3) and 

by graphical depiction of the multidimensional scaling analysis (stress of final configuration = 

0.072; R2 = 0.98; Figure 4).  The patterns observed in both graphical depictions are congruent 

with each other and previous analyses, illustrating the high level of differentiation among and 

within the five subspecies.  The seven distinct clusters of collections identified by structure are 

evident in both diagrams.  The distinctiveness of the two clusters associated with Z. h. preblei is 
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confirmed relative to the other subspecies (100% bootstrap support) and each other (100% 

bootstrap support). Similarly, both figures depict the differentiation observed between the two Z. 

h. intermedius collections (lower bootstrap support) and the other subspecies.  The collections of 

Z. h. pallidus and Z. h. luteus appear similarly distinct, while the closest genetic relationship 

exists between Z. h. campestris and Z. h. intermedius.   
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 A high level of genetic differentiation was also observed in comparisons of FST values at 

the cluster (Table 5), and subspecies (Table 6) scale.  All 21 tests of significance in pair-wise FST 

values among the scales (cluster and subspecies) were greater than zero (p < 0.003) indicating 

the presence of numerous significant genetic discontinuities throughout this portion of Z. 

hudsonius’ range.  Pair-wise FST values were lowest between clusters within subspecies (Z. h. 

preblei-North and Z. h. preblei-South, 0.11; Z. h. intermedius-West and Z. h. intermedius-East, 

0.07) and between Z. h. intermedius-East and Z. h. campestris (0.10).  FST estimates were highest 

between the Z. h. preblei clusters and the Z. h. luteus, Z. h. intermedius and Z. h. pallidus clusters 

(all values ≥ 0.20).  Moderately high FST estimates were observed between the Z. h. preblei 

clusters and Z. h. campestris, and between Z. h. pallidus and the Z. h. intermedius and Z. h. 

campestris clusters.  FST estimates at the subspecies level (all collections and clusters pooled) 

mirrored those observed among clusters with the highest estimates observed between Z. h. 

preblei and Z. h. luteus, Z. h. intermedius and Z. h. pallidus.  The lowest FST estimate was 

observed between Z. h. campestris and Z. h. intermedius.    

 Quantitative estimates of hierarchical gene diversity (AMOVA) among subspecies and 

clusters also identified statistically significant genetic structuring, with the greatest amount of 

variation distributed within clusters and subspecies.  Results of the comparison between the five 

subspecies (all collections pooled) determined that 17.4% (p < 0.000001) of the genetic variation 

occurred between subspecies and 82.6% (p < 0.000001) was due to differentiation within 

subspecies.  When the data were partitioned into clusters as identified by the program structure, 

slightly more variation could be attributed to differentiation among clusters (18.1%, p < 0.00001) 

than among subspecies, and 81.9% (p < 0.000001) of the variance was found within clusters.  

When clusters are grouped into subspecies, 11.3% (p < 0.024) of the variation was distributed 

between subspecies, 7.9% (p < 0.000001) between clusters within subspecies, and 80.8% (p < 

0.000001) of the variance observed within clusters.    
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Control region 

A total of 305 Z. hudsonius individuals from 13 collections representing five neighboring 

subspecies were analyzed for sequence variation at the 5’-end of the mtDNA control region 

(CR).  The number of polymorphic sites, haplotypes, and nucleotide diversity observed for the 

374 bp of CR are provided in Table 7.  For this region, 28 (7.5%) sites were variable, 27 (7.2%) 

sites were parsimony-informative, three sites included indels, and all were parsimony-

informative when coded as a fifth base.  Nucleotide diversity was low across the study, and 

ranged from 0.0000 in Z. h. luteus to 0.0060 in Z. h. pallidus (Table 7).  Twenty-seven CR 

haplotypes were observed study-wide for Z. hudsonius, yet none were shared among the five 

subspecies (Appendix B).  Haplotype counts differed dramatically between collections for each 

subspecies and cluster (as defined for microsatellite DNA variation by the program structure) as 

18 of 25 (72%) haplotypes were not shared among collections.  For Z. h. preblei, 3 of 4 CR 

haplotypes observed were not shared between the northern and southern clusters.     

A network of Z. hudsonius CR haplotypes was constructed using statistical parsimony 

methods (Figure 5).  Gaps were included as a fifth character state and the 0.95 limit for 

connections was eight steps.  Two unconnected haplotype networks resulted from the statistical 

parsimony analysis that corresponded to a Z. h. preblei, Z. h. intermedius, and Z. h. campestris 

network, and a Z. h. pallidus, and Z. h. luteus network.  Within the Z. h. preblei - Z. h. 

intermedius - Z. h. campestris network, Z. h. preblei haplotypes formed a group that was one 

mutational step from a group comprised of eight Z. h. intermedius haplotypes, which was in turn 

separated from a group of five Z. h. campestris haplotypes and one Z. h. intermedius haplotype 

(ZhiCR_E) by one mutational step. 

 Adjusted (net) sequence divergences (Kimura 2-parameter) between Z. hudsonius 

subspecies for the mtDNA CR were relatively low (Table 8), averaging 3.37%.  Net distances 

ranged between 0.29% (Z. h. campestris - Z. h. intermedius) and 5.63% (Z. h. campestris - Z. h. 

luteus).  Distances between Z. h. preblei and other subspecies ranged between 0.57% (Z. h. 

intermedius) and 5.08% (Z. h. luteus).  The genetic distance between Z. h. preblei and Z. h. 

campestris (1.03%) was nearly twice the distance observed between Z. h. preblei and Z. h. 
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intermedius.  The average genetic distance between Z. hudsonius subspecies and Z. princeps was 

10.33%.     
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     Analysis of molecular variance of CR indicated the presence of strong genetic 

differentiation among the five subspecies.  Global ΦST (0.96) and FST (0.37) values, for distance 

(Kimura 2-parameter) or frequency-based analysis (use of conventional F-statistics), 

respectively, were high and significantly different from zero (p < 0.00001) (Table 9).  As no 

haplotypes were shared among the five Z. hudsonius subspecies, FST values (a measure of 

haplotype frequencies only) generated by the AMOVA analysis have limited biological 

resolution and are provided only for comparison to previous findings (Ramey et al. 2005).  A 

global ΦST of 0.96 indicates that nearly all of the CR haplotype variance (96%) was distributed 

between subspecies, a result consistent with the absence of any shared haplotypes.  Pair-wise 

ΦST comparisons of Z. h. preblei with the other subspecies ranged from ΦST = 0.69 (Z. h. 

intermedius) to ΦST = 0.95 (Z. h. luteus) and averaged ΦST = 0.85. A comparison of CR 

haplotype variation among the three subspecies proposed for synonymy by Ramey et al. (2005), 

Z. h. preblei, Z. h. intermedius, and Z. h. campestris, resulted in 75% of the variance being 

distributed among subspecies.  Moreover, the AMOVA suggests that Z. h. preblei is distinct 

from other neighboring subspecies and is evolutionarily more similar to Z. h. intermedius than to 

Z. h. campestris.  This finding differs from the pattern observed during analysis of the nuclear 

DNA, which found Z. h. preblei to exhibit a lower genetic distance between Z. h. campestris.  

The lowest level of differentiation among these three subspecies was observed between Z. h. 

intermedius and Z. h. campestris (ΦST = 0.59).    Significant differentiation was recorded 

between all subspecies comparisons with ΦST values ranging from 0.57 (Z. h. pallidus – Z. h. 

luteus) to 0.97 (Z. h. campestris – Z. h. luteus).   

CR haplotype variation distributed among the seven clusters was similar to that observed 

among the subspecies, as 90.2% of the variance was distributed among clusters and 9.8% within 

clusters.  CR haplotype variation distributed among and within the seven clusters found that 

82.8% (p < 0.025) of variance was distributed among defined clusters, 7.3% (p < 0.00001) 

distributed among collections within clusters, and 9.9% (p < 0.00001) was attributed to 

differences within collections.  These findings mirrored the high level of genetic differentiation 

observed upon survey of these clusters with the nuclear microsatellite DNA markers.  Exact tests 

for differentiation based on haplotype frequencies for all pairs of subspecies (N = 10 
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comparisons) and clusters (N = 15 comparisons) were statistically significant (p < 0.00001).  493 
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Cytochrome b 

A total of 292 Z. hudsonius individuals from 13 collections representing five neighboring 

subspecies were analyzed for sequence variation at the mtDNA cyt b gene.  For this region, 116 

(11.5%) sites were variable, and 84 (8.3%) sites were parsimony-informative. The number of 

polymorphic sites, haplotypes, and nucleotide diversity observed for each subspecies for the 

1006 bp of cyt b are provided in Table 7.  Nucleotide diversity was low across the study and 

ranged from 0.000 in Z. h. luteus to 0.003 in Z. h. pallidus.  Fifty-nine cyt b haplotypes were 

observed study-wide for Z. hudsonius, yet none were shared among the five subspecies 

(Appendix C).  Haplotype counts differed dramatically between collections for each subspecies 

and cluster, as 45 of 52 (86%) haplotypes were not shared.  For Z. h. preblei, none of the 17 

haplotypes observed were shared between the northern and southern clusters.   

Statistical parsimony analysis of the cyt b data set resulted in three haplotype networks: a 

Z. h. preblei, Z. h. intermedius, and Z. h. campestris network; a Z. h. pallidus network; and a Z. 

h. luteus network (Figure 6). These three networks were unconnected due to the number of 

mutational steps between them being greater than the p = 0.95 limit of 13 steps. Within the Z. h. 

preblei, Z. h. intermedius, and Z. h. campestris network, the Z. h. preblei haplotypes were 

recovered as a group, separated from a common Z. h. intermedius haplotype by at least six 

mutational steps.  A group of 12 Z. h. intermedius haplotypes was separated from a group of 13 

Z. h. campestris haplotypes and one Z. h. intermedius haplotype (ZhiCB_A) by two mutational 

steps. A single Z. h. intermedius haplotype (ZhiCB_A) was separated from the Z. h. campestris 

haplotype ZhcCB_B by 3 mutation steps, and was not found in any Z. h. campestris. 

 Adjusted (net) sequence divergences (Tamura-Nei) between Z. hudsonius subspecies for 

the mtDNA cyt b exhibited a similar pattern to that observed for CR, averaging 4.43% (not 

shown).  Net distances ranged between 0.18% (Z. h. campestris - Z. h. intermedius) and 7.11% 

(Z. h. campestris - Z. h. pallidus).  Distances between Z. h. preblei and other subspecies ranged 

between 0.69% (Z. h. intermedius) and 6.78% (Z. h. pallidus).  The average genetic distance 

between Z. hudsonius subspecies and Z. princeps was 19.87%.     

  As was the case with the CR, AMOVA indicated the presence of strong genetic 
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differentiation among all five subspecies at cyt b.  Global ΦST (0.96) and FST (0.33) values were 

high and significantly different from zero (p < 0.00001) (Table 9).  Nearly all of the cyt b 

variance (96%) was distributed between subspecies, a result consistent with the absence of 

shared cyt b haplotypes and with the patterns observed in the CR.  In general, comparisons 

among all subspecies resulted in higher Φ
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ST values for cyt b than for CR but with one exception, 

the comparison between Z. h. intermedius and Z. h. campestris.  Pair-wise ΦST comparisons of Z. 

h. preblei ranged from ΦST = 0.82 (Z. h. intermedius) to ΦST = 0.99 (Z. h. luteus) and averaged 

ΦST = 0.92. A comparison of cyt b haplotype variation among the three subspecies proposed for 

synonymy by Ramey et al. (2005), resulted in 84% of the variance being distributed among 

subspecies.  Cytochrome b AMOVA results confirm that Z. h. preblei is distinct from other 

neighboring subspecies and is evolutionarily most similar to Z. h. intermedius.  As with the CR, 

the lowest level of differentiation among these three subspecies was observed between Z. h. 

intermedius and Z. h. campestris (ΦST = 0.53).   

Cytochrome b haplotype variation distributed among the seven clusters found that 96.1% 

(p < 0.000001) was attributable to differentiation among clusters and the remainder due to 

variation within.  Cytochrome b haplotype variation distributed hierarchically among and within 

the seven clusters found that 92.7% (p < 0.044) of the variance was distributed among defined 

clusters, 2.5% (p < 0.00001) distributed among collections within clusters, and 4.8% (p < 

0.00001) was attributed to differences within collections.  These findings mirrored the high level 

of genetic differentiation observed upon survey of these clusters at the mtDNA CR and with the 

nuclear microsatellite DNA markers.  Exact tests for differentiation based on haplotype 

frequencies for all pairs of subspecies (N = 10 comparisons) and clusters (N = 15 comparisons) 

were statistically significant (p < 0.00001).  

 

Combined mitochondrial DNA 

Results of ILD tests were insignificant (p = 0.23), plus phylogenetic analyses of the individual 

data partitions were congruent with respect to the major clades recovered (data not shown), so 

data was combined for individuals occurring in both data sets, then collapsed into 64 unique 

haplotypes for Z. hudsonius (Table 7).   The strict consensus tree of 4,050 most parsimonious 

trees (Figure 7A; 205 steps, C.I. = 0.7171) revealed two well-supported clades within Z. 

hudsonius.  One clade, supported by 100 percent of bootstrap pseudoreplicates and a decay index 
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of 17, was comprised of Z. h. pallidus and Z. h. luteus haplotypes.  Within this clade, the two Z. 

h. luteus haplotypes formed a well supported monophyletic group.  The other major clade 

recovered, supported by 100 percent of bootstrap pseudoreplicates and a decay index of 36, was 

comprised of Z. h. intermedius, Z. h. campestris, and Z. h. preblei haplotypes.  Within this clade 

none of the Z. hudsonius subspecies were recovered as monophyletic, yet the Z. h. campestris/Z. 

h. intermedius haplotypes formed a clade separate from Z. h. preblei haplotypes, and this 

relationship was well supported (bootstrap values of 90/88, decay index of 4, Figure7A).  Nodes 

within the Z. h. campestris/Z. h. intermedius clade were poorly supported by bootstrap and decay 

indices.  Modeltest selected the Tamura-Nei + I model of evolution as the best fit for this 

combined mitochondrial data set using AIC. Model parameters were: base frequencies of A = 

0.2752, C = 0.2633, G = 0.1217, T =  0.3399;  proportion of invariable sites = 0.7272.  ML 

analysis run with the best-fit model produced a tree similar in topology to the MP consensus 

(Figure 7A), with the major difference being the relationship between Z. h. pallidus and Z. h. 

luteus- they are not sister taxa in the ML analysis (Figure 7B).   In the phylogram of the ML tree 

(Figure 7B), it is notable that branch lengths were short within the Z. h. campestris/Z. h. 

intermedius/Z. h. preblei clade, with the longest branch (and the only one with substantial 

boostrap support) separating Z. h. preblei from Z. h. campestris/Z. h. intermedius haplotypes. 
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DISCUSSION 

The present survey of 21 microsatellite DNA loci and 1380 base pairs from two regions of 

mtDNA indicated that each Z. hudsonius subspecies is genetically differentiated from its 

neighboring subspecies to varying degrees, and therefore, does not support the null hypothesis of 

a homogeneous gene pool among the five subspecies from the southwestern portion of the 

species’ range.  The magnitude of the observed differentiation was considerable and was 

supported by highly significant findings for nearly every statistical comparison made, regardless 

of the genome or the taxa under consideration.  Given the disjunct distribution of selected 

subspecies and the strong structuring of nuclear multilocus genotypes, combined with the 

presence of only subspecies-specific mtDNA haplotypes, the genetic discontinuities observed 

throughout the study area correspond with previously proposed taxonomic classifications based 

on the geographic separation and surveys of morphological variation among these subspecies 

(Krutzsch 1954, Hafner et al. 1981).   
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The microsatellite DNA dataset contained sufficient allelic diversity to detect a unique 

multilocus genotype for each of 320 mice sampled, and to elucidate seven distinct clusters 

among the 13 Z. hudsonius collections that corresponded to the five subspecies surveyed, while 

delineating significant differentiation within two of these taxa (Figures 2-4).  Microsatellite 

DNA identified significant allele frequency heterogeneity among all collections, clusters (as 

identified by the program structure), and subspecies, a high degree of population subdivision 
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ST) within clusters (0.07-0.11) and among subspecies (0.11-0.27; all FST values statistically > 

zero), large genetic (Da) distances within (0.042-0.200) and among subspecies (0.218-0.732), 

clear graphical separation of subspecies and clusters accompanied by high bootstrap support in 

the NJ tree, and a high percentage of correct assignment to cluster (98%) and subspecies (100%) 

of origin.  Z. h. preblei and Z. h. pallidus / Z. h. luteus were observed to be the most distinct 

subspecies in the comparison and Z. h. campestris and Z. h. intermedius appeared most closely 

related. Significant population structuring was observed between the two Z. h. preblei clusters 

(North and South), as well as between the two Z. h. intermedius collections/clusters (West and 

East).    

 Phylogeographic analyses for both the mtDNA CR and cyt b regions were generally 

congruent with each other and with the patterns observed in the nuclear DNA.  Sequence 

variation revealed unique sets of haplotypes for each subspecies (Figures 5 and 6), high 

estimates of differentiation among subspecies (ΦST; 0.53-0.99; all values significantly > zero; 

Table 9), and cyt b sequence divergences between most subspecies were within the range of 

those observed in intraspecific comparisons of other rodents (e.g., Peromyscus boyllii, 0.3% - 

1.8%, Tiemann-Boege et al. 2000; Neotoma floridana, 0.8% - 5.3%, Edwards and Bradley 2001; 

Microtus agrestis, 0.5% - 5.2%, Jaarola and Searle 2002; see Bradley and Baker 2001 for 

synthesis).  Haplotype patterns also suggested that significant differentiation was observed 

within selected subspecies, as little or no haplotype sharing was observed among clusters or 

collections within subspecies (Appendices B and C).  In general, the patterns of haplotype 

variation and differentiation were greater and more informative overall for the larger cyt b region 

(Appendix C; Figure 6).  

 The phylogenetic (i.e., parsimony, maximum likelihood) analyses identified the existence 

of two major evolutionary lineages within Zapus hudsonius: a Z. h. preblei, Z. h. campestris, and 

Z. h. intermedius clade and a Z. h. pallidus and Z. h. luteus clade.  Although phylogenetic 
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analyses did not reveal a strong geographic pattern of reciprocal monophyly, the diagnostic 

structure observed in the haplotype networks for both DNA regions combined with the large 

degree of differentiation (F
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ST, AMOVA, Da) and high assignment success observed in the 

microsatellite DNA analyses, indicate that an intermediate state of differentiation has been 

achieved within the two major lineages.  
 

Comparisons with a Previous Study   

The findings and conclusions of this study are contradictory in nearly every comparison with the 

conclusions drawn from the only other published molecular genetics data available on the 

taxonomic status of Z. hudsonius subspecies (Ramey et al. 2005).  It is imperative that the 

disparities between the previous and present study be revealed due to the conservation 

implications of synonymizing Z. h. preblei, Z. h. campestris, and Z. h. intermedius as proposed 

by Ramey et al. (2005). We believe that fundamental differences exist between the two studies 

and that the lack of correspondence is not simply a matter of interpretation (or misinterpretation) 

between “lumpers and splitters”.    The two studies differ significantly in sampling regime, 

sources of tissues chosen for analysis, number of molecular characters sequenced and 

microsatellite fragments surveyed, test statistic applied to AMOVAs, method used to portray 

genealogical relationships, and the criteria used to determine uniqueness. We will discuss the 

nature of these discrepancies and suggest how each approach impacts the conclusions drawn 

regarding subspecies distinctness.      

 An appropriate sampling strategy is central to the successful delineation of population 

genetic and phylogeographic structures (Baverstock and Moritz 1996).  The “population-

oriented” strategy used in the present study differed significantly from the “one or few 

individuals per site across a broad geographical area” approach applied by Ramey et al. (2005).  

The sampling strategy used by Ramey et al. (2005), likely under-estimated the level of within-

population variation, effectively inflating within-subspecies variance, while simultaneously 

lowering the amount of total variance attributed to between-Z. hudsonius subspecies 

differentiation and decreasing the likelihood that uniqueness would be demonstrated.  The 

present study focused on collections of reasonable size (ranging from 14 to 33 individuals) from 

recognized geographic populations.  This sampling strategy increased the likelihood that all 

haplotypes present within a population will be surveyed.  While both sampling strategies have 
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their strengths and weaknesses, we believe the strategy used in the present study to be the more 

pragmatic approach for testing statistical significance under the hypothesis testing approach 

espoused by Ramey et al. (2005) in which uniqueness was based on the partitioning of variation 

within and between subspecies.   

648 

649 

650 

651 

652 

653 

654 

655 

656 

657 

658 

659 

660 

661 

662 

663 

664 

665 

666 

667 

668 

669 

670 

671 

672 

673 

674 

675 

676 

677 

678 

Museum specimens are increasingly recognized as a source of DNA for phylogeographic 

and phylogenetic investigations (Hoelzel et al. 2002).  Genetic information garnered from such 

tissues provides a means to test unique hypotheses designed to aid in reconstructing past 

evolutionary relationships (Sorenson et al. 1999).  However, DNA in archived specimens 

exposed to traditional museum preservation and storage decays or becomes chemically modified 

with time, such that PCR amplicon length and amplification efficiency are inversely proportional 

to storage time (Glenn et al. 1999, Moum et al. 2002), which constrains the overall utility of such 

biological material.  In addition, the process is far from infallible, as studies are regularly marred 

by erroneous findings in the form of base shifts, reference bias, phantom mutations, base mis-

scoring, artificial recombination (Yoa et al. 2004), and unrealized contamination at the sample 

and laboratory level (Pääbo et al. 2004, Willerslev and Cooper 2005).  Ramey et al. (2005) used 

decades-old, dried museum skins as a principal source of genetic material for selected collections 

used in the phylogeographic comparison among Z. hudsonius subspecies.  Given the availability 

of live specimens and the relative ease of obtaining minimally invasive tissue samples, this 

methodological decision may have introduced unnecessary ambiguity to the findings.  For 

example, Ramey et al. (2005) reported the presence of Z. h. preblei haplotypes in DNA extracted 

from five dried museum skins of Z. h. campestris collected from Custer County, SD.  The 

authors suggested this finding indicated recent gene flow and alluded to the presence of these 

haplotypes as a critical element in the decision to recommend synonymy of these subspecies.  In 

the present study, 31 Z. h. campestris sampled recently from the same site in Custer County, SD 

used by Ramey et al. (2005), along with 30 additional specimens from neighboring Crook 

County, WY were subjected to mtDNA CR and cyt b sequence analysis.  All 61 individuals were 

determined to posses Z. h. campestris-specific mtDNA haplotypes.  Moreover, the same 

conclusion was reached with the microsatellite loci, as no Z. h. campestris individual from either 

of these collections was assigned to Z. h. preblei.  Given the prominent role the haplotypes 

obtained for the five museum skins from Custer County, SD and two additional specimens from 

Carter County, MT have played in the conclusions drawn by Ramey et al. (2005), it is 
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unsatisfactory that an a posteriori analysis was not considered as part of a routine quality 

assurance/quality control effort.  Since no attempts were made to reproduce the previous CR 

results, to confirm the findings with another region of mtDNA, or to apply an additional finer-

resolution technique such as microsatellite DNA analysis, combined with our failure to detect Z. 

h. preblei haplotypes among 61 Z. h. campestris from the same and an adjacent location, the 

conclusions drawn by Ramey et al. (2005) should be considered questionable.     
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Weak phylogeographic signal may result in poor resolution or inaccurate gene trees as an 

artifact of phylogenetic reconstruction (Avise 2004).  When a small gene fragment is considered, 

the collected data may provide too few synapomorphies to robustly recover the underlying gene 

tree (Funk and Omland 2003).  Too few characters of any single region of DNA may not reflect 

actual systematic relationships (a “species tree”) among taxa, but instead may reflect the history 

of that gene lineage (a “gene tree”; Brower et al. 1996; see Edwards and Beerli 2000, Nichols 

2001, Hudson and Turelli 2003 for reviews).  Ramey et al. (2005), when considering the 

phylogenetic status of Z. hudsonius subspecies, surveyed sequence variation at a 346 bp 

fragment of the mtDNA CR.  Ramey et al.’s (2005) critical test of uniqueness for Z. h. preblei 

mtDNA sequence data was that greater molecular variance is demonstrated between subspecies 

than within or that collections show nearly complete reciprocal monophyly.  These criteria 

appear disproportionately stringent given the small number of informative sites examined in the 

346 bp fragment of the mtDNA CR.  With such considerations in mind, and in order to establish 

whether genealogical partitions among Z. h. preblei populations and collections of other putative 

subspecies are, in fact, bona fide, patterns of divergence from additional mtDNA characters (or 

genes) would have been appropriate.  The present study included the survey of an additional 

1006 bp of the cyt b region which served to augment phylogeographic resolution and verified the 

major mitochondrial CR and microsatellite DNA findings.  The cyt b results revealed: 1) more 

resolved relationships among the Z. h. pallidus and Z. h. luteus haplotypes, those subspecies 

being monophyletic in the parsimony tree (Figure 7) and supported by high bootstrap values; 2) 

diagnostic haplotype patterns between the five Z. hudsonius subspecies; and 3) discontinuity 

between the Z. h. preblei-North and Z. h. preblei-South clusters, as no cyt b haplotypes were 

shared between the two groupings.    

Large numbers of microsatellite DNA loci provide better estimates of population genetic 

parameters given the stochastic variation (including size homoplasy) expected among 
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independent loci (Adams et al. 2004, Takezaki and Nei 1996).  Ramey et al. (2005) presented the 

findings of five microsatellite DNA loci surveyed among Z. hudsonius subspecies.  Given that 

microsatellite loci are densely interspersed in eukaryotic genomes (Katti et al. 2001), five 

polymorphic microsatellite DNA loci may not provide sufficient representation of the nuclear 

DNA variation present (Beaumont and Nichols 1996, Pritchard and Rosenberg 1999) or provide 

a sufficiently robust multilocus genotype for population/phylogeographic comparisons (Smouse 

and Chevillon 1998).  Comparisons of microsatellite results between the present study (21 loci) 

and Ramey et al. (2005) indicate that some similarities and considerable differences exist.  

Among comparisons of basic Mendelian statistics, the present study observed fewer deviations 

from Hardy-Weinberg expectations, lower estimates of allelic richness and F
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IS, and greater 

estimates of private alleles than reported by Ramey et al. (2005).  Both studies demonstrated 

lower allelic richness, fewer private alleles, and lower average heterozygosity in collections of Z. 

h. preblei; findings indicative of the demographic status of the two distinct populations of this 

subspecies.  In a test to determine the number of diagnosable clusters present in their 

microsatellite DNA dataset using the program structure, Ramey et al. (2005) found the 

variability of likelihood estimates to be high, and concluded that the eight clusters identified by 

the analysis were poorly defined.  This finding seemed to be confirmed by the poor assignment 

to cluster reported.  In the present study, seven distinct clusters were identified (Figure 2) among 

the five subspecies with Z. h. preblei (North and South) and Z. h. intermedius (West and East) 

collections each divided into two individual clusters.  The significance of clustering was 

confirmed by the assignment test associated with the structure analysis (Table 3).  When 

individuals were assigned to cluster based on the largest value of q, 99.7% of the individuals 

were correctly assigned to cluster and 100% were assigned to subspecies (Table 3).  When the 

test is constrained by the q > 0.90 criterion, 96.1% of the Z. hudsonius individuals were assigned 

to cluster and 96.8% were assigned to subspecies.   The present study generated larger estimates 

of subspecies differentiation (FST; 0.11 – 0.34) than found in the previous study (0.01-0.16), 

which is consistent with results of the AMOVA that found a higher percentage of the variation 

was distributed between subspecies (17.4%) and clusters (18.1%), than that reported by Ramey 

et al. (2005) (7.5% - 8.9%).  It would appear that the increased coverage of the nuclear genome 

afforded by the larger number of microsatellite loci yielded increased resolution of the 

phylogeographic structure present in Z. hudsonius.     
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For microsatellite DNA comparisons, Ramey et al.’s (2005) critical test of uniqueness for 

subspecies and historic genetic exchangeability was two-fold: that most variation was observed 

between subspecies in pairwise AMOVA comparisons and that multiple private alleles are found 

at higher frequency than shared alleles at a majority of loci.  These criteria often are not met 

even among accepted species due to the constraints on fixation indices generated from 

microsatellite DNA loci created by high heterozygosity levels and homoplasy (Hedrick 1999; 

Balloux et al. 2000).  We contend that these criteria are unfounded and likely have little 

biological meaning.    Ramey et al. (2005) assessed the differentiation among selected 

subspecies of Z. hudsonius with a traditional pairwise haplotypic distance approach designed to 

elucidate the hierarchical nature of the inter-specific evolutionary relationships among genes 

(Posada and Crandall 2001). Because intraspecific phylogeographic datasets are predisposed to 

have fewer informative characters, traditional phylogenetic methods can lead to inadequately 

portrayed genealogical relationships (Brower et al. 1996).  Our study endeavored to elucidate 

intraspecific gene genealogies that are not hierarchical in nature and assumed to be the result of 

relatively recent evolutionary processes.  Therefore, we opted to emphasize intraspecific gene 

geneaologies for each subspecies at two mtDNA regions using a haplotype network analysis that 

implemented the statistical parsimony approach of Templeton et al. (1992) and Crandall et al. 

(1994).  The network analysis better depicted ancestral relationships and the nonrandom 

distribution of mutations among lineages, which resulted in the diagnostic haplotypic structure 

observed between subspecies and not observed in the more traditional parsimony analyses 

performed in our study or the distance-based approach utilized by Ramey et al. (2005). 
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 Analysis of molecular variance applied to the mtDNA CR and cyt b sequences indicated 

the presence of strong genetic differentiation among the five subspecies.  It is instructive to 

underscore the differences between the two test statistics (ΦST and FST) generated by the 

AMOVA routine in Arlequin 2.0 (Schneider et al. 2000).  ΦST incorporates sequence divergence 

between haplotypes (providing the option of several distance metrics), as well as determining 

haplotype frequencies.  Evolutionary differences among the haplotypes (i.e., mutations) are 

incorporated into calculations of the test statistics.  FST, which utilizes conventional F-statistics, 

treats all haplotypes, regardless of their evolutionary interrelationships, as equally differentiated 

(i.e., distance = 1.0), and assesses the variance distribution based on haplotype frequencies alone. 

Differences between haplotype frequencies are assumed to be due to genetic drift.  In the present 
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study, ΦST observed for CR ranged from 0.57 (between Z. h. pallidus and Z. h. luteus) to 0.97 (Z. 

h. campestris and Z. h. luteus).  The comparison among Z. h. preblei, Z. h. campestris, and Z. h. 

intermedius resulted in a Φ
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ST value of 0.75 (or 75% of variation is distributed between 

subspecies) and a FST value of 0.33 (33% of the variation distributed between subspecies).  

TheΦST value for this three-subspecies comparison is more than two-fold greater than the value 

observed by Ramey et al. (2005) (FST = 0.31) for this comparison, while the FST value obtained 

in our study is similar to that observed in the previous study.   

The more than two-fold differential in the estimate of variation between subspecies 

provided by ΦST (this study) and FST (Ramey et al. 2005) broaches important issues regarding the 

conclusions drawn from the respective studies.  First, any phylogeographic or phylogenetic 

comparison should take into consideration the genealogical/evolutionary relationships among the 

observed haplotypes provided by ΦST.  Second, no haplotypes were shared among the five Z. 

hudsonius subspecies in the present study, and thereforeΦST would appear to be the most 

appropriate statistic as FST values (a measure of haplotype frequencies only) generated by the 

AMOVA analysis have limited biological resolution or significance in a situation where no 

haplotypes are shared.   Third, when ΦST and FST values are similar in magnitude, any population 

differentiation is likely due to shuffling of closely related haplotypes (i.e., gene drift). If ΦST is 

considerably greater than FST (as is the case for all subspecies comparisons in this study), this 

implies some level of evolutionary depth to the separations among haplotypes (Quattro et al. 

2002).  Lastly, Ramey et al.’s (2005) critical test of uniqueness for Z. h. preblei mtDNA 

sequence data was that greater molecular variance be demonstrated between subspecies than 

within.  The results obtained between all subspecies compared in the present study exceed this 

test criterion, as all ΦST values were > 0.50.  It would appear that by opting to utilize the FST 

statistic and failing to recognize the evolutionary differences among haplotypes observed in the 

previous study, Ramey et al. (2005) have created an unduly stringent (and possibly 

unachievable) criterion for determining subspecies uniqueness.     

The null hypothesis stated by Ramey et al. (2005) was one of no significant intraspecific 

genetic differentiation (i.e., high exchangeability) among Z. h. preblei, Z. h. campestris, and Z. h. 

intermedius.  We concur with these authors that “well-defined criteria and regulations” would be 

ideal when considering ESA issues.  However, requiring unduly stringent or unachievable 

evidence to reject null hypotheses as implemented in Ramey et al. (2005) does not present a 
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tenable conservation strategy.  We contend that due to the limited number of mtDNA CR 

nucleotides (346) and polymorphic microsatellite markers surveyed (five), reliance on 

questionable sources of tissue for DNA extraction, the misapplication of certain statistical 

analyses (e.g., F
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ST instead ofΦST), and the excessively stringent requirements for uniqueness, 

Ramey et al. (2005) have in all likelihood failed to correctly reject the null hypothesis of no 

significant differentiation among the five subspecies and failed to recognize the presence of 

unique taxa among Z. h. preblei, Z. h. campestris, and Z. h. intermedius.   

 

CONSERVATION IMPLICATIONS 

The vast literature of molecular genetic comparisons amassed to date have demonstrated that 

many species in need of conservation are subdivided into genetically distinct geographic 

populations exhibiting considerable historical and phylogeographic separation (see Avise 2004 

for synthesis).  The genetic criteria chosen for delineating isolated intraspecific groupings (e.g., 

species, subspecies, phylogroups, distinct population segments, evolutionary significant units, or 

management units) becomes of critical importance when the entities continued existence is at 

risk (Moritz 1994a, Moritz 1994b; Paetkau 1999).  In the initial comparison of genetic 

distinctness among subspecies of Z. hudsonius, Ramey et al. (2005) applied critical tests to the 

hypotheses of genetic and ecological exchangeability as proposed by Crandall et al. (2000).  The 

authors suggested the establishment of a conceptually sound and consistent methodological 

approach for determining what constitutes species, subspecies, or DPS listings under the US 

ESA and international biodiversity laws (i.e., uniform criteria that apply equally to all taxa).  We 

feel that this represents a laudable objective; however, as previous authors have observed 

(Waples 1991, Moritz 1994a, Pennock and Dimmick 1997, Waples 1998, Avise and Johns 1999, 

Avise and Walker 2000, Crandall et al. 2000, Goldstein et al. 2000, Hendry et al. 2000), 

operational thresholds for intraspecific designation are often necessarily arbitrary, inconsistent 

among genetic markers and genomes, not comparable across taxa, and it remains that all-

encompassing criteria continue to be elusive.   

We found the Ramey et al.’s (2005) core genetic-based criteria for subspecies 

distinctness (i.e., greater variation between subspecies than within) to be too stringent to account 

for relatively recently radiated taxa, scientifically unfounded as this criterion would not 

distinguish certain well-established species, and under certain circumstances unachievable with 



 28

the test statistics applied.  Our concern is that if the criteria for genetic distinctness are inflexible, 

this can represent a conservation stratagem that impacts the potential for future evolutionary 

change within the intraspecific unit of management and that could lead to extirpation or 

extinction of discrete and evolutionarily significant intraspecific diversity.  Consequently, these 

criteria should not be considered as an accepted standard when addressing US ESA actions or for 

international conservation laws.   
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 The disjunct collections represented in the present study may not qualify as distinct 

species because their reproductive barrier is extrinsic, but their apparently longstanding 

separation has resulted in the accretion of considerable genetic differentiation that is reflected in 

geographically congruent patterns of divergence at multiple DNA marker types.  Barriers to gene 

flow between populations of Z. hudsonius preblei and other subspecies have been of sufficient 

duration that these populations are now distinguishable by genetic characteristics and that the 

observed pattern is congruent with accepted subspecific designations (Krutzsch 1954; Hafner et 

al. 1981).  This study found no evidence that warranted a taxonomic revision among the Z. h. 

preblei, Z. h. campestris, and Z. h. intermedius as previously proposed (Ramey et al. 2005), nor 

did this survey find data suggesting the need to alter Z. h. preblei’s standing under the ESA. 

Moreover, the level of differentiation observed between Z. h. preblei inhabiting Larimer County, 

CO (Z. h. preblei-North) and mice sampled from Douglas and El Paso counties, CO (Z. h. 

preblei-South) indicates that this subspecies is comprised of at least two genetically distinct 

populations worthy of individual management consideration.  Sufficient data has also been 

presented to suggest that the differentiation observed between the Z. h. pallidus and Z. h. luteus 

clade and other Z. hudsonius subspecies warrants further study and serious consideration given 

to species-level recognition for the former.   

 We endorse the widespread opinion that decisions to protect a species and intraspecific 

divisions of vertebrate taxa under the ESA should be based on investigations of life history, 

ecology, population dynamics, and systematics (see Crandall et al. 2000 for review).  However, 

molecular genetics is a tool with the demonstrated ability to identify evolutionarily divergent 

lineages that other methodologies failed to reveal (Moritz and Hillis 1996).  When forced into a 

phylogenetic comparison (e.g., parsimony analysis), Z. h. preblei, Z. h. campestris, and Z. h. 

intermedius exhibited shallow gene genealogies (at both CR and cyt b) – an intraspecific pattern 

not uncommonly seen within rodent species (e.g., Peromyscus boylii, Tiemann-Boege et al. 
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2000; Neotoma floridana, Edwards and Bradley 2001; Microtus agrestis, Jaarola and Searle 

2002).  The level of discontinuity observed in this study among subspecies should not be 

considered minor or “shallow” (Avise 2004) simply because the observed differentiation is not 

accompanied by the presence of reciprocal monophyly, phenotypic divergence, or obvious 

adaptive significance.  The differential magnitude observed between Φ
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ST (distance and 

frequency) and FST (frequency) values for both mtDNA CR and cyt b suggests the presence of 

moderate microevolutionary depth among the five subspecies accompanied by 

phylogeographical structuring of haplotypes and multilocus genotypes within Z. h. preblei and Z. 

h. intermedius. The diagnostic nature of the haplotype variation and large degree of nuclear 

genetic differentiation at microsatellite loci suggests that these subspecies (and certain 

geographic populations) have been reproductively isolated for such time that they appear to be 

on independent evolutionary trajectories, while having nearly achieved complete lineage sorting. 

  

 A detailed comparison similar to that performed here for all subspecies of Z. hudsonius is 

warranted.  Such a study would likely shed light on the significance of the considerable 

differentiation observed among the Z. h. preblei, Z. h. campestris, and Z. h. intermedius clade 

and will allow the differentiation observed for Z. h. pallidus and Z. h. luteus to be observed in the 

best available context.  Moreover, any study of this type should focus on newly trapped 

individuals where available rather than the use of archived museum skins.  Newly acquired 

tissue will provide for higher molecular weight DNA which will increase the diversity of 

molecular techniques available for analysis, minimize the effects of curatorial (e.g., 

misidentification, mislabeling) and molecular error rates (Sefac et al. 2003, Yao et al. 2004), and 

exclude genetic variation that may not be extant. 

  In summary, we conclude that the subspecies surveyed in this study do not warrant 

synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius; they 

constitute distinct evolutionary lineages that merit separate management consideration, and those 

populations facing demographic challenges (e.g., Z. h. preblei-North, Z. h. preblei-South) should 

be afforded high conservation priority.  The strong concurrence among patterns of mitochondrial 

and nuclear DNA variation observed in this study suggests that formal recognition of the 

relationships revealed will assist in preserving the potential for future evolutionary change 

within and among these subspecies.   
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Table 1.  Collection information on specimens from four neighboring subspecies of Zapus hudsonius surveyed for mitochondrial and microsatellite DNA 
variation.     
 

    Subspecies Collection  
abbreviation 

Cluster1 

identification Collection locality2 Collect
year N Source3 Tissue  

Type4

LCCO1 N. F. Cache la Poudre River, Larimer Co., CO  1998 14 CDOW Ear punch 

LCCO2 
Z. h. preblei-North 

Stove Prairie Creek, Larimer Co., CO  1998 16 CDOW Ear punch 

DCCO1 East Plum Creek, Douglas Co., CO  1998 34 CDOW Ear punch 

DCCO2 Indian Creek, Douglas Co., CO  1998 30 CDOW Ear punch 

ECCO1 U.S. Air Force Academy, El Paso Co., CO 1998 22 CNHP Ear punch 

Z. h. preblei 
 

ECCO2 

Z. h. preblei-South 

Monument Creek,  El Paso Co., CO  2005 26 CNHP Ear punch 

BRCSD Z. h. intermedius-West Columbia Road Reservoir, Brown Co., SD  2005 28 USGS Ear/blood Z. h. intermedius 
 MCMN Z. h. intermedius-East Camp Ripley, Morrison Co., MN  1996-8 21 MSB Ear/blood 

CCWY Beaver Creek, Crook Co., WY,  2005 30 USGS Ear/blood 
Z. h. campestris 

CCSD 
Z. h. campestris Iron and Willow Creeks, Custer and Pennington Cos., 

SD 2005    31 USGS Ear/blood

BCSD Cedar Creek, Bennett Co., SD 2005 15 USGS Ear/blood 
Z. h. pallidus 

KBCNE 
Z. h. pallidus 

North Channel Platte River, Kearney/Buffalo Cos., NE 2005 33 USGS Ear/blood 

Z. h. luteus5 SCNM Z. h. luteus Multiple sites, Sandoval Co., NM 1985 20 MSB Liver  

Z. princeps NA NA Libby Creek, Albany Co., WY 2005 7 FWS Ear/blood 
1Clusters as identified by the program structure using microsatellite DNA allelic patterns. 
2Detailed collection information available upon request from the corresponding author. 
3 Sources include Tanya Shenk, Colorado Department of Wildlife, Ft. Collins, CO (CDOW); Robert Schorr, CO National Heritage Program, Fort Collins, CO 
(CNHP); Paul Cryan, U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO (USGS); University of New Mexico Museum of Southwestern 
Biology, Albuquerque, NM (MSB); Alex Schubert, U.S. Fish and Wildlife Service, Cheyenne Field Office, Snowy Range, WY (FWS).. 
4Samples labeled “Ear punch” were archived in 95% absolute ethanol.  Samples labeled “Ear/blood” were collected during the summer of 2005 by Paul Cryan. 
Ear punches from these collections were preserved in 95% ethanol.  Residual blood from the ear punch procedures was applied to FTA cards.  Frozen liver tissue 
was obtained from the MSB.  
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Table 2.  Sample size, allelic richness, number of private alleles, observed and expected heterozygosity, and estimates of FIS observed for 12 collections 
of Zapus hudsonius representing four neighboring subspecies surveyed at 21 microsatellite DNA loci. 
 

    Subspecies Collection Cluster1 N A2 Private  
alleles Ho He FIS

Z. h. preblei       142 5.3 [4] 0.547 0.595 0.081 

         

         

  

         

         

         

         

     

LCCO1 (14) 3.4 (1) 0.507 0.502 -0.033

LCCO2 (16) 3.3 0.536 0.528 -0.013

Z. h. preblei - North [30] 3.7 [1] 0.525 0.529 [0.008] 

DCCO1 (34) 3.8 0.538 0.535 -0.005

DCCO2 (30) 3.7 (1) 0.538 0.540 0.007

ECCO1 (22) 4.0 (1) 0.563 0.584 0.035

ECCO2 (26) 3.7 0.586 0.559 -0.050

  Z. h. preblei - South [112] 4.6 [2] 0.553 0.583 [0.052] 

Z. h. campestris  Z. h. campestris [61] 7.0 [6] 0.637 0.670 0.049 

         

         

    

CCWY (30) 5.4 (2) 0.648 0.662 0.020

CCSD (31) 5.2 (2) 0.625 0.654 0.044

Z. h. 
intermedius 49 9.4 21 0.649 0.703 0.078 

 

 

     

BRCSD Z. h. intermedius - West  [28] 5.7 [7] 0.619 0.637 [0.029] 

MCMN Z. h. intermedius - East [21] 7.0 [14] 0.687 0.735 [0.064] 

Z. h. pallidus  Z. h. pallidus [48] 9.4 [38] 0.752 0.790 0.049 

         

         

     

BCSD (16) 6.5 (5) 0.738 0.757 0.012

KBCNE (32) 6.7 (13) 0.759 0.789 0.045

Z. h. luteus SCNM Z. h .luteus [20] 4.3 [8] 0.576 0.623 0.076 
1Clusters (k = 7) were determined using the program structure. 
2Allelic richness 
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Table 3.  Percentage of Zapus hudsonius individuals correctly assigned to one of k = 3 initial clusters (subsets) and k = 7 subsequent (within-
subset) clusters identified by the program structure from a survey of 13 collections of mice representing five geographically proximal 
subspecies surveyed at 21 microsatellite loci.  Individuals were assigned to subset or cluster based on the largest value of q.  Average qMAX 
and percentage of Zapus hudsonius individuals correctly assigned to one of k = 7 clusters identified by the program structure based on the q > 
0.90 criterion are also provided. 
 

Subspecies Initial subsets 
(k=3) Subset     [A] [B] [C]

Collection           [A] [B] [C]

Mean 
qMAX Cluste

r 1 2 3 4 5 6 7 Cluster 
designation 

 
Mean 
qMAX 

Percentage 
assigned at  

q > 0.90 

Z. h. preblei              Z. h. preblei 0.97 100.0% (142)
LCCO1 1.00            1 1.00  
LCCO2             1.00 1 1.00 North 0.97   96.7% (29)
DCCO1           1.00 2 0.03 0.97  
DCCO2            1.00 2  1.00 
ECCO1             1.00 2 1.00 
ECCO2             1.00 

0.99 

2 1.00 South 0.98   96.4% (108)
                
Z. h. campestris            Z. h. campestris 0.96   90.2% (55) 

CCWY           1.00 3 1.00   
CCSD             1.00 3 1.00 

               

Z. h. intermedius            Z. h. 
intermedius 0.98   93.8% (46) 

BRCSD             1.00 4 1.00 West 0.95   89.3% (25)
MCMN           1.00  

0.96 

5  1.00 East 0.97 100.0% (21)
                
Z. h. pallidus              Z. h. pallidus 0.99 100.0% (48)

BCSD           1.00 6 1.00   
KBCNE             1.00 6 1.00 

               
Z. h. luteus               Z. h. luteus 0.99 100.0% (20)

SCNM            1.00

0.99 

7 1.00   
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Table 4.  Matrix of pairwise genetic distance (Da; (Nei et al. 1983) values by collection site for 21 microsatellite DNA loci surveyed in five  
neighboring subspecies of Zapus hudsonius.   
 

Subspecies Z. h. preblei Z. h. intermedius

Cluster     

              

North South
Z. h. campestris 

West East
Z. h. pallidus Z. h. 

luteus 

Collection LCCO1 LCCO2 DCCO1 DCCO2 ECCO1 ECCO2 CCWY CCSD BRCSD MCMN BCSD KBCNE SCNM

LCCO1              

LCCO2 0.0774            

DCCO1  0.1698 0.1706           

DCCO2   0.1976 0.2004 0.1225          

ECCO1    0.1675 0.1703 0.0767 0.1011         

ECCO2     0.1976 0.1830 0.0923 0.1147 0.0421        

CCWY      0.3471 0.3102 0.2770 0.3147 0.2769 0.2620       

CCSD      0.3633 0.3073 0.3021 0.3270 0.2871 0.2867 0.1019      

BRCSD       0.4718 0.4229 0.4304 0.4563 0.4336 0.4201 0.2663 0.2312     

MCMN       0.4475 0.4247 0.3895 0.4238 0.3781 0.3726 0.2429 0.2176 0.1738    

BCSD        0.5920 0.5745 0.5437 0.5396 0.5117 0.5220 0.5040 0.5075 0.4903 0.4334   

KBCNE        0.5629 0.5452 0.5091 0.5193 0.4940 0.4954 0.4469 0.4313 0.4311 0.3876 0.1669  

SCNM         0.7323 0.7255 0.6824 0.6623 0.6679 0.6961 0.6639 0.6430 0.6451 0.5743 0.4617 0.4695
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Table 5.  FST values (Wier and Cockerham 1984) generated from a survey of 21 microsatellite loci for k = 7 
clusters identified by the program structure among Zapus hudsonius collections representing five geographically 
proximal subspecies.  See Table 1 for explanation of clusters.  All FST estimates were statistically significant 
from zero (α = 0.05, P < 0.003) after 15,000 permutations.   

 
Z. h. preblei Z. h. intermedius 

Subspecies/Cluster 
North    South

Z. h. 
campestri

s West East

Z. h. 
pallidus 

Z. h. 
luteus 

Z. h. preblei - North         

Z. h. preblei - South 0.1099        

  Z. h. campestris 0.1760 0.1329       

   Z. h. intermedius - West 0.2724 0.2512 0.1373      

    Z. h. intermedius - East 0.2291 0.2008 0.1036 0.0663     

Z. h. pallidus 0.2489     0.2373 0.1806 0.1861 0.1356    

Z. h. luteus 0.3722      0.3512 0.3015 0.3154 0.2517 0.1816  

 
 
 
 
 
 
 
 
 
 
 



 46 

 
Table 6.  FST values (below the diagonal) generated from a survey of 21 
microsatellite loci in five geographically proximal subspecies of Zapus 
hudsonius.  All FST estimates were statistically significant from zero (α = 0.05, P 
< 0.008) after 6,000 permutations.   
  

Subspecies Z. h. 
preblei 

Z. h. 
campestri

s 

Z. h. 
intermediu

s 

Z. h. 
pallidus 

Z. h. 
luteus 

Z. h. 
preblei       

Z. h. 
campestris 0.1277      

Z. h. 
intermedius 0.2038  0.1068     

Z. h. 
pallidus 0.2321   0.1806 0.1546    

Z. h. 
 luteus 0.3412    0.3015 0.2701 0.1816  
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Table 7.  Sequence diversity at the mitochondrial DNA control (372 base pairs) and cytochrome b (1006 base pairs) regions observed in 
five neighboring subspecies of Zapus hudsonius. 
 

 

 Control Region Cytochrome B Combined  

Taxon N Polymorphic  
sites Haplotypes Nucleotid

e diversity N Polymorphic 
sites Haplotypes Nucleotide 

diversity N Polymorphic 
sites Haplotypes Nucleotide 

diversity 

Z. h. preblei 132           3 4 0.0030 119 12 17 0.0011 114 15 21 0.0016

Z. h. intermedius 47   9 9 0.0041 47 22 13 0.0028 45 31 17 0.0032 

Z. h. campestris 61            

            

            

5 5 0.0025 60 13 13 0.0010 59 18 15 0.0013

Z. h. pallidus 47 9 5 0.0060 48 13 8 0.0030 47 22 9 0.0038

Z. h. luteus 19 1 2 0.0000 19 0 1 0.0000 18 1 2 0.0000
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Table 8.  Pair-wise average net (adjusted) estimates of Kimura 2-parameter divergence for mitochondrial DNA control region (above the 
diagonal) between five subspecies of Zapus hudsonius and a collection of Zapus princeps. Estimates of net Tamura-Nei genetic divergence for 
combined mitochondrial DNA cytochrome b and control region are provided below (below the diagonal).   
 
 

Subspecies Z. h. preblei Z. h. campestris Z. h. intermedius Z. h. pallidus Z. h. luteus Z. princeps 

Z. h. preblei       0.0103 0.0057 0.0501 0.0508 0.1072

Z. h. campestris 0.0094      0.0029 0.0558 0.0563 0.1077

Z. h. intermedius 0.0067  0.0024     0.0499 0.0497 0.1102

Z. h. pallidus 0.0622   0.0665 0.0635    0.0055 0.0942

Z. h. luteus 0.0613    0.0655 0.0623 0.0117   0.0971

Z. princeps 0.1762     0.1832 0.1812 0.1572 0.1630  
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Table 9.  Comparison of ΦST and FST estimates observed in five neighboring subspecies of Zapus hudsonius sequenced at 
372 base pairs of the mitochondrial DNA control region and at 1006 base pairs of the cytochrome b gene.   ΦST and FST, 
while similar in that they constitute ratios resulting from the comparison of variation between subspecies, measure the 
effects of different evolutionary processes.  ΦST measures the evolutionary relationship between haplotypes (i.e., 
mutation), as well as, haplotype frequency differences (i.e., genetic drift) between subspecies.  FST quantifies only 
haplotype frequency differences between subspecies. 

Control region Cytochrome b 
Subspecies comparison 

ΦST FST ΦST FST

Z. h. preblei - Z. h. intermedius - Z. h. campestris - 
 Z. h. pallidus -  Z. h. luteus 0.96 0.37 0.96 0.33 

     

Z. h. preblei - Z. h. intermedius - Z. h. campestris 0.75 0.33 0.84 0.30 

     

Z. h. preblei - Z. h. intermedius 0.69 0.22 0.82 0.21 

     

Z. h. preblei - Z. h. campestris 0.81 0.39 0.90 0.36 

     

Z. h. preblei - Z. h. pallidus 0.93 0.29 0.98 0.23 

     

Z. h. preblei - Z. h. luteus 0.95 0.43 0.99 0.50 

     

Z. h. intermedius - Z. h. campestris 0.59 0.38 0.53 0.31 

     

Z. h. intermedius - Z. h. pallidus 0.91 0.25 0.96 0.15 

     

Z. h. intermedius - Z. h. luteus  0.94 0.42 0.97 0.47 

     

Z. h. campestris - Z. h. pallidus 0.93 0.45 0.98 0.32 

     

Z. h. campestris - Z. h. luteus 0.97 0.64 0.99 0.64 

     

Z. h. pallidus - Z. h. luteus 0.57 0.51 0.87 0.49 
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   Figure Legends 
 
Figure 1.  Generalized collection sites (N=13) representative of five nominal subspecies of Zapus 
hudsonius utilized in this study. 
 
Figure 2.  Summary plots of q estimates generated by the sequential cluster analysis of the 
program structure performed on the multilocus (N=21) genotypes of 13 collections of Zapus 
hudsonius.  The number of inferred clusters (k) in the initial (uppermost hierarchical level) 
analysis was three (clusters [A-C]).  Each initial cluster (subset) was subsequently analyzed for 
within-cluster structure.  The sequential analysis further subdivided [A] into two clusters, [B] 
was found to contain three clusters, and [C] consisted of two additional clusters for a total of 
seven clusters (1-7).  Each individual is represented by a single vertical line, broken into k 
colored segments, the length of which is proportional to the membership fraction in each of the k 
clusters.  Individuals are grouped by populations and subspecies. 
 
Figure 3.  Unrooted neighbor-joining tree generated from pairwise genetic distance (Da; Nei et 
al. 1983) values between all collections of Zapus hudsonius generated from multilocus 
microsatellite genotypes.  Branch lengths are proportional to Da units.  Numbers along branches 
represent bootstrap support for nodes.  Solid circles represent the clusters inferred by the 
program structure.  The dashed circles represent the grouping of clusters consistent with the 
subspecies Z. h. intermedius and Z. h. preblei.  Z. h. campestris, Z. h. pallidus, and Z. h. luteus 
(single collection) were recovered as single clusters by structure. 
 
Figure 4.  Graphical depiction of results from the multidimensional scaling analysis of pairwise 
1-Da values among 13 collections of Z. hudsonius surveyed at 21 microsatellite DNA loci.  Solid 
circles represent the clusters inferred by the program structure.  The dashed circles represent the 
grouping of clusters consistent with the subspecies Z. h. intermedius and Z. h. preblei.  Z. h. 
campestris, Z. h. pallidus, and Z. h. luteus (single collection) were recovered as single clusters by 
structure. 
 
Figure 5.  Zapus hudsonius haplotype networks resulting from the statistical parsimony analysis 
of the mitochondrial DNA control region data set.  The set of haplotypes belonging to each 
subspecies of Z. hudsonius are outlined by boxes.  No haplotypes were shared among subspecies. 
 Haplotypes identified as the root of each network by the program TCS (Clement et al. 2000) are 
represented by a square and all other haplotypes are represented as circles.  The size of each 
haplotype symbol is proportional to the number of copies observed in the data set. 
 
Figure 6.  Zapus hudsonius haplotype networks resulting from the statistical parsimony analysis 
of the cyt b data set.  The set of haplotypes belonging to each subspecies of Z. hudsonius are 
outlined by boxes.  No haplotypes were shared among subspecies.  Haplotypes identified as the 
root of each network by the program TCS (Clement et al. 2000) are represented by a square and 
all other haplotypes are represented as circles.  The size of each haplotype symbol is proportional 
to the number of copies observed in the data set. 
 
Figure 7.  Phylogenetic hypotheses for five Z. hudsonius subspecies based upon combined 
mitochondrial DNA data partitions and A) unweighted parsimony analysis (strict consensus of 
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4050 most parsimonious trees, 205 steps, CI = 0.7171) and B) maximum likelihood analysis 
using best-fit model of nucleotide substitution (-ln = 3682.52441).  Numbers above branches in 
A are bootstrap proportions from maximum parsimony and maximum likelihood analyses, 
respectively, and italicized numbers below branches are decay indices. Stars indicate nodes that 
are of particular interest to this study and received high support. 
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Appendix A.  Microsatellite DNA markers, the total number 
of alleles observed, and the range of amplified products in the 
survey of 300 Zapus hudsonius, and associated references.   
 

Microsatellit
e locus 

Alleles 
observed 

Size 
range Reference 

Z.7 30 156-179 Ramey et al. 2005 
Z.20 19 103-141 Ramey et al. 2005 
Z.26 16 138-174 Ramey et al. 2005 
Z.48 15 173-203 Ramey et al. 2005 
Z.52 11 154-176 Ramey et al. 2005 
Ztri2 12 91-135 Vignieri et al. 2003 
Ztri17 12 149-195 Vignieri et al. 2003 
Ztri19 7 174-204 Vignieri et al. 2003 
Ztri24 13 151-199 Vignieri et al. 2003 
ZhuC3 16 204-264 King et al. In Press 
ZhuC6 9 100-144 King et al. In Press 

ZhuC12 8 96-124 King et al. In Press 

ZhuC104 9 222-254 King et al. In Press 

ZhuC119 17 207-263 King et al. In Press 

ZhuC120 7 145-169 King et al. In Press 

ZhuC129 10 200-236 King et al. In Press 

ZhuC130 7 258-286 King et al. In Press 

ZhuD107 13 213-261 King et al. In Press 

ZhuD108 10 138-176 King et al. In Press 

ZhuD109 13 133-177 King et al. In Press 

ZhuD122 18 201-285 King et al. In Press 
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Appendix B.  Zapus hudsonius mitochondrial DNA control region haplotype (372 base pairs) counts by subspecies and collection. 
 
 

 Z. hudsonius preblei Z. h. intermedius Z. h. campestris Z. h. pallidis Z. h. luteus 

Haplotype              LCCO1 LCCO2 DCCO1 DCCO2 ECCO1 ECCO2 BRCSD MCMN CCWY CCSD BENCSD KBCNE SCNM

N 12             16 32 26 19 26 26 21 29 31 16 31 19
ZhpCR_A 12 12                
ZhpCR_B     6 18 9 11        
ZhpCR_C   4 26 5            
ZhpCR_D       3 10 15        
ZhiCR_A       8 4      
ZhiCR_B       5        
ZhiCR_C       13        
ZhiCR_D         8      
ZhiCR_E         3      
ZhiCR_F         2      
ZhiCR_G         1      
ZhiCR_H         2      
ZhiCR_I         1      
ZhcCR_A         25 20    
ZhcCR_B         3      
ZhcCR_C         1      
ZhcCR_D           8    
ZhcCR_E           3    
ZhpaCR_A           14 10   
ZhpaCR_B           2    
ZhpaCR_C             10  
ZhpaCR_D             7  
ZhpaCR_E             4  
ZhlCR_A             17 
ZhlCR_B             2 
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Appendix C.  Zapus hudsonius mitochondrial DNA cytochrome b region haplotype (1006 base pairs) counts by subspecies and collection. 
 

 Z. hudsonius preblei Z. h. intermedius Z. h. campestris Z. h. pallidis Z. h. luteus 

Haplotype              LCCO1 LCCO2 DCCO1 DCCO2 ECCO1 ECCO2 BRCSD MCMN CCWY CCSD BCSD KBCNE SCNM

N              14 15 31 14 19 25 26 21 30 30 16 32 19
ZhpCB_A 1 5               
ZhpCB_B 1             
ZhpCB_C 1             
ZhpCB_D 1             
ZhpCB_E 1             
ZhpCB_F 9 5            
ZhpCB_G  4            
ZhpCB_H  1            
ZhpCB_I   7 11 14 24        
ZhpCB_J   23           
ZhpCB_K   1  1         
ZhpCB_L    2          
ZhpCB_M    1          
ZhpCB_N     1         
ZhpCB_O     1         
ZhpCB_P     2         
ZhpCB_Q      1        
ZhiCB_A        3      
ZhiCB_B        1      
ZhiCB_C       5 4      
ZhiCB_D         1      
ZhiCB_E         3      
ZhiCB_F         1      
ZhiCB_G         5      
ZhiCB_H         1      
ZhiCB_I         2      
ZhiCB_J       13       
ZhiCB_K       6       
ZhiCB_L       1       
ZhiCB_M       1       
ZhcCB_A         1     
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ZhcCB_B         22 19    
ZhcCB_C         1     
ZhcCB_D         1     
ZhcCB_E         2     
ZhcCB_F         1     
ZhcCB_G         1     
ZhcCB_H          2    
ZhcCB_I         1     
ZhcCB_J          5    
ZhcCB_K          1    
ZhcCB_L          2    
ZhcCB_M          1    
ZhpaCB_A           4   
ZhpaCB_B           9   
ZhpaCB_C           2 11  
ZhpaCB_D           1   
ZhpaCB_E             10  
ZhpaCB_F            6  
ZhpaCB_G            4  
ZhpaCB_H            1  
ZhlCB_A             19 
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